MATLAB® 7

Function Reference: Volume 3 (P-Z)

MATLAB

‘\The MathWorks™

Accelorating the poce of engineering and science

X g

How to Contact The MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
MATLAB Function Reference
© COPYRIGHT 1984-2010 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used

or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

December 1996
June 1997
October 1997
January 1999
June 1999
June 2001

July 2002

June 2004
September 2006
March 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010

First printing
Online only
Online only
Online only
Second printing
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

For MATLAB 5.0 (Release 8)

Revised for MATLAB 5.1 (Release 9)
Revised for MATLAB 5.2 (Release 10)
Revised for MATLAB 5.3 (Release 11)
For MATLAB 5.3 (Release 11)

Revised for MATLAB 6.1 (Release 12.1)
Revised for 6.5 (Release 13)

Revised for 7.0 (Release 14)

Revised for 7.3 (Release 2006b)
Revised for 7.4 (Release 2007a)
Revised for Version 7.5 (Release 2007b)
Revised for Version 7.6 (Release 2008a)
Revised for Version 7.7 (Release 2008b)
Revised for Version 7.8 (Release 2009a)
Revised for Version 7.9 (Release 2009b)
Revised for Version 7.10 (Release 2010a)

Function Reference

1

Desktop Tools and Development Environment
Startup and Shutdown
Command Window and History
Help for Using MATLAB
Workspaceoiiiii i e
Managing Files
Programming Tools
Sy Stem .t

Data Importand Export
File Name Constructioncccoiiiio.. ...
File Opening, Loading, and Saving
Memory Mappingoiiiiiiiiiiiiiinnnnn.
Low-Level File I/O i,
Text Files ... i e e
XML Documentsttt
Spreadsheets i,
Scientific Datat e
Audioand Video i
Images
Internet Exchange

Mathematicsttt
Arrays and Matricesc..iiiiiinnnen,
Linear Algebra,
Elementary Math
Polynomials
Interpolation and Computational Geometry
Cartesian Coordinate System Conversion
Nonlinear Numerical Methods
Specialized Math
Sparse Matricesiiiiiiiiineen
Math Constantsctiiiiiiiiiiiiieennnnn.

Data Analysis i

vi

Contents

Basic Operationstiiiiiinnnnnneeennn. 1-57

Descriptive Statisticsoviiiiiii i, 1-57
Filtering and Convolution 1-58
Interpolation and Regression 1-58
Fourier Transforms 1-59
Derivatives and Integrals 1-59
Time Series Objects ... ovvi ittt e i i i i 1-60
Time Series Collectionsccvvviiinnnnn. 1-63
Programming and Data Types 1-65
DataTypes ... e 1-65
Data Type Conversionoeeeeeeeeeennnnnnnns 1-74
Operators and Special Characters 1-76
17 0 Y= Pt 1-78
Bit-Wise Operationsciiiiiinneneennnnn. 1-81
Logical Operationscouuiiiieieninnnnnnnn. 1-82
Relational Operationsciiiinnnn.. 1-82
Set Operationstiiiiiiiieneeeeennn 1-83
Date and Time Operationscccvvvuuunn.. 1-83
Programming in MATLAB 1-84
Object-Oriented Programming 1-92
Classesand Objectscciiiiiiiinnnnnnnnnn. 1-92
Handle Classesc.coiiiiiiiiieeinnnnnnnnen.. 1-93
Events and Listeners, 1-94
Meta-Classesouiiiiiiiiiii i 1-94
Graphics 1-96
Basic Plotsand Graphs 1-96
Plotting Tools i i i 1-97
Annotating Plots i 1-97
Specialized Plotting 0., 1-98
Bit-Mapped Images ..., 1-101
Printing 1-102
Handle Graphics i, 1-102
3-D Visualization i, 1-107
Surface and Mesh Plots c ... 1-107
View Control e, 1-109
Lighting 1-111
TransSpParenCyvuutitteeee e 1-111
Volume Visualizationccciiiiininn... 1-111

GUI Developmentc0iiiiiiiiinnnn. 1-113

Predefined Dialog Boxes 1-113
User Interface Deployment 1-114
User Interface Development 1-114
User Interface Objects coviiiinn.. 1-115
Objects from Callbacks, 1-116
GUIUtItIes .. .vii ittt e et e e e 1-116
Program Execution 1-117
External Interfaces 1-118
Shared Librariestiiiiiinnnnnennnnn. 1-118
JaAVA L e e e 1-119
NET e 1-120
Component Object Model and ActiveX 1-121
Web Servicesoiiiiiiiiiii i 1-123
Serial Port Devicesciiiiiiinnnenen.. 1-124

Alphabetical List

Index

vii

Contents

o
ol

Function Reference

Desktop Tools and Development
Environment (p. 1-3)

Data Import and Export (p. 1-12)

Mathematics (p. 1-28)

Data Analysis (p. 1-57)

Programming and Data Types
(p. 1-65)

Object-Oriented Programming
(p. 1-92)

Graphics (p. 1-96)

3-D Visualization (p. 1-107)

Startup, Command Window, help,
editing and debugging, tuning, other
general functions

General and low-level file I/O, plus
specific file formats, like audio,
spreadsheet, HDF, images

Arrays and matrices, linear algebra,
other areas of mathematics

Basic data operations, descriptive
statistics, covariance and correlation,
filtering and convolution, numerical
derivatives and integrals, Fourier
transforms, time series analysis

Function/expression evaluation,
program control, function handles,
object oriented programming, error
handling, operators, data types,
dates and times, timers

Functions for working with classes
and objects

Line plots, annotating graphs,
specialized plots, images, printing,
Handle Graphics

Surface and mesh plots, view control,
lighting and transparency, volume
visualization

1 Function Reference

GUI Development (p. 1-113) GUIDE, programming graphical
user interfaces

External Interfaces (p. 1-118) Interfaces to shared libraries, Java,
.NET, COM and ActiveX, Web
services, and serial port devices, and
C and Fortran routines

Desktop Tools and Development Environment

Startup and Shutdown (p. 1-3)

Command Window and History
(p. 1-4)

Help for Using MATLAB (p. 1-5)
Workspace (p. 1-6)
Managing Files (p. 1-6)

Programming Tools (p. 1-8)

System (p. 1-10)

Startup and Shutdown

exit

finish

matlab (UNIX)
matlab (Windows)

matlabre

prefdir

preferences

Desktop Tools and Development Environment

Startup and shutdown options,
preferences

Control Command Window and
History, enter statements and run
functions

Command line help, online
documentation in the Help browser,
demos

Manage variables

Work with files, MATLAB search
path, manage variables

Edit and debug MATLAB code ,
improve performance, source control,
publish results

Identify current computer, license,
product version, and more

Terminate MATLAB® program
(same as quit)

Termination M-file for MATLAB
program

Start MATLAB program (UNIX®
platforms)

Start MATLAB program (Windows®
platforms)

Startup M-file for MATLAB program

Folder containing preferences,
history, and layout files

Open Preferences dialog box

1-3

1 Function Reference

1-4

quit
startup

userpath

Terminate MATLAB program
Startup file for user-defined options

View or change user portion of
search path

Command Window and History

cle

commandhistory

commandwindow

diary

dos

format
home
matlabcolon (matlab:)

more

perl

system

unix

Clear Command Window

Open Command History window, or
select it if already open

Open Command Window, or select
it if already open

Save session to file

Execute DOS command and return
result

Set display format for output
Send the cursor home
Run specified function via hyperlink

Control paged output for Command
Window

Call Perl script using appropriate
operating system executable

Execute operating system command
and return result

Execute UNIX command and return
result

Desktop Tools and Development Environment

Help for Using MATLAB

builddocsearchdb
demo

doc
docsearch

echodemo
help
helpbrowser
helpwin

info

lookfor
playshow
support

web

whatsnew

Build searchable documentation
database

Access product demos via Help
browser

Reference page in Help browser
Help browser search

Run scripted demo step-by-step in
Command Window

Help for functions in Command
Window

Open Help browser to access online
documentation and demos

Provide access to help comments for
all functions

Information about contacting The
MathWorks

Search for keyword in all help
entries

Run M-file demo (deprecated; use
echodemo instead)

Open MathWorks Technical Support
Web page

Open Web site or file in Web or Help
browser

Release Notes for MathWorks™
products

1 Function Reference

Workspace
clear Remove items from workspace,
freeing up system memory
delete Remove files or graphics objects
openvar Open workspace variable in Variable
Editor or other graphical editing tool
pack Consolidate workspace memory
which Locate functions and files
who, whos List variables in workspace
workspace Open Workspace browser to manage
workspace
Managing Files
Search Path (p. 1-6) View and change MATLAB search
path
File Operations (p. 1-7) View and change files and directories
Search Path
addpath Add folders to search path
genpath Generate path string
path View or change search path
path2rc Save current search path to
pathdef.m file
pathsep Search path separator for current
platform
pathtool Open Set Path dialog box to view

and change search path

restoredefaultpath Restore default search path

Desktop Tools and Development Environment

rmpath
savepath

userpath

which

File Operations

Remove folders from search path
Save current search path

View or change user portion of
search path

Locate functions and files

See also “Data Import and Export” on page 1-12 functions.

cd
copyfile
delete
dir
fileattrib

filebrowser

isdir

lookfor

Is
matlabroot
mkdir
movefile
pwd

recycle

rmdir
tempdir

toolboxdir

Change current folder

Copy file or folder

Remove files or graphics objects
Folder listing

Set or get attributes of file or folder

Open Current Folder browser, or
select it if already open

Determine whether input is folder

Search for keyword in all help
entries

Folder contents

Root folder

Make new folder
Move file or folder
Identify current folder

Set option to move deleted files to
recycle folder

Remove folder
Name of system’s temporary folder

Root folder for specified toolbox

1 Function Reference

type Display contents of file

visdiff Compare two text files, MAT-Files,
binary files, or folders

Programming Tools

Editing Files (p. 1-8) Edit files

Debugging Programs (p. 1-8) Debug MATLAB program files

MATLAB Program Performance Improve performance and find

(p. 1-9) potential problems in MATLAB code

Source Control (p. 1-9) Interface MATLAB with source
control system

Publishing (p. 1-9) Publish MATLAB code and results

Editing Files

edit Edit or create file

Debugging Programs

dbclear Clear breakpoints

dbcont Resume execution

dbdown Reverse workspace shift performed
by dbup, while in debug mode

dbquit Quit debug mode

dbstack Function call stack

dbstatus List all breakpoints

dbstep Execute one or more lines from

current breakpoint

dbstop Set breakpoints

1-8

Desktop Tools and Development Environment

dbtype
dbup

MATLAB Program Performance

rehash

Source Control

checkin
checkout

cmopts

customverctrl
undocheckout

verctrl

Publishing

grabcode

notebook

List text file with line numbers

Shift current workspace to
workspace of caller, while in
debug mode

Refresh function and file system
path caches

Check files into source control
system (UNIX platforms)

Check files out of source control
system (UNIX platforms)

Name of source control system

Allow custom source control system
(UNIX platforms)

Undo previous checkout from source
control system (UNIX platforms)

Source control actions (Windows
platforms)

MATLAB code from files published
to HTML

Open M-book in Microsoft® Word
software (on Microsoft Windows
platforms)

1-9

1 Function Reference

1-10

publish

snapnow

System

Operating System Interface (p. 1-10)

MATLAB Version and License
(p. 1-11)

Operating System Interface
clipboard

computer

dos

getenv
hostid
perl

setenv

system
unix

winqueryreg

Publish MATLAB file with code cells,
saving output to specified file type

Force snapshot of image for inclusion
in published document

Exchange operating system
information and commands with
MATLAB

Information about MATLAB version
and license

Copy and paste strings to and from
system clipboard

Information about computer on
which MATLAB software is running

Execute DOS command and return
result

Environment variable
Server host identification number

Call Perl script using appropriate
operating system executable

Set environment variable

Execute operating system command
and return result

Execute UNIX command and return
result

Item from Windows registry

Desktop Tools and Development Environment

MATLAB Version and License

ismac

ispc

isstudent

isunix

javachk

license

prefdir

usejava

ver

verLessThan

version

Determine if version is for Mac OS®
X platform

Determine if version is for Windows
(PC) platform

Determine if version is Student
Version

Determine if version is for UNIX
platform

Generate error message based on
Sun™ Java™ feature support

Return license number or perform
licensing task

Folder containing preferences,
history, and layout files

Determine whether Sun Java feature
is supported in MATLAB software

Version information for MathWorks
products

Compare toolbox version to specified
version string

Version number for MATLAB and
libraries

1-11

1 Function Reference

Data Import and Export

1-12

File Name Construction (p. 1-12)
File Opening, Loading, and Saving
(p. 1-13)

Memory Mapping (p. 1-13)
Low-Level File I/O (p. 1-14)

Text Files (p. 1-14)

XML Documents (p. 1-15)

Spreadsheets (p. 1-15)
Scientific Data (p. 1-16)
Audio and Video (p. 1-24)

Images (p. 1-26)
Internet Exchange (p. 1-26)

Get path, directory, filename
information; construct filenames

Open files; transfer data between
files and MATLAB workspace

Access file data via memory map
using MATLAB array indexing

Low-level operations that use a file
identifier

Delimited or formatted I/0 to text
files

Documents written in Extensible
Markup Language

Excel and Lotus 1-2-3 files
CDF, FITS, HDF formats

Read and write audio and video,
record and play audio

Graphics files
URL, FTP, zip, tar, and e-mail

To see a listing of file formats that are readable from MATLAB, go to file

formats.

File Name Construction
filemarker
fileparts

filesep
fullfile

Character to separate file name and
internal function name

Parts of file name and path
File separator for current platform

Build full file name from parts

Data Import and Export

tempdir Name of system’s temporary folder

tempname Unique name for temporary file

File Opening, Loading, and Saving

daqread Read Data Acquisition Toolbox™
(.daq) file

importdata Load data from file

load Load data from MAT-file into
workspace

open Open file in appropriate application

save Save workspace variables to file

uigetdir Open standard dialog box for
selecting directory

uigetfile Open standard dialog box for
retrieving files

uiimport Open Import Wizard to import data

uiputfile Open standard dialog box for saving
files

uisave Open standard dialog box for saving
workspace variables

winopen Open file in appropriate application
(Windows)

Memory Mapping

disp (memmapfile) Information about memmapfile
object

get (memmapfile) Memmapfile object properties

memmapfile Construct memmapfile object

1-13

1 Function Reference

1-14

Low-Level File 1/0

fclose
feof
ferror

fgetl
fgets
fopen

fprintf
fread

frewind

fscanf
fseek
ftell

fwrite

Text Files

csvread
csvwrite

dlmread

dlmwrite
fileread

textread

Close one or all open files
Test for end-of-file
Information about file I/O errors

Read line from file, removing
newline characters

Read line from file, keeping newline
characters

Open file, or obtain information
about open files

Write data to text file
Read data from binary file

Move file position indicator to
beginning of open file

Read data from a text file
Move to specified position in file
Position in open file

Write data to binary file

Read comma-separated value file
Write comma-separated value file

Read ASCII-delimited file of numeric
data into matrix

Write matrix to ASCII-delimited file
Read contents of file into string

Read data from text file; write to
multiple outputs

Data Import and Export

textscan
type

XML Documents
xmlread

xmlwrite

xslt

Spreadsheets

Microsoft Excel (p. 1-15)

Lotus 1-2-3 (p. 1-16)

Microsoft Excel

xlsfinfo
xlsread

xlswrite

Read formatted data from text file
or string

Display contents of file

Parse XML document and return
Document Object Model node

Serialize XML Document Object
Model node

Transform XML document using
XSLT engine

Read and write Microsoft Excel
spreadsheet

Read and write Lotus WK1
spreadsheet

Determine whether file contains a
Microsoft® Excel® spreadsheet

Read Microsoft Excel spreadsheet
file

Write Microsoft Excel spreadsheet
file

1-15

1 Function Reference

1-16

Lotus 1-2-3

wk1finfo
wklread

wklwrite

Scientific Data

Common Data Format (p. 1-16)

Network Common Data Form
(p. 1-22)

Flexible Image Transport System
(p. 1-23)

Hierarchical Data Format (p. 1-24)
Band-Interleaved Data (p. 1-24)

Common Data Format
High-level I/O Functions

cdfepoch
cdfinfo
cdfread
cdfwrite

todatenum

Determine whether file contains
1-2-3 WK1 worksheet

Read Lotus 1-2-3 WK1 spreadsheet
file into matrix

Write matrix to Lotus 1-2-3 WK1
spreadsheet file

Work with CDF files
Work with netCDF files

Work with FITS files

Work with HDF files
Work with band-interleaved files

Convert MATLAB formatted dates
to CDF formatted dates

Information about Common Data
Format (CDF) file

Read data from Common Data
Format (CDF) file

Write data to Common Data Format
(CDF) file

Convert CDF epoch object to
MATLAB datenum

Data Import and Export

Library Information

cdflib

cdflib.getConstantNames

cdflib.getConstantValue

cdflib.getLibraryCopyright

cdflib.getLibraryVersion

cdflib.getValidate
cdflib.setValidate

File Operations

cdflib.close

cdflib.create

cdflib.delete

cdflib.getCacheSize
cdflib.getChecksum
cdflib.getCompression
cdflib.getCompressionCacheSize
cdflib.getCopyright

cdflib.getFormat

Summary of Common Data Format
(CDF) capabilities

Names of Common Data Format
(CDF) library constants

Numeric value corresponding to
Common Data Format (CDF) library
constant

Copyright notice of Common Data
Format (CDF) library

Library version and release
information

Library validation mode

Specify library validation mode

Close Common Data Format (CDF)
file

Create Common Data Format (CDF)
file

Delete existing Common Data
Format (CDF) file

Number of cache buffers used
Checksum mode

Compression settings

Number of compression cache buffers

Copyright notice in Common Data
Format (CDF) file

Format of Common Data Format
(CDF) file

1-17

1 Function Reference

1-18

cdflib.getMajority
cdflib.getName

cdflib.getReadOnlyMode
cdflib.getStageCacheSize
cdflib.getVersion

cdflib.inquire

cdflib.open

cdflib.setCacheSize

cdflib.setChecksum
cdflib.setCompression

cdflib.setCompressionCacheSize

cdflib.setFormat

cdflib.setMajority
cdflib.setReadOnlyMode
cdflib.setStageCacheSize

Variables

cdflib.closeVar

cdflib.createVar
cdflib.deleteVar

Majority of variables

Name of Common Data Format
(CDF) file

Read-only mode
Number of cache buffers for staging

Common Data Format (CDF) library
version and release information

Basic characteristics of Common
Data Format (CDF) file

Open existing Common Data Format
(CDF) file

Specify number of dotCDF cache
buffers

Specify checksum mode
Specify compression settings

Specify number of compression cache
buffers

Specify format of Common Data
Format (CDF) file

Specify majority of variables
Specify read-only mode

Specify number of staging cache
buffers for Common Data Format
(CDF) file

Close specified variable from
multifile format Common Data
Format (CDF) file

Create new variable

Delete variable

Data Import and Export

cdflib.deleteVarRecords
cdflib.getVarAllocRecords

cdflib.getVarBlockingFactor
cdflib.getVarCacheSize
cdflib.getVarCompression

cdflib.getVarData
cdflib.getVarMaxAllocRecNum

cdflib.getVarMaxWrittenRecNum

cdflib.getVarName

cdflib.getVarNum

cdflib.getVarNumRecsWritten

cdflib.getVarPadValue
cdflib.getVarRecordData
cdflib.getVarReservePercent

cdflib.getVarSparseRecords

cdflib.hyperGetVarData
cdflib.hyperPutVarData
cdflib.inquireVar
cdflib.putVarData
cdflib.putVarRecordData

cdflib.renameVar

Delete range of records from variable

Number of records allocated for
variable

Blocking factor for variable
Number of multifile cache buffers

Information about compression used
by variable

Single value from record in variable

Maximum allocated record number
for variable

Maximum written record number for
variable

Variable name, given variable
number

Variable number, given variable
name

Number of records written to
variable

Pad value for variable
Entire record for variable

Compression reserve percentage for
variable

Information about how variable
handles sparse records

Read hyperslab of data from variable
Write hyperslab of data to variable
Information about variable

Write single value to variable

Write entire record to variable

Rename existing variable

1-19

1 Function Reference

1-20

cdflib.setVarAllocBlockRecords

cdflib.setVarBlockingFactor
cdflib.setVarCacheSize

cdflib.setVarCompression

cdflib.setVarlInitialRecs

cdflib.setVarPadValue
cdflib.SetVarReservePercent

cdflib.setVarsCacheSize

cdflib.setVarSparseRecords

Attributes and Entries

cdflib.createAttr
cdflib.deleteAttr
cdflib.deleteAttrEntry
cdflib.deleteAttrgEntry
cdflib.getAttrEntry

cdflib.getAttrgEntry
cdflib.getAttrMaxEntry

cdflib.getAttrMaxgEntry

cdflib.getAttrName

Specify range of records to be
allocated for variable

Specify blocking factor for variable

Specify number of multi-file cache
buffers for variable

Specify compression settings used
with variable

Specify initial number of records
written to variable

Specify pad value used with variable

Specify reserve percentage for
variable

Specify number of cache buffers used
for all variables

Specify how variable handles sparse
records

Create attribute

Delete attribute

Delete attribute entry

Delete entry in global attribute

Value of entry in attribute with
variable scope

Value of entry in global attribute

Number of last entry for variable
attribute

Number of last entry for global
attribute

Name of attribute, given attribute
number

Data Import and Export

cdflib.getAttrNum

cdflib.getAttrScope
cdflib.getNumAttrEntries

cdflib.getNumAttrgEntries

cdflib.getNumAttributes

cdflib.getNumgAttributes

cdflib.inquireAttr
cdflib.inquireAttrEntry

cdflib.inquireAttrgEntry

cdflib.putAttrEntry

cdflib.putAttrgEntry

cdflib.renameAttr

Utilities

cdflib.computeEpoch

cdflib.computeEpoch16

cdflib.epoch16Breakdown

cdflib.epochBreakdown

Attribute number, given attribute
name

Scope of attribute

Number of entries for attribute with
variable scope

Number of entries for attribute with
global scope

Number of attributes with variable
scope

Number of attributes with global
scope

Information about attribute

Information about entry in attribute
with variable scope

Information about entry in attribute
with global scope

Write value to entry in attribute
with variable scope

Write value to entry in attribute
with global scope

Rename existing attribute

Convert time value to CDF_EPOCH
value

Convert time value to CDF_EPOCH16
value

Convert CDF_EPOCH16 value to time
value

Convert CDF_EPOCH value into time
value

1-21

1 Function Reference

1-22

Network Common Data Form
File Operations

netedf

netcdf.abort
netcdf.close
netcdf.create
netcdf.endDef
netcdf.getConstant

netedf.getConstantNames

netedf.ing

netedf.inqLibVers

netcdf.open

netcdf.reDef

netcdf.setDefaultFormat
netcdf.setFill

netedf.sync

Dimensions
netcdf.defDim

netcedf.ingDim

netedf.ingDimID

netcdf. renameDim

Summary of MATLAB Network
Common Data Form (netCDF)
capabilities

Revert recent netCDF file definitions
Close netCDF file

Create new netCDF dataset

End netCDF file define mode

Return numeric value of named
constant

Return list of constants known to
netCDF library

Return information about netCDF
file

Return netCDF library version
information

Open netCDF file

Put open netCDF file into define
mode

Change default netCDF file format
Set netCDF fill mode
Synchronize netCDF file to disk

Create netCDF dimension

Return netCDF dimension name and
length

Return dimension ID

Change name of netCDF dimension

Data Import and Export

Variables

netcdf.defVar
netcdf.getVar
netedf.inqVar
netedf.inqVarID

netedf.putVar

netcdf.renameVar

Attributes

netcdf.copyAtt
netcdf.delAtt
netcdf.getAtt
netcdf.inqAtt

netedf.inqAttID
netcdf.inqAttName
netedf.putAtt

netcdf.renameAtt

Create netCDF variable
Return data from netCDF variable
Return information about variable

Return ID associated with variable
name

Write data to netCDF variable

Change name of netCDF variable

Copy attribute to new location
Delete netCDF attribute
Return netCDF attribute

Return information about netCDF
attribute

Return ID of netCDF attribute
Return name of netCDF attribute
Write netCDF attribute

Change name of attribute

Flexible Image Transport System

fitsinfo

fitsread

Information about FITS file
Read data from FITS file

1-23

1 Function Reference

Hierarchical Data Format

hdf
hdf5

hdfbinfo
hdf5read
hdf5write
hdfinfo

hdfread

hdftool

Band-Interleaved Data

multibandread

multibandwrite
Audio and Video
Reading and Writing Files (p. 1-25)

Recording and Playback (p. 1-25)
Utilities (p. 1-26)

1-24

Summary of MATLAB HDF4
capabilities

Summary of MATLAB HDF5
capabilities

Information about HDF5 file
Read HDFS5 file
Write data to file in HDF5 format

Information about HDF4 or
HDF-EOS file

Read data from HDF4 or HDF-EOS
file

Browse and import data from HDF4
or HDF-EOS files

Read band-interleaved data from
binary file

Write band-interleaved data to file

Input/output data to audio and video
file formats

Record and listen to audio

Convert audio signal

Data Import and Export

Reading and Writing Files

aufinfo

auread
auwrite

avifile
aviinfo
aviread

mmfileinfo

mmreader
movie2avi
wavfinfo

wavread

wavwrite

Recording and Playback

audiodevinfo
audioplayer
audiorecorder

sound

soundsc

Information about NeXT/SUN (. au)
sound file

Read NeXT/SUN (. au) sound file
Write NeXT/SUN (. au) sound file

Create new Audio/Video Interleaved
(AVI) file

Information about Audio/Video
Interleaved (AVI) file

Read Audio/Video Interleaved (AVI)
file

Information about multimedia file

Create multimedia reader object for
reading video files

Create Audio/Video Interleaved
(AV]) file from MATLAB movie

Information about WAVE (.wav)
sound file

Read WAVE (.wav) sound file
Write WAVE (.wav) sound file

Information about audio device
Create object for playing audio
Create object for recording audio

Convert matrix of signal data to
sound

Scale data and play as sound

1-25

1 Function Reference

wavplay

wavrecord

Utilities
beep

lin2mu

mu2lin

Images

exifread

im2java
imfinfo
imread
imwrite

Tiff

Internet Exchange

URL, Zip, Tar, E-Mail (p. 1-27)

FTP (p. 1-27)

1-26

Play recorded sound on PC-based
audio output device

Record sound using PC-based audio
input device

Produce beep sound

Convert linear audio signal to
mu-law

Convert mu-law audio signal to
linear

Read EXIF information from JPEG
and TIFF image files

Convert image to Java image
Information about graphics file
Read image from graphics file
Write image to graphics file

MATLAB Gateway to LibTIFF
library routines

Send e-mail, read from given URL,
extract from tar or zip file, compress
and decompress files

Connect to FTP server, download
from server, manage FTP files, close
server connection

Data Import and Export

URL, Zip, Tar, E-Mail

gunzip
gzip
sendmail
tar
untar
unzip

urlread

urlwrite
Zip

FTP

ascii
binary
cd (ftp)

close (ftp)
delete (ftp)
dir (ftp)
ftp

mget
mkdir (ftp)
mput
rename

rmdir (ftp)

Uncompress GNU zip files
Compress files into GNU zip files
Send e-mail message to address list
Compress files into tar file

Extract contents of tar file

Extract contents of zip file

Download content at URL into
MATLAB string

Download content at URL and save
to file

Compress files into zip file

Set FTP transfer type to ASCII
Set FTP transfer type to binary

Change current directory on FTP
server

Close connection to FTP server
Remove file on FTP server
Directory contents on FTP server

Connect to FTP server, creating FTP
object

Download file from FTP server
Create new directory on FTP server
Upload file or directory to FTP server
Rename file on FTP server

Remove directory on FTP server

1-27

1 Function Reference

1-28

Mathematics

Arrays and Matrices (p. 1-29)

Linear Algebra (p. 1-34)

Elementary Math (p. 1-38)

Polynomials (p. 1-43)

Interpolation and Computational
Geometry (p. 1-43)

Cartesian Coordinate System
Conversion (p. 1-47)

Nonlinear Numerical Methods
(p. 1-47)

Specialized Math (p. 1-51)

Sparse Matrices (p. 1-52)

Math Constants (p. 1-55)

Basic array operators and
operations, creation of elementary
and specialized arrays and matrices

Matrix analysis, linear equations,
eigenvalues, singular values,
logarithms, exponentials,
factorization

Trigonometry, exponentials and
logarithms, complex values,
rounding, remainders, discrete math

Multiplication, division, evaluation,
roots, derivatives, integration,
eigenvalue problem, curve fitting,
partial fraction expansion

Interpolation, Delaunay
triangulation and tessellation,
convex hulls, Voronoi diagrams,
domain generation

Conversions between Cartesian and
polar or spherical coordinates

Differential equations, optimization,
integration

Airy, Bessel, Jacobi, Legendre, beta,
elliptic, error, exponential integral,
gamma functions

Elementary sparse matrices,
operations, reordering algorithms,
linear algebra, iterative methods,
tree operations

Pi, imaginary unit, infinity,
Not-a-Number, largest and smallest
positive floating point numbers,
floating point relative accuracy

Mathematics

Arrays and Matrices

Basic Information (p. 1-29)

Operators (p. 1-30)

Elementary Matrices and Arrays
(p. 1-31)

Array Operations (p. 1-32)

Array Manipulation (p. 1-33)

Specialized Matrices (p. 1-34)

Basic Information

disp
display

isempty
isequal

isequalwithequalnans
isfinite

isfloat

isinf

isinteger

Display array contents, get array
information, determine array type

Arithmetic operators

Create elementary arrays of different
types, generate arrays for plotting,
array indexing, etc.

Operate on array content, apply
function to each array element, find
cumulative product or sum, etc.

Create, sort, rotate, permute,
reshape, and shift array contents

Create Hadamard, Companion,
Hankel, Vandermonde, Pascal
matrices, etc.

Display text or array

Display text or array (overloaded
method)

Determine whether array is empty
Test arrays for equality

Test arrays for equality, treating
NaNs as equal

Array elements that are finite

Determine whether input is
floating-point array

Array elements that are infinite

Determine whether input is integer
array

1-29

1 Function Reference

islogical Determine whether input is logical
array

isnan Array elements that are NaN

isnumeric Determine whether input is numeric
array

isscalar Determine whether input is scalar

issparse Determine whether input is sparse

isvector Determine whether input is vector

length Length of vector or largest array
dimension

max Largest elements in array

min Smallest elements in array

ndims Number of array dimensions

numel Number of elements in array or
subscripted array expression

size Array dimensions

Operators

+ Addition

+ Unary plus

- Subtraction

- Unary minus

Matrix multiplication

Matrix power

\ Backslash or left matrix divide
/ Slash or right matrix divide
Transpose

Nonconjugated transpose

1-30

Mathematics

Array multiplication (element-wise)
Array power (element-wise)
AN Left array divide (element-wise)

J Right array divide (element-wise)

Elementary Matrices and Arrays

blkdiag Construct block diagonal matrix
from input arguments

diag Diagonal matrices and diagonals of
matrix

eye Identity matrix

freqspace Frequency spacing for frequency
response

ind2sub Subscripts from linear index

linspace Generate linearly spaced vectors

logspace Generate logarithmically spaced
vectors

meshgrid Generate X and Y arrays for 3-D plots

ndgrid Generate arrays for N-D functions
and interpolation

ones Create array of all ones

rand Uniformly distributed
pseudorandom numbers

randi Uniformly distributed
pseudorandom integers

randn Normally distributed pseudorandom
numbers

RandStream Random number stream

1-31

1 Function Reference

sub2ind Convert subscripts to linear indices

Zeros Create array of all zeros

Array Operations

See “Linear Algebra” on page 1-34 and “Elementary Math” on page 1-38 for
other array operations.

accumarray Construct array with accumulation

arrayfun Apply function to each element of
array

bsxfun Apply element-by-element binary

operation to two arrays with
singleton expansion enabled

cast Cast variable to different data type

Cross Vector cross product

cumprod Cumulative product

cumsum Cumulative sum

dot Vector dot product

idivide Integer division with rounding
option

kron Kronecker tensor product

prod Product of array elements

sum Sum of array elements

tril Lower triangular part of matrix

triu Upper triangular part of matrix

1-32

Mathematics

Array Manipulation

blkdiag
cat

circshift

diag
end

flipdim
fliplr
flipud
horzcat
inline

ipermute

permute
repmat
reshape
rot90
shiftdim

sort

sortrows
squeeze
vectorize

vertcat

Construct block diagonal matrix
from input arguments

Concatenate arrays along specified
dimension

Shift array circularly

Diagonal matrices and diagonals of
matrix

Terminate block of code, or indicate
last array index

Flip array along specified dimension
Flip matrix left to right

Flip matrix up to down

Concatenate arrays horizontally
Construct inline object

Inverse permute dimensions of N-D
array

Rearrange dimensions of N-D array
Replicate and tile array

Reshape array

Rotate matrix 90 degrees

Shift dimensions

Sort array elements in ascending or
descending order

Sort rows in ascending order
Remove singleton dimensions
Vectorize expression

Concatenate arrays vertically

1-33

1 Function Reference

1-34

Specialized Matrices

compan
gallery
hadamard
hankel
hilb
invhilb
magic
pascal

rosser

toeplitz
vander

wilkinson

Linear Algebra

Matrix Analysis (p. 1-35)

Linear Equations (p. 1-35)

Eigenvalues and Singular Values
(p. 1-36)

Matrix Logarithms and Exponentials
(p. 1-37)

Factorization (p. 1-37)

Companion matrix

Test matrices

Hadamard matrix
Hankel matrix

Hilbert matrix

Inverse of Hilbert matrix
Magic square

Pascal matrix

Classic symmetric eigenvalue test
problem

Toeplitz matrix
Vandermonde matrix

Wilkinson’s eigenvalue test matrix

Compute norm, rank, determinant,
condition number, etc.

Solve linear systems, least
squares, LU factorization, Cholesky
factorization, etc.

Eigenvalues, eigenvectors, Schur
decomposition, Hessenburg
matrices, etc.

Matrix logarithms, exponentials,
square root

Cholesky, LU, and QR factorizations,
diagonal forms, singular value
decomposition

Mathematics

Matrix Analysis

cond
condeig

det
norm
normest
null
orth
rank

rcond

rref
subspace

trace

Linear Equations

chol

cholinc

cond

condest
funm
ilu

inv

Condition number with respect to

inversion

Condition number with respect to

eigenvalues

Matrix determinant

Vector and matrix norms

2-norm estimate

Null space

Range space of matrix

Rank of matrix

Matrix reciprocal condition number

estimate

Reduced row echelon form
Angle between two subspaces

Sum of diagonal elements

Cholesky factorization

Sparse incomplete Cholesky and
Cholesky-Infinity factorizations

Condition number with respect to

inversion

1-norm condition number estimate

Evaluate general matrix function

Sparse incomplete LU factorization

Matrix inverse

1-35

1 Function Reference

1dl Block LDL’ factorization for
Hermitian indefinite matrices

linsolve Solve linear system of equations

Iscov Least-squares solution in presence
of known covariance

Isqnonneg Solve nonnegative least-squares
constraints problem

Iu LU matrix factorization

luinc Sparse incomplete LU factorization

pinv Moore-Penrose pseudoinverse of
matrix

qr Orthogonal-triangular
decomposition

rcond Matrix reciprocal condition number
estimate

Eigenvalues and Singular Values

balance Diagonal scaling to improve
eigenvalue accuracy

cdf2rdf Convert complex diagonal form to
real block diagonal form

condeig Condition number with respect to
eigenvalues

eig Eigenvalues and eigenvectors

eigs Largest eigenvalues and
eigenvectors of matrix

gsvd Generalized singular value
decomposition

hess Hessenberg form of matrix

ordeig Eigenvalues of quasitriangular
matrices

1-36

Mathematics

ordqz

ordschur

poly
polyeig
rsf2csf

schur
sqrtm

ss2tf

svd

svds

Reorder eigenvalues in QZ
factorization

Reorder eigenvalues in Schur
factorization

Polynomial with specified roots
Polynomial eigenvalue problem

Convert real Schur form to complex
Schur form

Schur decomposition
Matrix square root

Convert state-space filter
parameters to transfer function
form

Singular value decomposition

Find singular values and vectors

Matrix Logarithms and Exponentials

expm
logm

sqrtm

Factorization

balance

cdf2rdf

chol

cholinc

Matrix exponential
Matrix logarithm

Matrix square root

Diagonal scaling to improve
eigenvalue accuracy

Convert complex diagonal form to
real block diagonal form

Cholesky factorization

Sparse incomplete Cholesky and
Cholesky-Infinity factorizations

1-37

1 Function Reference

1-38

cholupdate
gsvd

ilu

1dl

lu
luinc
planerot

qr
qrdelete
qrinsert

qrupdate
qz

rsf2csf

svd

Elementary Math

Trigonometric (p. 1-39)
Exponential (p. 1-40)

Complex (p. 1-41)

Rank 1 update to Cholesky
factorization

Generalized singular value
decomposition

Sparse incomplete LU factorization

Block LDL’ factorization for
Hermitian indefinite matrices

LU matrix factorization
Sparse incomplete LU factorization
Givens plane rotation

Orthogonal-triangular
decomposition

Remove column or row from QR
factorization

Insert column or row into QR
factorization

QZ factorization for generalized
eigenvalues

Convert real Schur form to complex
Schur form

Singular value decomposition

Trigonometric functions with results
in radians or degrees

Exponential, logarithm, power, and
root functions

Numbers with real and imaginary
components, phase angles

Mathematics

Rounding and Remainder (p. 1-42)
Discrete Math (p. 1-42)

Trigonometric

acos
acosd
acosh
acot
acotd
acoth
acsc
acscd
acsch
asec
asecd
asech
asin
asind
asinh
atan
atan2
atand
atanh
cos

cosd

Rounding, modulus, and remainder

Prime factors, factorials,
permutations, rational fractions,
least common multiple, greatest
common divisor

Inverse cosine; result in radians
Inverse cosine; result in degrees
Inverse hyperbolic cosine

Inverse cotangent; result in radians
Inverse cotangent; result in degrees
Inverse hyperbolic cotangent
Inverse cosecant; result in radians
Inverse cosecant; result in degrees
Inverse hyperbolic cosecant
Inverse secant; result in radians
Inverse secant; result in degrees
Inverse hyperbolic secant

Inverse sine; result in radians
Inverse sine; result in degrees
Inverse hyperbolic sine

Inverse tangent; result in radians
Four-quadrant inverse tangent
Inverse tangent; result in degrees
Inverse hyperbolic tangent

Cosine of argument in radians

Cosine of argument in degrees

1-39

1 Function Reference

1-40

cosh
cot
cotd
coth
csc
cscd
csch
hypot
sec
secd
sech
sin
sind

sinh

tan
tand
tanh

Exponential

exp

expml

log
log10

loglp

Hyperbolic cosine

Cotangent of argument in radians
Cotangent of argument in degrees
Hyperbolic cotangent

Cosecant of argument in radians
Cosecant of argument in degrees
Hyperbolic cosecant

Square root of sum of squares
Secant of argument in radians
Secant of argument in degrees
Hyperbolic secant

Sine of argument in radians

Sine of argument in degrees

Hyperbolic sine of argument in
radians

Tangent of argument in radians
Tangent of argument in degrees

Hyperbolic tangent

Exponential

Compute exp(x) -1 accurately for
small values of x

Natural logarithm
Common (base 10) logarithm

Compute log(1+x) accurately for
small values of x

Mathematics

log2 Base 2 logarithm and dissect
floating-point numbers into
exponent and mantissa

nextpow2 Next higher power of 2

nthroot Real nth root of real numbers

pow2 Base 2 power and scale floating-point
numbers

reallog Natural logarithm for nonnegative
real arrays

realpow Array power for real-only output

realsqrt Square root for nonnegative real
arrays

sqrt Square root

Complex

abs Absolute value and complex
magnitude

angle Phase angle

complex Construct complex data from real
and imaginary components

conj Complex conjugate

cplxpair Sort complex numbers into complex
conjugate pairs

1 Imaginary unit

imag Imaginary part of complex number

isreal Check if input is real array

] Imaginary unit

real Real part of complex number

1-41

1 Function Reference

1-42

sign

unwrap

Rounding and Remainder

ceil
fix
floor

idivide

mod
rem

round

Discrete Math

factor
factorial
ged

isprime

lem

nchoosek

perms
primes

rat, rats

Signum function

Correct phase angles to produce
smoother phase plots

Round toward positive infinity
Round toward zero
Round toward negative infinity

Integer division with rounding
option

Modulus after division
Remainder after division

Round to nearest integer

Prime factors
Factorial function
Greatest common divisor

Array elements that are prime
numbers

Least common multiple

Binomial coefficient or all
combinations

All possible permutations
Generate list of prime numbers

Rational fraction approximation

Mathematics

Polynomials

conv Convolution and polynomial
multiplication

deconv Deconvolution and polynomial
division

poly Polynomial with specified roots

polyder Polynomial derivative

polyeig Polynomial eigenvalue problem

polyfit Polynomial curve fitting

polyint Integrate polynomial analytically

polyval Polynomial evaluation

polyvalm Matrix polynomial evaluation

residue Convert between partial fraction
expansion and polynomial
coefficients

roots Polynomial roots

Interpolation and Computational Geometry

Interpolation (p. 1-44) Data interpolation, data gridding,
polynomial evaluation, nearest point
search

Delaunay Triangulation and Delaunay triangulation and

Tessellation (p. 1-45) tessellation, triangular surface and
mesh plots

Convex Hull (p. 1-46) Plot convex hull, plotting functions

Voronoi Diagrams (p. 1-46) Plot Voronoi diagram, patch graphics

object, plotting functions

Domain Generation (p. 1-47) Generate arrays for 3-D plots, or for
N-D functions and interpolation

1-43

1 Function Reference

1-44

Interpolation

dsearch

dsearchn
griddata
griddatas3

griddatan

interpl
interplq
interp2
interp3
interpft
interpn
meshgrid
mkpp
ndgrid

padecoef

pchip

ppval
spline
TriScatteredInterp
TriScatteredInterp

tsearch

Search Delaunay triangulation for
nearest point

N-D nearest point search
Data gridding

Data gridding and hypersurface
fitting for 3-D data

Data gridding and hypersurface
fitting (dimension >= 2)

1-D data interpolation (table lookup)
Quick 1-D linear interpolation

2-D data interpolation (table lookup)
3-D data interpolation (table lookup)
1-D interpolation using FFT method
N-D data interpolation (table lookup)
Generate X and Y arrays for 3-D plots
Make piecewise polynomial

Generate arrays for N-D functions
and interpolation

Padé approximation of time delays

Piecewise Cubic Hermite
Interpolating Polynomial (PCHIP)

Evaluate piecewise polynomial
Cubic spline data interpolation
Interpolate scattered data
Interpolate scattered data

Search for enclosing Delaunay
triangle

Mathematics

tsearchn

unmkpp

N-D closest simplex search

Piecewise polynomial details

Delaunay Triangulation and Tessellation

baryToCart (TriRep)

cartToBary (TriRep)

circumcenters (TriRep)
delaunay

delaunay3

delaunayn
DelaunayTri

DelaunayTri

edgeAttachments (TriRep)
edges (TriRep)
faceNormals (TriRep)
featureEdges (TriRep)
freeBoundary (TriRep)

incenters (TriRep)

inOutStatus (DelaunayTri)

isEdge (TriRep)

nearestNeighbor (DelaunayTri)

neighbors (TriRep)

pointLocation (DelaunayTri)

Converts point coordinates from
barycentric to Cartesian

Convert point coordinates from
cartesian to barycentric

Circumcenters of specified simplices
Delaunay triangulation

3-D Delaunay tessellation

N-D Delaunay tessellation

Contruct Delaunay triangulation

Delaunay triangulation in 2-D and
3-D

Simplices attached to specified edges
Triangulation edges

Unit normals to specified triangles
Sharp edges of surface triangulation

Facets referenced by only one
simplex

Incenters of specified simplices

Status of triangles in 2-D constrained
Delaunay triangulation

Test if vertices are joined by edge
Point closest to specified location
Simplex neighbor information

Simplex containing specified location

1-45

1 Function Reference

size (TriRep)
tetramesh
trimesh
triplot
TriRep
TriRep
trisurf

vertexAttachments (TriRep)

Convex Hull

convexHull (DelaunayTri)
convhull

convhulln

patch

trisurf

Voronoi Diagrams

patch
voronoi
voronoiDiagram (DelaunayTri)

voronoin

1-46

Size of triangulation matrix
Tetrahedron mesh plot
Triangular mesh plot

2-D triangular plot
Triangulation representation
Triangulation representation
Triangular surface plot

Return simplices attached to
specified vertices

Convex hull

Convex hull

N-D convex hull

Create one or more filled polygons

Triangular surface plot

Create one or more filled polygons
Voronoi diagram
Voronoi diagram

N-D Voronoi diagram

Mathematics

Domain Generation

meshgrid Generate X and Y arrays for 3-D plots

ndgrid Generate arrays for N-D functions
and interpolation

Cartesian Coordinate System Conversion

cart2pol Transform Cartesian coordinates to
polar or cylindrical

cart2sph Transform Cartesian coordinates to
spherical

pol2cart Transform polar or cylindrical
coordinates to Cartesian

sph2cart Transform spherical coordinates to
Cartesian

Nonlinear Numerical Methods

Ordinary Differential Equations Solve stiff and nonstiff differential
(p. 1-48) equations, define the problem, set
solver options, evaluate solution
Delay Differential Equations Solve delay differential equations
(p. 1-49) with constant and general delays,

set solver options, evaluate solution

Boundary Value Problems (p. 1-49) Solve boundary value problems for
ordinary differential equations, set
solver options, evaluate solution

Partial Differential Equations Solve initial-boundary value
(p. 1-50) problems for parabolic-elliptic PDEs,
evaluate solution

1-47

1 Function Reference

1-48

Optimization (p. 1-50)

Numerical Integration (Quadrature)
(p. 1-50)

Ordinary Differential Equations

decic

deval

odel51

ode23, ode4b, odell3, odelbs,
ode23s, ode23t, ode23tb
odefile

odeget

odeset

odextend

Find minimum of single and
multivariable functions, solve
nonnegative least-squares constraint
problem

Evaluate Simpson, Lobatto, and
vectorized quadratures, evaluate
double and triple integrals

Compute consistent initial conditions
for ode15i

Evaluate solution of differential
equation problem

Solve fully implicit differential
equations, variable order method

Solve initial value problems for
ordinary differential equations

Define differential equation problem
for ordinary differential equation
solvers

Ordinary differential equation
options parameters

Create or alter options structure
for ordinary differential equation
solvers

Extend solution of initial value
problem for ordinary differential
equation

Mathematics

Delay Differential Equations

dde23

ddeget

ddesd
ddeset

deval

Boundary Value Problems

bvp4c
bvpbc
bvpget

bvpinit
bvpset

bvpxtend

deval

Solve delay differential equations
(DDEs) with constant delays

Extract properties from delay
differential equations options
structure

Solve delay differential equations
(DDEs) with general delays

Create or alter delay differential
equations options structure

Evaluate solution of differential
equation problem

Solve boundary value problems for
ordinary differential equations

Solve boundary value problems for
ordinary differential equations

Extract properties from options
structure created with bvpset

Form initial guess for bvp4c

Create or alter options structure of
boundary value problem

Form guess structure for extending
boundary value solutions

Evaluate solution of differential
equation problem

1-49

1 Function Reference

Partial Differential Equations

pdepe

pdeval

Optimization

fminbnd

fminsearch

fzero

Isqnonneg

optimget

optimset

Solve initial-boundary value
problems for parabolic-elliptic PDEs
in 1-D

Evaluate numerical solution of PDE
using output of pdepe

Find minimum of single-variable
function on fixed interval

Find minimum of unconstrained
multivariable function using
derivative-free method

Find root of continuous function of
one variable

Solve nonnegative least-squares
constraints problem

Optimization options values

Create or edit optimization options
structure

Numerical Integration (Quadrature)

dblquad

quad

quad2d

quadgk

1-50

Numerically evaluate double
integral over rectangle

Numerically evaluate integral,
adaptive Simpson quadrature

Numerically evaluate double
integral over planar region

Numerically evaluate integral,
adaptive Gauss-Kronrod quadrature

Mathematics

quadl Numerically evaluate integral,
adaptive Lobatto quadrature

quadv Vectorized quadrature

triplequad Numerically evaluate triple integral

Specialized Math

airy Airy functions

besselh Bessel function of third kind (Hankel
function)

besseli Modified Bessel function of first kind

besselj Bessel function of first kind

besselk Modified Bessel function of second
kind

bessely Bessel function of second kind

beta Beta function

betainc Incomplete beta function

betaincinv Beta inverse cumulative distribution
function

betaln Logarithm of beta function

ellipj Jacobi elliptic functions

ellipke Complete elliptic integrals of first
and second kind

erf, erfe, erfex, erfinv, erfcinv Error functions

expint Exponential integral

gamma, gammainc, gammaln Gamma functions

gammaincinv Inverse incomplete gamma function

legendre Associated Legendre functions

psi Psi (polygamma) function

1-51

1 Function Reference

1-52

Sparse Matrices

Elementary Sparse Matrices
(p. 1-52)
Full to Sparse Conversion (p. 1-53)

Sparse Matrix Manipulation (p. 1-53)

Reordering Algorithms (p. 1-53)

Linear Algebra (p. 1-54)

Linear Equations (Iterative
Methods) (p. 1-54)

Tree Operations (p. 1-55)

Elementary Sparse Matrices

spdiags

speye

sprand
sprandn

sprandsym

Create random and nonrandom
sparse matrices

Convert full matrix to sparse, sparse
matrix to full

Test matrix for sparseness, get
information on sparse matrix,
allocate sparse matrix, apply
function to nonzero elements,
visualize sparsity pattern

Random, column, minimum degree,
Dulmage-Mendelsohn, and reverse
Cuthill-McKee permutations

Compute norms, eigenvalues,
factorizations, least squares,
structural rank

Methods for conjugate and
biconjugate gradients, residuals,
lower quartile

Elimination trees, tree plotting,
factorization analysis

Extract and create sparse band and
diagonal matrices

Sparse identity matrix

Sparse uniformly distributed
random matrix

Sparse normally distributed random
matrix

Sparse symmetric random matrix

Mathematics

Full to Sparse Conversion

find

full
sparse

spconvert

Sparse Matrix Manipulation

issparse
nnz
nonzeros

nzmax

spalloc

spfun
spones
spparms
spy
Reordering Algorithms
amd

colamd

Find indices and values of nonzero
elements

Convert sparse matrix to full matrix
Create sparse matrix

Import matrix from sparse matrix
external format

Determine whether input is sparse
Number of nonzero matrix elements
Nonzero matrix elements

Amount of storage allocated for
nonzero matrix elements

Allocate space for sparse matrix

Apply function to nonzero sparse
matrix elements

Replace nonzero sparse matrix
elements with ones

Set parameters for sparse matrix
routines

Visualize sparsity pattern

Approximate minimum degree
permutation

Column approximate minimum
degree permutation

1-53

1 Function Reference

colperm Sparse column permutation based
on nonzero count

dmperm Dulmage-Mendelsohn decomposition

1dl Block LDL’ factorization for
Hermitian indefinite matrices

randperm Random permutation

symamd Symmetric approximate minimum

degree permutation

symrcm Sparse reverse Cuthill-McKee
ordering

Linear Algebra

cholinc Sparse incomplete Cholesky and
Cholesky-Infinity factorizations

condest 1-norm condition number estimate

eigs Largest eigenvalues and
eigenvectors of matrix

ilu Sparse incomplete LU factorization

luinc Sparse incomplete LU factorization

normest 2-norm estimate

spaugment Form least squares augmented
system

sprank Structural rank

svds Find singular values and vectors

Linear Equations (lterative Methods)

bicg Biconjugate gradients method
bicgstab Biconjugate gradients stabilized
method

1-54

Mathematics

bicgstabl

cgs

gmres

Isqr
minres

pcg

qmr
symmlq

tfgmr

Tree Operations

etree
etreeplot

gplot

symbfact
treelayout
treeplot

unmesh

Math Constants

eps

Biconjugate gradients stabilized (1)

method

Conjugate gradients squared method

Generalized minimum residual

method (with restarts)
LSQR method

Minimum residual method

Preconditioned conjugate gradients

method

Quasi-minimal residual method

Symmetric LQ method

Transpose-free quasi-minimal

residual method

Elimination tree

Plot elimination tree

Plot nodes and links representing

adjacency matrix

Symbolic factorization analysis

Lay out tree or forest

Plot picture of tree

Convert edge matrix to coordinate

and Laplacian matrices

Floating-point relative accuracy

Imaginary unit

1-55

1 Function Reference

1-56

Inf

intmax

Intmin

NaN

pi

realmax

realmin

Infinity

Largest value of specified integer
type

Smallest value of specified integer
type

Imaginary unit

Not-a-Number

Ratio of circle’s circumference to its
diameter

Largest positive floating-point
number

Smallest positive normalized
floating-point number

Data Analysis

Data Analysis

Basic Operations (p. 1-57)
Descriptive Statistics (p. 1-57)
Filtering and Convolution (p. 1-58)

Interpolation and Regression
(p. 1-58)

Fourier Transforms (p. 1-59)
Derivatives and Integrals (p. 1-59)
Time Series Objects (p. 1-60)
Time Series Collections (p. 1-63)

Basic Operations

brush

cumprod

cumsum

linkdata

prod

sort

sortrows

sum

Descriptive Statistics

corrcoef

cov

Sums, products, sorting
Statistical summaries of data
Data preprocessing

Data fitting

Frequency content of data
Data rates and accumulations
Methods for timeseries objects

Methods for tscollection objects

Interactively mark, delete, modify,
and save observations in graphs

Cumulative product
Cumulative sum

Automatically update graphs when
variables change

Product of array elements

Sort array elements in ascending or
descending order

Sort rows in ascending order

Sum of array elements

Correlation coefficients

Covariance matrix

1-57

1 Function Reference

1-58

max
mean
median
min
mode
std

var

Filtering and Convolution

conv

conv2
convn

deconv

detrend
filter
filter2

Largest elements in array
Average or mean value of array
Median value of array
Smallest elements in array
Most frequent values in array
Standard deviation

Variance

Convolution and polynomial
multiplication

2-D convolution

N-D convolution
Deconvolution and polynomial
division

Remove linear trends

1-D digital filter

2-D digital filter

Interpolation and Regression

interpl

interp2

interp3

interpn

mldivide \, mrdivide /
polyfit

polyval

1-D data interpolation (table lookup)
2-D data interpolation (table lookup)
3-D data interpolation (table lookup)
N-D data interpolation (table lookup)

Left or right matrix division
Polynomial curve fitting

Polynomial evaluation

Data Analysis

Fourier Transforms

abs

angle

cplxpair

fft

fft2
fftn
fftshift

fftw

ifft
ifft2

ifftn

ifftshift
nextpow?2

unwrap

Derivatives and Integrals

cumtrapz

del2
diff

Absolute value and complex
magnitude

Phase angle

Sort complex numbers into complex
conjugate pairs

Discrete Fourier transform
2-D discrete Fourier transform
N-D discrete Fourier transform

Shift zero-frequency component to
center of spectrum

Interface to FFTW library run-time
algorithm tuning control

Inverse discrete Fourier transform

2-D inverse discrete Fourier
transform

N-D inverse discrete Fourier
transform

Inverse FFT shift
Next higher power of 2

Correct phase angles to produce
smoother phase plots

Cumulative trapezoidal numerical
integration

Discrete Laplacian

Differences and approximate
derivatives

1-59

1 Function Reference

1-60

gradient
polyder
polyint

trapz

Time Series Objects

Utilities (p. 1-60)

Data Manipulation (p. 1-61)

Event Data (p. 1-62)

Descriptive Statistics (p. 1-62)

Utilities
get (timeseries)

getdatasamplesize

getqualitydesc

isempty (timeseries)

length (timeseries)
plot (timeseries)
set (timeseries)

size (timeseries)

Numerical gradient
Polynomial derivative
Integrate polynomial analytically

Trapezoidal numerical integration

Combine timeseries objects,
query and set timeseries object
properties, plot timeseries objects

Add or delete data, manipulate
timeseries objects

Add or delete events, create new
timeseries objects based on event
data

Descriptive statistics for timeseries
objects

Query timeseries object property
values

Size of data sample in timeseries
object

Data quality descriptions

Determine whether timeseries
object is empty

Length of time vector
Plot time series
Set properties of timeseries object

Size of timeseries object

Data Analysis

timeseries

tsdata.event
tsprops

tstool

Data Manipulation

addsample

ctranspose (timeseries)

delsample

detrend (timeseries)

filter (timeseries)

getabstime (timeseries)
getinterpmethod
getsampleusingtime (timeseries)
idealfilter (timeseries)

resample (timeseries)
setabstime (timeseries)

setinterpmethod

Create timeseries object

Construct event object for
timeseries object

Help on timeseries object
properties

Open Time Series Tools GUI

Add data sample to timeseries
object

Transpose timeseries object

Remove sample from timeseries
object

Subtract mean or best-fit line and all

NaNs from time series

Shape frequency content of time
series

Extract date-string time vector into

cell array

Interpolation method for timeseries

object

Extract data samples into new
timeseries object

Apply ideal (noncausal) filter to
timeseries object

Select or interpolate timeseries
data using new time vector

Set times of timeseries object as
date strings

Set default interpolation method for

timeseries object

1-61

1 Function Reference

synchronize

transpose (timeseries)

vertcat (timeseries)

Event Data

addevent

delevent
gettsafteratevent
gettsafterevent
gettsatevent
gettsbeforeatevent
gettsbeforeevent

gettsbetweenevents

Descriptive Statistics

iqr (timeseries)

max (timeseries)
mean (timeseries)

median (timeseries)

1-62

Synchronize and resample two
timeseries objects using common
time vector

Transpose timeseries object

Vertical concatenation of
timeseries objects

Add event to timeseries object

Remove tsdata.event objects from
timeseries object

New timeseries object with samples
occurring at or after event

New timeseries object with samples
occurring after event

New timeseries object with samples
occurring at event

New timeseries object with samples
occurring before or at event

New timeseries object with samples
occurring before event

New timeseries object with samples
occurring between events

Interquartile range of timeseries
data

Maximum value of timeseries data
Mean value of timeseries data

Median value of timeseries data

Data Analysis

min (timeseries)

std (timeseries)

sum (timeseries)

var (timeseries)

Time Series Collections

Utilities (p. 1-63)

Data Manipulation (p. 1-64)

Utilities
get (tscollection)

isempty (tscollection)

length (tscollection)
plot (timeseries)

set (tscollection)

size (tscollection)
tscollection

tstool

Minimum value of timeseries data

Standard deviation of timeseries
data

Sum of timeseries data

Variance of timeseries data

Query and set tscollection object
properties, plot tscollection
objects

Add or delete data, manipulate
tscollection objects

Query tscollection object property
values

Determine whether tscollection
object is empty

Length of time vector
Plot time series

Set properties of tscollection
object

Size of tscollection object
Create tscollection object
Open Time Series Tools GUI

1-63

1 Function Reference

1-64

Data Manipulation

addsampletocollection

addts

delsamplefromcollection
getabstime (tscollection)
getsampleusingtime (tscollection)
gettimeseriesnames

horzcat (tscollection)

removets

resample (tscollection)
setabstime (tscollection)
settimeseriesnames

vertcat (tscollection)

Add sample to tscollection object

Add timeseries object to
tscollection object

Remove sample from tscollection
object

Extract date-string time vector into
cell array

Extract data samples into new
tscollection object

Cell array of names of timeseries
objects in tscollection object

Horizontal concatenation for
tscollection objects

Remove timeseries objects from
tscollection object

Select or interpolate data in
tscollection using new time vector

Set times of tscollection object as
date strings

Change name of timeseries object
in tscollection

Vertical concatenation for
tscollection objects

Programming and Data Types

Programming and Data Types

Data Types (p. 1-65) Numeric, character, structures, cell
arrays, and data type conversion

Data Type Conversion (p. 1-74) Convert one numeric type to another,
numeric to string, string to numeric,
structure to cell array, etc.

Operators and Special Characters Arithmetic, relational, and logical

(p. 1-76) operators, and special characters

Strings (p. 1-78) Create, 1dentify, manipulate, parse,
evaluate, and compare strings

Bit-Wise Operations (p. 1-81) Perform set, shift, and, or, compare,
etc. on specific bit fields

Logical Operations (p. 1-82) Evaluate conditions, testing for true
or false

Relational Operations (p. 1-82) Compare values for equality, greater

than, less than, etc.

Set Operations (p. 1-83) Find set members, unions,
intersections, etc.

Date and Time Operations (p. 1-83) Obtain information about dates and
times

Programming in MATLAB (p. 1-84) Function/expression evaluation,
timed execution, memory, program
control, error handling, MEX

programming
Data Types
Numeric Types (p. 1-66) Integer and floating-point data
Characters and Strings (p. 1-67) Characters and arrays of characters
Structures (p. 1-68) Data of varying types and sizes

stored in fields of a structure

1-65

1 Function Reference

1-66

Cell Arrays (p. 1-69)

Map Container Objects (p. 1-70)
Function Handles (p. 1-71)

Java Classes and Objects (p. 1-71)
Data Type Identification (p. 1-72)
Numeric Types

arrayfun

cast

cat

class

find
Intmax
intmin

intwarning

ipermute
isa

isequal

Data of varying types and sizes
stored in cells of array

Select elements of Map container
using indices of various data types

Invoke a function indirectly via
handle

Access Java classes through
MATLAB interface

Determine data type of a variable

Apply function to each element of
array

Cast variable to different data type

Concatenate arrays along specified
dimension

Determine class name of object

Find indices and values of nonzero
elements

Largest value of specified integer
type

Smallest value of specified integer
type

Control state of integer warnings

Inverse permute dimensions of N-D
array

Determine whether input is object
of given class

Test arrays for equality

Programming and Data Types

isequalwithequalnans

isfinite
isinf
isnan

isnumeric

isreal
isscalar
isvector
permute

realmax

realmin

reshape
squeeze

Zeros

Characters and Strings

Test arrays for equality, treating
NaNs as equal

Array elements that are finite
Array elements that are infinite
Array elements that are NaN

Determine whether input is numeric
array

Check if input is real array
Determine whether input is scalar
Determine whether input is vector
Rearrange dimensions of N-D array

Largest positive floating-point
number

Smallest positive normalized
floating-point number

Reshape array
Remove singleton dimensions

Create array of all zeros

See “Strings” on page 1-78 for all string-related functions.

cellstr

char

eval

findstr

Create cell array of strings from
character array

Convert to character array (string)

Execute string containing MATLAB
expression

Find string within another, longer
string

1-67

1 Function Reference

1-68

isstr

regexp, regexpi
sprintf

sscanf

strcat

stremp, strempi
strfind

strings

strjust
strmatch
strread

strrep

strtrim

strvcat

Structures

arrayfun

cell2struct
class
deal

fieldnames

getfield

1sa

Determine whether input is
character array

Match regular expression
Format data into string

Read formatted data from string
Concatenate strings horizontally
Compare strings

Find one string within another
String handling

Justify character array

Find possible matches for string
Read formatted data from string
Find and replace substring

Remove leading and trailing white
space from string

Concatenate strings vertically

Apply function to each element of
array

Convert cell array to structure array
Determine class name of object
Distribute inputs to outputs

Field names of structure, or public
fields of object

Field of structure array

Determine whether input is object
of given class

Programming and Data Types

isequal

isfield

isscalar

isstruct

isvector
orderfields
rmfield
setfield
struct
struct2cell

structfun

Cell Arrays

cell

cell2mat

cell2struct
celldisp

cellfun

cellplot

cellstr

class

deal

Test arrays for equality

Determine whether input is
structure array field

Determine whether input is scalar

Determine whether input is
structure array

Determine whether input is vector
Order fields of structure array
Remove fields from structure

Assign values to structure array field
Create structure array

Convert structure to cell array

Apply function to each field of scalar
structure

Construct cell array

Convert cell array of matrices to
single matrix

Convert cell array to structure array
Cell array contents

Apply function to each cell in cell
array

Graphically display structure of cell
array

Create cell array of strings from
character array

Determine class name of object

Distribute inputs to outputs

1-69

1 Function Reference

1-70

isa
iscell
iscellstr

isequal
isscalar
isvector

mat2cell

num?2cell

struct2cell

Map Container Objects

containers.Map

isKey (Map)
keys (Map)

length (Map)

remove (Map)

size (Map)
values (Map)

Determine whether input is object
of given class

Determine whether input is cell
array

Determine whether input is cell
array of strings

Test arrays for equality
Determine whether input is scalar
Determine whether input is vector

Divide matrix into cell array of
matrices

Convert numeric array to cell array

Convert structure to cell array

Construct containers.Map object

Check if containers.Map contains
key

Return all keys of containers.Map
object

Length of containers.Map object

Remove key-value pairs from
containers.Map

size of containers.Map object

Return values of containers.Map
object

Programming and Data Types

Function Handles

class
feval

func2str

functions

function_handle (@)
isa

isequal

str2func

Java Classes and Objects

cell
class

clear
depfun
exist
fieldnames

im2java

import

Inmem

Determine class name of object
Evaluate function

Construct function name string from
function handle

Information about function handle

Handle used in calling functions
indirectly

Determine whether input is object
of given class

Test arrays for equality

Construct function handle from
function name string

Construct cell array
Determine class name of object

Remove items from workspace,
freeing up system memory

List dependencies of function or
P-file

Check existence of variable, function,
folder, or class

Field names of structure, or public
fields of object

Convert image to Java image

Add package or class to current
import list

Names of functions, MEX-files, Sun
Java classes in memory

1-71

1 Function Reference

1-72

isa

isjava

javaaddpath

javaArray
javachk

javaclasspath
javaMethod
javaMethodEDT

javaObject

javaObjectEDT

javarmpath

methods
methodsview

usejava

which

Data Type ldentification

is*

isa

Determine whether input is object
of given class

Determine whether input is Sun
Java object

Add entries to dynamic Sun Java
class path

Construct Sun Java array

Generate error message based on
Sun Java feature support

Get and set Sun Java class path
Invoke Sun Java method

Invoke Sun Java method from Event
Dispatch Thread (EDT)

Invoke Sun Java constructor, letting
MATLAB choose the thread

Invoke Sun Java object constructor
on Event Dispatch Thread (EDT)

Remove entries from dynamic Sun
Java class path

Class method names
View class methods

Determine whether Sun Java feature
is supported in MATLAB software

Locate functions and files

Detect state

Determine whether input is object
of given class

Programming and Data Types

iscell Determine whether input is cell
array

iscellstr Determine whether input is cell
array of strings

ischar Determine whether item is character
array

isfield Determine whether input is
structure array field

isfloat Determine whether input is
floating-point array

ishghandle True for Handle Graphics® object
handles

isinteger Determine whether input is integer
array

isjava Determine whether input is Sun
Java object

islogical Determine whether input is logical
array

isnumeric Determine whether input is numeric
array

isobject Is input MATLAB object

isreal Check if input is real array

isstr Determine whether input is
character array

isstruct Determine whether input is
structure array

validateattributes Check validity of array

who, whos List variables in workspace

1-73

1 Function Reference

Data Type Conversion

Numeric (p. 1-74)
String to Numeric (p. 1-74)
Numeric to String (p. 1-75)

Other Conversions (p. 1-75)

Numeric

cast

double

Int8, int16, int32, int64
single

typecast

uint8, uint16, uint32, uint64
String to Numeric

base2dec

bin2dec

cast

hex2dec

hex2num

1-74

Convert data of one numeric type to
another numeric type

Convert characters to numeric
equivalent

Convert numeric to character
equivalent

Convert to structure, cell array,
function handle, etc.

Cast variable to different data type
Convert to double precision
Convert to signed integer

Convert to single precision

Convert data types without changing
underlying data

Convert to unsigned integer

Convert base N number string to
decimal number

Convert binary number string to
decimal number

Cast variable to different data type

Convert hexadecimal number string
to decimal number

Convert hexadecimal number string
to double-precision number

Programming and Data Types

str2double

str2num

unicode2native

Numeric to String

cast
char

dec2base
dec2bin
dec2hex

int2str
mat2str

native2unicode

num?2str

Other Conversions

cell2mat

cell2struct

datestr

func2str

Convert string to double-precision
value

Convert string to number

Convert Unicode® characters to
numeric bytes

Cast variable to different data type
Convert to character array (string)

Convert decimal to base N number
in string

Convert decimal to binary number
in string

Convert decimal to hexadecimal
number in string

Convert integer to string
Convert matrix to string

Convert numeric bytes to Unicode
characters

Convert number to string

Convert cell array of matrices to
single matrix

Convert cell array to structure array

Convert date and time to string
format

Construct function name string from
function handle

1-75

1 Function Reference

logical Convert numeric values to logical

mat2cell Divide matrix into cell array of
matrices

num2cell Convert numeric array to cell array

num2hex Convert singles and doubles to

IEEE® hexadecimal strings

str2func Construct function handle from
function name string

str2mat Form blank-padded character matrix
from strings

struct2cell Convert structure to cell array

Operators and Special Characters

Arithmetic Operators (p. 1-76) Plus, minus, power, left and right
divide, transpose, etc.

Relational Operators (p. 1-77) Equal to, greater than, less than or
equal to, etc.

Logical Operators (p. 1-77) Element-wise and short circuit and,
or, not

Special Characters (p. 1-78) Array constructors, line

continuation, comments, etc.

Arithmetic Operators

+ Plus
- Minus

Decimal point

= Assignment
* Matrix multiplication
/ Matrix right division

1-76

Programming and Data Types

Matrix left division

Matrix power

Matrix transpose

Array multiplication (element-wise)
Array right division (element-wise)
Array left division (element-wise)
Array power (element-wise)

Array transpose

Relational Operators

Less than

Less than or equal to

Greater than

Greater than or equal to
Equal to

Not equal to

Logical Operators
See also “Logical Operations” on page 1-82 for functions like xor, all, any, etc.

&&

Logical AND

Logical OR

Logical AND for arrays
Logical OR for arrays
Logical NOT

1-77

1 Function Reference

Special Characters

Create vectors, subscript arrays, specify for-loop iterations
O) Pass function arguments, prioritize operators

[] Construct array, concatenate elements, specify multiple
outputs from function

{} Construct cell array, index into cell array

Insert decimal point, define structure field, reference methods
of object

.0) Reference dynamic field of structure

Reference parent directory

Continue statement to next line

, Separate rows of array, separate function input/output
arguments, separate commands

; Separate columns of array, suppress output from current

command
% Insert comment line into code
%¢{ %} Insert block of comments into code

! Issue command to operating system

Construct character array

@ Construct function handle, reference class directory
Strings

Description of Strings in MATLAB Basics of string handling in

(p. 1-79) MATLAB

String Creation (p. 1-79) Create strings, cell arrays of strings,

concatenate strings together

String Identification (p. 1-79) Identify characteristics of strings

1-78

Programming and Data Types

String Manipulation (p. 1-80) Convert case, strip blanks, replace
characters

String Parsing (p. 1-80) Formatted read, regular expressions,
locate substrings

String Evaluation (p. 1-81) Evaluate stated expression in string

String Comparison (p. 1-81) Compare contents of strings

Description of Strings in MATLAB

strings String handling

String Creation

blanks Create string of blank characters

cellstr Create cell array of strings from
character array

char Convert to character array (string)

sprintf Format data into string

strcat Concatenate strings horizontally

strvcat Concatenate strings vertically

String Identification
isa Determine whether input is object
of given class

iscellstr Determine whether input is cell
array of strings

ischar Determine whether item is character
array

isletter Array elements that are alphabetic
letters

1-79

1 Function Reference

1-80

isscalar

isspace
isstrprop

isvector
validatestring
String Manipulation

deblank

lower
strjust
strrep

strtrim
upper

String Parsing
findstr

regexp, regexpi

regexprep
regexptranslate

sscanf

strfind

Determine whether input is scalar

Array elements that are space
characters

Determine whether string is of
specified category

Determine whether input is vector

Check validity of text string

Strip trailing blanks from end of
string

Convert string to lowercase
Justify character array
Find and replace substring

Remove leading and trailing white
space from string

Convert string to uppercase

Find string within another, longer
string

Match regular expression

Replace string using regular
expression

Translate string into regular
expression

Read formatted data from string

Find one string within another

Programming and Data Types

strread

strtok

String Evaluation

eval
evalc

evalin

String Comparison

stremp, strempi
strmatch

strncmp, strncmpi

Bit-Wise Operations

bitand
bitcmp
bitget

bitmax

bitor
bitset
bitshift
bitxor

swapbytes

Read formatted data from string

Selected parts of string

Execute string containing MATLAB
expression

Evaluate MATLAB expression with
capture

Execute MATLAB expression in
specified workspace

Compare strings
Find possible matches for string

Compare first n characters of strings

Bitwise AND
Bitwise complement
Bit at specified position

Maximum double-precision
floating-point integer

Bitwise OR

Set bit at specified position

Shift bits specified number of places
Bitwise XOR

Swap byte ordering

1-81

1 Function Reference

1-82

Logical Operations

all

and

any

false
find

isa

iskeyword

isvarname

logical

not

or

true

Xor

Determine whether all array
elements are nonzero or true

Find logical AND of array or scalar
inputs

Determine whether any array
elements are nonzero

Logical 0 (false)

Find indices and values of nonzero
elements

Determine whether input is object
of given class

Determine whether input is
MATLAB keyword

Determine whether input is valid
variable name

Convert numeric values to logical

Find logical NOT of array or scalar
input

Find logical OR of array or scalar
inputs

Logical 1 (true)

Logical exclusive-OR

See “Operators and Special Characters” on page 1-76 for logical operators.

Relational Operations

eq
ge

Test for equality

Test for greater than or equal to

Programming and Data Types

gt Test for greater than

le Test for less than or equal to
It Test for less than

ne Test for inequality

See “Operators and Special Characters” on page 1-76 for relational operators.

Set Operations

intersect Find set intersection of two vectors

ismember Array elements that are members
of set

issorted Determine whether set elements are

in sorted order

setdiff Find set difference of two vectors
setxor Find set exclusive OR of two vectors
union Find set union of two vectors
unique Find unique elements of vector

Date and Time Operations

addtodate Modify date number by field

calendar Calendar for specified month

clock Current time as date vector

cputime Elapsed CPU time

date Current date string

datenum Convert date and time to serial date
number

datestr Convert date and time to string
format

1-83

1 Function Reference

1-84

datevec

eomday
etime
now

weekday

Programming in MATLAB

Functions and Scripts (p. 1-85)

Evaluation (p. 1-86)
Timer (p. 1-87)

Variables and Functions in Memory
(p. 1-88)

Control Flow (p. 1-89)

Error Handling (p. 1-90)

MEX Programming (p. 1-91)

Convert date and time to vector of
components

Last day of month
Time elapsed between date vectors
Current date and time

Day of week

Write and execute program code,
interact with caller, check input and
output values, dependencies

Evaluate expression in string, apply
function to array, run script file, etc.

Schedule execution of MATLAB
commands

List, lock, or clear functions in
memory, construct variable names,
consolidate workspaces, refresh
caches

Conditional control, loop control,
error control, program termination

Generate warnings and errors, test
for and catch errors, capture data on
cause of error, warning control

Compile MEX function from C or
Fortran code, list MEX-files in
memory, debug MEX-files

Programming and Data Types

Functions and Scripts

addOptional (inputParser)
addParamValue (inputParser)
addRequired (inputParser)

createCopy (inputParser)

depdir

depfun

echo

end

function
input
inputname
inputParser

mfilename

namelengthmax
nargchk
nargin, nargout

nargoutchk

parse (inputParser)

pcode

Add optional argument to Input

Parser scheme

Add parameter name/value
argument to Input Parser scheme

Add required argument to Input

Parser scheme

Create copy of inputParser object

List dependent folders for function

or P-file

List dependencies of function or

P-file

Display statements during function

execution

Terminate block of code, or indicate

last array index
Declare function

Request user input

Variable name of function input
Construct input parser object

File name of currently running

function

Maximum identifier length
Validate number of input arguments
Number of function arguments

Validate number of output

arguments

Parse and validate named inputs

Create protected function file

1-85

1 Function Reference

1-86

script

syntax
varargin

varargout

Evaluation

ans

arrayfun

assert

builtin

cellfun

echo

eval

evalc

evalin

feval

iskeyword

isvarname

pause

Sequence of MATLAB statements in
file

Two ways to call MATLAB functions
Variable length input argument list

Variable length output argument list

Most recent answer

Apply function to each element of
array

Generate error when condition is
violated

Execute built-in function from
overloaded method

Apply function to each cell in cell
array

Display statements during function
execution

Execute string containing MATLAB
expression

Evaluate MATLAB expression with
capture

Execute MATLAB expression in
specified workspace

Evaluate function

Determine whether input is
MATLAB keyword

Determine whether input is valid
variable name

Halt execution temporarily

Programming and Data Types

run

script

structfun

symvar

tic, toc

Timer

delete (timer)
disp (timer)
get (timer)

isvalid (timer)

set (timer)

start

startat

stop
timer
timerfind

timerfindall

wait

Run script that is not on current

path

Sequence of MATLAB statements in

file

Apply function to each field of scalar

structure

Determine symbolic variables in

expression

Measure performance using

stopwatch timer

Remove timer object from memory

Information about timer object

Timer object properties

Determine whether timer object is

valid

Configure or display timer object

properties

Start timer(s) running

Start timer(s) running at specified

time

Stop timer(s)

Construct timer object

Find timer objects

Find timer objects, including

invisible objects

Wait until timer stops running

1-87

1 Function Reference

Variables and Functions in Memory

ans

assignin

datatipinfo

genvarname

global

Inmem

isglobal

memory

mislocked

mlock

munlock

namelengthmax
pack
persistent

rehash

Most recent answer

Assign value to variable in specified
workspace

Produce short description of input
variable

Construct valid variable name from
string

Declare global variables

Names of functions, MEX-files, Sun
Java classes in memory

Determine whether input is global
variable

Display memory information

Determine if function is locked in
memory

Prevent clearing function from
memory

Allow clearing functions from
memory

Maximum identifier length
Consolidate workspace memory
Define persistent variable

Refresh function and file system
path caches

Programming and Data Types

Control Flow

break

case

catch

continue

else

elseif

end

error

for

if

otherwise
parfor
return

switch

try

while

Terminate execution of for or while
loop

Execute block of code if condition is
true

Handle error detected in try-catch
statement

Pass control to next iteration of for
or while loop

Execute statements if condition is
false

Execute statements if additional
condition 1s true

Terminate block of code, or indicate
last array index

Display message and abort function

Execute statements specified
number of times

Execute statements if condition is
true

Default part of switch statement
Parallel for-loop
Return to invoking function

Switch among several cases, based
on expression

Execute statements and catch
resulting errors

Repeatedly execute statements while
condition is true

1-89

1 Function Reference

1-90

Error Handling

addCause (MException)

assert
catch

disp (MException)
eq (MException)

error

ferror

getReport (MException)
intwarning

isequal (MException)

last (MException)
lastwarn
MException

ne (MException)

rethrow (MException)
throw (MException)

try

warning

Record additional causes of exception

Generate error when condition is
violated

Handle error detected in try-catch
statement

Display MException object

Compare MException objects for
equality

Display message and abort function
Information about file I/O errors
Get error message for exception
Control state of integer warnings

Compare MException objects for
equality

Last uncaught exception
Last warning message
Capture error information

Compare MException objects for
inequality

Reissue existing exception

Issue exception and terminate
function

Execute statements and catch
resulting errors

Warning message

Programming and Data Types

MEX Programming

dbmex Enable MEX-file debugging (on
UNIX platforms)
Inmem Names of functions, MEX-files, Sun

Java classes in memory

mex Compile MEX-function from C/C++
or Fortran source code

mex.getCompilerConfigurations Get compiler configuration
information for building MEX-files

mexext Binary MEX-file name extension

1-91

1 Function Reference

1-92

Object-Oriented Programming

Classes and Objects (p. 1-92)

Handle Classes (p. 1-93)
Events and Listeners (p. 1-94)
Meta-Classes (p. 1-94)

Classes and Obijects

class
classdef

exist

inferiorto
1sobject
loadobj
methods
methodsview
properties
subsasgn
subsindex

subsref

superiorto

Get information about classes and
objects

Define and use handle classes
Define and use events and listeners

Access information about classes
without requiring instances

Determine class name of object
Class definition keywords

Check existence of variable, function,
folder, or class

Specify inferior class relationship
Is input MATLAB object

Modify load process for object
Class method names

View class methods

Class property names
Subscripted assignment
Subscript indexing with object

Redefine subscripted reference for
objects

Establish superior class relationship

Object-Oriented Programming

Handle Classes

addlistener (handle) Create event listener

addprop (dynamicprops) Add dynamic property

delete (handle) Handle object destructor function

dynamicprops Abstract class used to derive handle
class with dynamic properties

findobj (handle) Find handle objects matching
specified conditions

findprop (handle) Find meta.property object
associated with property name

get (hgsetget) Query property values of handle
objects derived from hgsetget class

getdisp (hgsetget) Override to change command
window display

handle Abstract class for deriving handle
classes

hgsetget Abstract class used to derive handle
class with set and get methods

isvalid (handle) Is object valid handle class object

notify (handle) Notify listeners that event is
occurring

relationaloperators (handle) Equality and sorting of handle
objects

set (hgsetget) Assign property values to handle

objects derived from hgsetget class

setdisp (hgsetget) Override to change command
window display

1-93

1 Function Reference

1-94

Events and Listeners

addlistener (handle)

event.EventData

event.listener
event.PropertyEvent

event.proplistener

events

notify (handle)

Meta-Classes

meta.class
meta.class.fromName

meta.DynamicProperty

meta.event

meta.method
meta.package
meta.package.fromName

meta.package.getAllPackages

Create event listener

Base class for all data objects passed
to event listeners

Class defining listener objects
Listener for property events

Define listener object for property
events

Event names

Notify listeners that event is
occurring

meta.class class describes
MATLAB classes

Return meta.class object associated
with named class

meta.DynamicProperty class
describes dynamic property of
MATLAB object

meta.event class describes
MATLAB class events

meta.method class describes
MATLAB class methods

meta.package class describes
MATLAB packages

Return meta.package object for
specified package

Get all top-level packages

Object-Oriented Programming

meta.property meta.property class describes
MATLAB class properties
metaclass Obtain meta.class object

1-95

1 Function Reference

1-96

Graphics

Basic Plots and Graphs (p. 1-96)

Plotting Tools (p. 1-97)
Annotating Plots (p. 1-97)

Specialized Plotting (p. 1-98)

Bit-Mapped Images (p. 1-101)

Printing (p. 1-102)

Handle Graphics (p. 1-102)

Basic Plots and Graphs

box

errorbar

hold

line

LineSpec (Line Specification)
loglog

plot

plot3

plotyy

polar

Linear line plots, log and semilog
plots

GUIs for interacting with plots

Functions for and properties of titles,
axes labels, legends, mathematical
symbols

Bar graphs, histograms, pie charts,
contour plots, function plotters

Display image object, read and
write graphics file, convert to movie
frames

Printing and exporting figures to
standard formats

Creating graphics objects, setting
properties, finding handles

Axes border

Plot error bars along curve
Retain current graph in figure
Create line object

Line specification string syntax
Log-log scale plot

2-D line plot

3-D line plot

2-D line plots with y-axes on both
left and right side

Polar coordinate plot

Graphics

semilogx, semilogy Semilogarithmic plots

subplot Create axes in tiled positions

Plotting Tools

figurepalette Show or hide figure palette

pan Pan view of graph interactively

plotbrowser Show or hide figure plot browser

plotedit Interactively edit and annotate plots

plottools Show or hide plot tools

propertyeditor Show or hide property editor

rotate3d Rotate 3-D view using mouse

showplottool Show or hide figure plot tool

zoom Turn zooming on or off or magnify
by factor

Annotating Plots

annotation Create annotation objects

clabel Contour plot elevation labels

datacursormode Enable, disable, and manage
interactive data cursor mode

datetick Date formatted tick labels

gtext Mouse placement of text in 2-D view

legend Graph legend for lines and patches

rectangle Create 2-D rectangle object

texlabel Produce TeX format from character
string

1-97

1 Function Reference

1-98

title
xlabel, ylabel, zlabel

Specialized Plotting

Area, Bar, and Pie Plots (p. 1-98)
Contour Plots (p. 1-99)

Direction and Velocity Plots (p. 1-99)

Discrete Data Plots (p. 1-99)
Function Plots (p. 1-99)

Histograms (p. 1-100)

Polygons and Surfaces (p. 1-100)

Scatter/Bubble Plots (p. 1-101)
Animation (p. 1-101)

Area, Bar, and Pie Plots

area

bar, barh

bar3, bar3h
pareto
pie

pie3

Add title to current axes

Label x-, y-, and z-axis

1-D, 2-D, and 3-D graphs and charts

Unfilled and filled contours in 2-D
and 3-D

Comet, compass, feather and quiver
plots

Stair, step, and stem plots

Easy-to-use plotting utilities for
graphing functions

Plots for showing distributions of
data

Functions to generate and plot
surface patches in two or more
dimensions

Plots of point distributions

Functions to create and play movies
of plots

Filled area 2-D plot

Plot bar graph (vertical and
horizontal)

Plot 3-D bar chart
Pareto chart

Pie chart

3-D pie chart

Graphics

Contour Plots

contour
contour3
contourc
contourf
ezcontour

ezcontourf

Direction and Velocity Plots

comet
comet3
compass
feather
quiver

quiver3

Discrete Data Plots

stairs
stem

stem3

Function Plots

ezcontour
ezcontourf

ezmesh

Contour plot of matrix

3-D contour plot

Low-level contour plot computation
Filled 2-D contour plot

Easy-to-use contour plotter

Easy-to-use filled contour plotter

2-D comet plot

3-D comet plot

Plot arrows emanating from origin
Plot velocity vectors

Quiver or velocity plot

3-D quiver or velocity plot

Stairstep graph
Plot discrete sequence data

Plot 3-D discrete sequence data

Easy-to-use contour plotter
Easy-to-use filled contour plotter

Easy-to-use 3-D mesh plotter

1-99

1 Function Reference

1-100

ezmeshce

ezplot
ezplot3

ezpolar

ezsurf
ezsurfc

fplot

Histograms

hist
histe

rose

Polygons and Surfaces

cylinder
delaunay
delaunay3
delaunayn

dsearch

ellipsoid
fill
fill3

Easy-to-use combination
mesh/contour plotter

Easy-to-use function plotter

Easy-to-use 3-D parametric curve
plotter

Easy-to-use polar coordinate plotter

Easy-to-use 3-D colored surface
plotter

Easy-to-use combination
surface/contour plotter

Plot function between specified
limits

Histogram plot
Histogram count

Angle histogram plot

Generate cylinder
Delaunay triangulation
3-D Delaunay tessellation
N-D Delaunay tessellation

Search Delaunay triangulation for
nearest point

Generate ellipsoid
Filled 2-D polygons
Filled 3-D polygons

Graphics

inpolygon
pcolor
polyarea
rectint
ribbon
slice
sphere

waterfall

Scatter/Bubble Plots

plotmatrix
scatter

scatter3

Animation

frame2im

getframe
im2frame
movie

noanimate

Bit-Mapped Images

frame2im

im2frame

Points inside polygonal region
Pseudocolor (checkerboard) plot
Area of polygon

Rectangle intersection area
Ribbon plot

Volumetric slice plot

Generate sphere

Waterfall plot

Scatter plot matrix
Scatter plot
3-D scatter plot

Return image data associated with
movie frame

Capture movie frame
Convert image to movie frame
Play recorded movie frames

Change EraseMode of all objects to
normal

Return image data associated with
movie frame

Convert image to movie frame

1-101

1 Function Reference

1-102

im2java
image
imagesc
imfinfo
imformats
imread
imwrite

ind2rgb

Printing

hgexport
orient

print, printopt

printdlg
printpreview

saveas

Handle Graphics

Graphics Object Identification
(p. 1-103)

Object Creation (p. 1-104)
Annotation Objects (p. 1-104)

Plot Objects (p. 1-105)

Convert image to Java image
Display image object

Scale data and display image object
Information about graphics file
Manage image file format registry
Read image from graphics file
Write image to graphics file

Convert indexed image to RGB
image

Export figure
Hardcopy paper orientation

Print figure or save to file and
configure printer defaults

Print dialog box
Preview figure to print

Save figure or Simulink block
diagram using specified format

Find and manipulate graphics
objects via their handles

Constructors for core graphics
objects

Property descriptions for annotation
objects

Property descriptions for plot objects

Graphics

Figure Windows (p. 1-105) Control and save figures
Axes Operations (p. 1-106) Operate on axes objects
Object Property Operations (p. 1-106) Query, set, and link object properties

Graphics Object Identification

allchild Find all children of specified objects

ancestor Ancestor of graphics object

copyobj Copy graphics objects and their
descendants

delete Remove files or graphics objects

findall Find all graphics objects

findfigs Find visible offscreen figures

findobj Locate graphics objects with specific
properties

gca Current axes handle

gebf Handle of figure containing object
whose callback is executing

gcbo Handle of object whose callback is
executing

gco Handle of current object

get Query Handle Graphics object
properties

ishandle Determine whether input is valid
Handle Graphics handle

propedit Open Property Editor

set Set Handle Graphics object
properties

1-103

1 Function Reference

1-104

Object Creation

axes
figure
hggroup
hgtransform
image
light

line

patch
rectangle
root object
surface
text

ulcontextmenu

Annotation Objects

Annotation Arrow Properties

Annotation Doublearrow Properties

Annotation Ellipse Properties
Annotation Line Properties

Annotation Rectangle Properties
Annotation Textarrow Properties

Annotation Textbox Properties

Create axes graphics object
Create figure graphics object
Create hggroup object

Create hgtransform graphics object
Display image object

Create light object

Create line object

Create one or more filled polygons
Create 2-D rectangle object

Root

Create surface object

Create text object in current axes

Create context menu

Define annotation arrow properties

Define annotation doublearrow
properties

Define annotation ellipse properties
Define annotation line properties

Define annotation rectangle
properties

Define annotation textarrow
properties

Define annotation textbox properties

Graphics

Plot Obijects

Areaseries Properties

Barseries Properties

Contourgroup Properties

Errorbarseries Properties

Image Properties
Lineseries Properties
Quivergroup Properties
Scattergroup Properties
Stairseries Properties
Stemseries Properties

Surfaceplot Properties

Figure Windows

clf
close
closereq

drawnow

gef
hgload

hgsave
newplot

opengl

Define areaseries properties
Define barseries properties
Define contourgroup properties
Define errorbarseries properties
Define image properties

Define lineseries properties
Define quivergroup properties
Define scattergroup properties
Define stairseries properties
Define stemseries properties

Define surfaceplot properties

Clear current figure window
Remove specified figure
Default figure close request function

Flush event queue and update figure
window

Current figure handle

Load Handle Graphics object
hierarchy from file

Save Handle Graphics object
hierarchy to file

Determine where to draw graphics
objects

Control OpenGL® rendering

1-105

1 Function Reference

refresh Redraw current figure

saveas Save figure or Simulink block
diagram using specified format

Axes Operations

axis Axis scaling and appearance
box Axes border

cla Clear current axes

gca Current axes handle

grid Grid lines for 2-D and 3-D plots
ishold Current hold state
makehgtform Create 4-by-4 transform matrix

Object Property Operations

get Query Handle Graphics object
properties

linkaxes Synchronize limits of specified 2-D
axes

linkprop Keep same value for corresponding
properties

refreshdata Refresh data in graph when data
source is specified

set Set Handle Graphics object
properties

1-106

3-D Visualization

3-D Visualization

Surface and Mesh Plots (p. 1-107) Plot matrices, visualize functions of
two variables, specify colormap

View Control (p. 1-109) Control the camera viewpoint,
zooming, rotation, aspect ratio, set
axis limits

Lighting (p. 1-111) Add and control scene lighting

Transparency (p. 1-111) Specify and control object
transparency

Volume Visualization (p. 1-111) Visualize gridded volume data

Surface and Mesh Plots

Surface and Mesh Creation (p. 1-107) Visualizing gridded and triangulated
data as lines and surfaces

Domain Generation (p. 1-108) Gridding data and creating arrays

Color Operations (p. 1-108) Specifying, converting, and
manipulating color spaces,
colormaps, colorbars, and

backgrounds
Surface and Mesh Creation

hidden Remove hidden lines from mesh plot

mesh, meshe, meshz Mesh plots

peaks Example function of two variables

surf, surfc 3-D shaded surface plot

surface Create surface object

surfl Surface plot with colormap-based
lighting

tetramesh Tetrahedron mesh plot

1-107

1 Function Reference

1-108

trimesh
triplot

trisurf

Domain Generation

meshgrid

Color Operations

brighten
caxis
colorbar

colordef

colormap
colormapeditor
ColorSpec (Color Specification)

contrast
graymon
hsv2rghb
rgh2hsv

rgbplot
shading

spinmap

Triangular mesh plot
2-D triangular plot

Triangular surface plot

Generate X and Y arrays for 3-D plots

Brighten or darken colormap
Color axis scaling
Colorbar showing color scale

Set default property values to
display different color schemes

Set and get current colormap
Start colormap editor
Color specification

Grayscale colormap for contrast
enhancement

Set default figure properties for
grayscale monitors

Convert HSV colormap to RGB
colormap

Convert RGB colormap to HSV
colormap

Plot colormap
Set color shading properties

Spin colormap

3-D Visualization

surfnorm Compute and display 3-D surface
normals
whitebg Change axes background color

View Control

Camera Viewpoint (p. 1-109) Orbiting, dollying, pointing, rotating
camera positions and setting fields
of view

Aspect Ratio and Axis Limits Specifying what portions of axes to

(p. 1-110) view and how to scale them

Object Manipulation (p. 1-110) Panning, rotating, and zooming
views

Region of Interest (p. 1-110) Interactively identifying rectangular
regions

Camera Viewpoint

camdolly Move camera position and target

cameratoolbar Control camera toolbar
programmatically

camlookat Position camera to view object or
group of objects

camorbit Rotate camera position around
camera target

campan Rotate camera target around camera
position

campos Set or query camera position

camproj Set or query projection type

camroll Rotate camera about view axis

camtarget Set or query location of camera
target

1-109

1 Function Reference

camup
camva

camzoom

makehgtform

view

viewmtx

Aspect Ratio and Axis Limits

daspect
pbaspect

Set or query camera up vector
Set or query camera view angle
Zoom in and out on scene
Create 4-by-4 transform matrix
Viewpoint specification

View transformation matrices

Set or query axes data aspect ratio

Set or query plot box aspect ratio

xlim, ylim, zlim Set or query axis limits

Object Manipulation

pan Pan view of graph interactively

reset Reset graphics object properties to
their defaults

rotate Rotate object in specified direction

rotate3d Rotate 3-D view using mouse

selectmoveresize Select, move, resize, or copy axes

and uicontrol graphics objects

zoom Turn zooming on or off or magnify
by factor

Region of Interest

dragrect Drag rectangles with mouse
rbbox Create rubberband box for area
selection

1-110

3-D Visualization

Lighting

camlight

diffuse
light
lightangle

lighting

material

specular

Transparency

alim

alpha

alphamap

Volume Visualization

coneplot

contourslice

curl

divergence

flow

Create or move light object in camera
coordinates

Calculate diffuse reflectance
Create light object

Create or position 1ight object in
spherical coordinates

Specify lighting algorithm

Control reflectance properties of
surfaces and patches

Calculate specular reflectance

Set or query axes alpha limits

Set transparency properties for
objects in current axes

Specify figure alphamap
(transparency)

Plot velocity vectors as cones in 3-D
vector field

Draw contours in volume slice planes

Compute curl and angular velocity
of vector field

Compute divergence of vector field

Simple function of three variables

1-111

1 Function Reference

1-112

interpstreamspeed

isocaps

1socolors

isonormals

isosurface

reducepatch

reducevolume

shrinkfaces
slice
smooth3
stream?2
stream3

streamline

streamparticles

streamribbon

streamslice
streamtube
subvolume
surf2patch

volumebounds

Interpolate stream-line vertices from
flow speed

Compute isosurface end-cap
geometry

Calculate isosurface and patch colors

Compute normals of isosurface
vertices

Extract isosurface data from volume
data

Reduce number of patch faces

Reduce number of elements in
volume data set

Reduce size of patch faces
Volumetric slice plot

Smooth 3-D data

Compute 2-D streamline data
Compute 3-D streamline data

Plot streamlines from 2-D or 3-D
vector data

Plot stream particles

3-D stream ribbon plot from vector
volume data

Plot streamlines in slice planes
Create 3-D stream tube plot
Extract subset of volume data set
Convert surface data to patch data

Coordinate and color limits for
volume data

GUI Development

GUI Development

Predefined Dialog Boxes (p. 1-113)
User Interface Deployment (p. 1-114)

User Interface Development
(p. 1-114)

User Interface Objects (p. 1-115)
Objects from Callbacks (p. 1-116)

GUI Utilities (p. 1-116)
Program Execution (p. 1-117)

Predefined Dialog Boxes

dialog
errordlg
export2wsdlg
helpdlg
inputdlg
listdlg

msgbox
printdlg
printpreview
questdlg
uigetdir

Dialog boxes for error, user input,
waiting, etc.

Open GUIs, create the handles
structure

Start GUIDE, manage application
data, get user input

Create GUI components

Find object handles from within
callbacks functions

Move objects, wrap text

Wait and resume based on user
input

Create and display empty dialog box
Create and open error dialog box
Export variables to workspace
Create and open help dialog box
Create and open input dialog box

Create and open list-selection dialog
box

Create and open message box

Print dialog box

Preview figure to print

Create and open question dialog box

Open standard dialog box for
selecting directory

1-113

1 Function Reference

uigetfile
uigetpref
uiopen
uiputfile
uisave
uisetcolor
uisetfont

waitbar

warndlg

User Interface Deployment

guidata
guihandles

movegui

openfig

Open standard dialog box for
retrieving files

Open dialog box for retrieving
preferences

Open file selection dialog box with
appropriate file filters

Open standard dialog box for saving
files

Open standard dialog box for saving
workspace variables

Open standard dialog box for setting
object’s ColorSpec

Open standard dialog box for setting
object’s font characteristics

Open or update a wait bar dialog box

Open warning dialog box

Store or retrieve GUI data
Create structure of handles

Move GUI figure to specified location
on screen

Open new copy or raise existing copy
of saved figure

User Interface Development

addpref

getappdata

getpref

1-114

Add preference
Value of application-defined data

Preference

GUI Development

ginput

guidata
guide
inspect

isappdata

ispref
rmappdata
rmpref
setappdata
setpref
uigetpref

uisetpref

waitfor

waitforbuttonpress

User Interface Objects

menu

uibuttongroup

uicontextmenu

uicontrol

Graphical input from mouse or
cursor

Store or retrieve GUI data
Open GUI Layout Editor
Open Property Inspector

True if application-defined data
exists

Test for existence of preference
Remove application-defined data
Remove preference

Specify application-defined data
Set preference

Open dialog box for retrieving
preferences

Manage preferences used in
uigetpref

Wait for condition before resuming
execution

Wait for key press or mouse-button
click

Generate menu of choices for user
input

Create container object to exclusively
manage radio buttons and toggle
buttons

Create context menu

Create user interface control object

1-115

1 Function Reference

1-116

ulmenu
uipanel
uipushtool

uitable

uitoggletool

uitoolbar

Objects from Callbacks

findall
findfigs
findobyj

gcbf

gcbo

GUI Utilities

align

getpixelposition
listfonts

selectmoveresize

setpixelposition

Create menus on figure windows
Create panel container object
Create push button on toolbar

Create 2-D graphic table GUI
component

Create toggle button on toolbar

Create toolbar on figure

Find all graphics objects
Find visible offscreen figures

Locate graphics objects with specific
properties

Handle of figure containing object
whose callback is executing

Handle of object whose callback is
executing

Align user interface controls
(uicontrols) and axes

Get component position in pixels
List available system fonts

Select, move, resize, or copy axes
and uicontrol graphics objects

Set component position in pixels

GUI Development

textwrap

uistack

Program Execution

uiresume

uiwait

Wrapped string matrix for given
uicontrol

Reorder visual stacking order of
objects

Resume execution of blocked M-file

Block execution and wait for resume

1-117

1 Function Reference

External Interfaces

1-118

Shared Libraries (p. 1-118)

Java (p. 1-119)

NET (p. 1-120)
Component Object Model and

ActiveX (p. 1-121)
Web Services (p. 1-123)

Serial Port Devices (p. 1-124)

Access functions stored in external
shared library files

Work with objects constructed from
Java API and third-party class
packages

Work with objects constructed from
.NET assemblies

Integrate COM components into
your application

Communicate between applications
over a network using SOAP and
WSDL

Read and write to devices connected
to your computer’s serial port

See also MATLAB C/C++ and Fortran API Reference for functions you can
use in external routines that interact with MATLAB programs and the data

in MATLAB workspaces.

Shared Libraries

calllib

libfunctions

libfunctionsview
libisloaded

libpointer

libstruct

Call function in shared library

Return information on functions in
shared library

View functions in shared library
Determine if shared library is loaded

Create pointer object for use with
shared libraries

Create structure pointer for use with
shared libraries

External Interfaces

loadlibrary Load shared library into MATLAB
software

unloadlibrary Unload shared library from memory

Java

class Determine class name of object

fieldnames Field names of structure, or public
fields of object

import Add package or class to current
import list

inspect Open Property Inspector

isa Determine whether input is object
of given class

isjava Determine whether input is Sun
Java object

javaaddpath Add entries to dynamic Sun Java
class path

javaArray Construct Sun Java array

javachk Generate error message based on
Sun Java feature support

javaclasspath Get and set Sun Java class path

javaMethod Invoke Sun Java method

javaMethod EDT Invoke Sun Java method from Event
Dispatch Thread (EDT)

javaObject Invoke Sun Java constructor, letting
MATLAB choose the thread

javaObjectEDT Invoke Sun Java object constructor
on Event Dispatch Thread (EDT)

javarmpath Remove entries from dynamic Sun

Java class path

1-119

1 Function Reference

1-120

methods
methodsview

usejava

NET

enableNETfromNetworkDrive
NET.addAssembly

NET.Assembly
NET.convertArray

NET.createArray
NET.createGeneric
NET.GenericClass
NET.GenericClass

NET.invokeGenericMethod
NET.NetException
NET.setStaticProperty

Class method names
View class methods

Determine whether Sun Java feature
is supported in MATLAB software

Enable access to .NET commands
from network drive

Make .NET assembly visible to
MATLAB

Members of .NET assembly

Convert numeric MATLAB array to
.NET array

Create single or multidimensional
NET array

Create instance of specialized .NET
generic type

Represent parameterized generic
type definitions

Constructor for NET.GenericClass
class

Invoke generic method of object
NET exception

Static property or field name

External Interfaces

Component Object Model and ActiveX

actxcontrol

actxcontrollist

actxcontrolselect

actxGetRunningServer

actxserver
addproperty
delete (COM)
deleteproperty

enableservice

eventlisteners

events (COM)

Execute

Feval (COM)

fieldnames

get (COM)

GetCharArray

GetFullMatrix

Create Microsoft® ActiveX® control
in figure window

List currently installed Microsoft
ActiveX controls

Create Microsoft ActiveX control
from GUI

Handle to running instance of
Automation server

Create COM server
Add custom property to COM object
Remove COM control or server

Remove custom property from COM
object

Enable, disable, or report status of
MATLAB Automation server

List event handler functions
associated with COM object events

List of events COM object can trigger

Execute MATLAB command in
Automation server

Evaluate MATLAB function in
Automation server

Field names of structure, or public
fields of object

Get property value from interface, or
display properties

Character array from Automation
server

Matrix from Automation server
workspace

1-121

1 Function Reference

1-122

GetVariable

GetWorkspaceData

inspect

interfaces

invoke

isa

iscom

isevent

isinterface

ismethod

isprop

load (COM)
MaximizeCommandWindow
methods

methodsview

MinimizeCommandWindow

move

propedit (COM)

Data from variable in Automation
server workspace

Data from Automation server
workspace

Open Property Inspector

List custom interfaces exposed by
COM server object

Invoke method on COM object or
interface, or display methods

Determine whether input is object
of given class

Determine whether input is COM or
ActiveX object

Determine whether input is COM
object event

Determine whether input is COM
interface

Determine whether input is COM
object method

Determine whether input is COM
object property

Initialize control object from file
Open Automation server window
Class method names

View class methods

Minimize size of Automation server
window

Move or resize control in parent
window

Open built-in property page for
control

External Interfaces

PutCharArray
PutFullMatrix
PutWorkspaceData
Quit (COM)
registerevent

release
save (COM)
set (COM)

unregisterallevents

unregisterevent

Web Services

callSoapService

createClassFromWsdl

createSoapMessage

parseSoapResponse

Store character array in Automation
server

Matrix in Automation server
workspace

Data in Automation server
workspace

Terminate MATLAB Automation
server

Associate event handler for COM
object event at run time

Release COM interface
Serialize control object to file

Set object or interface property to
specified value

Unregister all event handlers
associated with COM object events
at run time

Unregister event handler associated
with COM object event at run time

Send SOAP message to endpoint

Create MATLAB class based on
WSDL document

Create SOAP message to send to
server

Convert response string from SOAP
server into MATLAB types

1-123

1 Function Reference

1-124

Serial Port Devices

clear (serial)

delete (serial)

fgetl (serial)

fgets (serial)

fopen (serial)
fprintf (serial)
fread (serial)

fscanf (serial)

fwrite (serial)
get (serial)

instrcallback

instrfind

instrfindall

isvalid (serial)

length (serial)

load (serial)

readasync

record

Remove serial port object from
MATLAB workspace

Remove serial port object from
memory

Read line of text from device and
discard terminator

Read line of text from device and
include terminator

Connect serial port object to device
Write text to device
Read binary data from device

Read data from device, and format
as text

Write binary data to device
Serial port object properties

Event information when event
occurs

Read serial port objects from memory
to MATLAB workspace

Find visible and hidden serial port
objects

Determine whether serial port
objects are valid

Length of serial port object array

Load serial port objects and variables
into MATLAB workspace

Read data asynchronously from
device

Record data and event information
to file

External Interfaces

save (serial)

serial

serialbreak

set (serial)

size (serial)

stopasync

Save serial port objects and variables
to file

Create serial port object

Send break to device connected to
serial port

Configure or display serial port
object properties

Size of serial port object array

Stop asynchronous read and write
operations

1-125

1 Function Reference

1-126

Alphabetical List

Arithmetic Operators + - * /\ ~’
Relational Operators < > <= >= == ~=
Logical Operators: Elementwise & | ~
Logical Operators: Short-circuit && | |
Special Characters [] () {=". ... ,;: %! @
colon (%)

abs

accumarray

acos

acosd

acosh

acot

acotd

acoth

acsc

acscd

acsch

actxcontrol

actxcontrollist

actxcontrolselect
actxGetRunningServer

actxserver

addCause (MException)

addevent

addframe (avifile)

addlistener (handle)

addOptional (inputParser)
addParamValue (inputParser)

2 Alphabetical List

2-2

addpath

addpref

addprop (dynamicprops)
addproperty

addRequired (inputParser)
addsample
addsampletocollection
addtodate

addts

airy

align

alim

all

allchild

alpha

alphamap

amd

ancestor

and

angle

annotation

Annotation Arrow Properties
Annotation Doublearrow Properties
Annotation Ellipse Properties
Annotation Line Properties
Annotation Rectangle Properties
Annotation Textarrow Properties
Annotation Textbox Properties
ans

any

area

Areaseries Properties
arrayfun

ascii

asec

asecd

asech

asin

asind

asinh

assert
assignin
atan

atan2

atand

atanh
audiodevinfo
audioplayer
audiorecorder
aufinfo
auread
auwrite
avifile
aviinfo
aviread

axes

Axes Properties
axis

balance

bar, barh
bar3, bar3h
Barseries Properties
baryToCart
base2dec
beep

bench
besselh
besseli
besselj
besselk
bessely

beta

betainc
betaincinv

2 Alphabetical List

2-4

betaln
bicg
bicgstab
bicgstabl
bin2dec
binary
bitand
bitcmp
bitget
bitmax
bitor
bitset
bitshift
bitxor
blanks
blkdiag
box

break
brighten
brush
bsxfun
builddocsearchdb
builtin
bvp4c
bvpbc
bvpget
bvpinit
bvpset
bvpxtend
calendar
calllib
callSoapService
camdolly
cameratoolbar
camlight
camlookat
camorbit

campan
campos

camproj

camroll

camtarget

camup

camva

camzoom

cartToBary

cart2pol

cart2sph

case

cast

cat

catch

caxis

cd

convexHull

cd (ftp)

cdf2rdf

cdfepoch

cdfinfo

cdflib

cdflib.close
cdflib.closeVar
cdflib.computeEpoch
cdflib.computeEpoch16
cdflib.create
cdflib.createAttr
cdflib.createVar
cdflib.delete
cdflib.deleteAttr
cdflib.deleteAttrEntry
cdflib.deleteAttrgEntry
cdflib.deleteVar
cdflib.deleteVarRecords
cdflib.epoch16Breakdown

2 Alphabetical List

2-6

cdflib.epochBreakdown
cdflib.getAttrEntry
cdflib.getAttrgEntry
cdflib.getAttrMaxEntry
cdflib.getAttrMaxgEntry
cdflib.getAttrName
cdflib.getAttrNum
cdflib.getAttrScope
cdflib.getCacheSize
cdflib.getChecksum
cdflib.getCompression
cdflib.getCompressionCacheSize
cdflib.getConstantNames
cdflib.getConstantValue
cdflib.getCopyright
cdflib.getFormat
cdflib.getLibraryCopyright
cdflib.getLibraryVersion
cdflib.getMajority
cdflib.getName
cdflib.getNumAttrEntries
cdflib.getNumAttrgEntries
cdflib.getNumAttributes
cdflib.getNumgAttributes
cdflib.getReadOnlyMode
cdflib.getStageCacheSize
cdflib.getValidate
cdflib.getVarAllocRecords
cdflib.getVarBlockingFactor
cdflib.getVarCacheSize
cdflib.getVarCompression
cdflib.getVarData
cdflib.getVarMaxAllocRecNum
cdflib.getVarMaxWrittenRecNum
cdflib.getVarName
cdflib.getVarNum
cdflib.getVarNumRecsWritten

cdflib.getVarPadValue
cdflib.getVarRecordData
cdflib.getVarReservePercent
cdflib.getVarSparseRecords
cdflib.getVersion
cdflib.hyperGetVarData
cdflib.hyperPutVarData
cdflib.inquire
cdflib.inquireAttr
cdflib.inquireAttrEntry
cdflib.inquireAttrgEntry
cdflib.inquireVar

cdflib.open
cdflib.putAttrEntry
cdflib.putAttrgEntry
cdflib.putVarData
cdflib.putVarRecordData
cdflib.renameAttr
cdflib.renameVar
cdflib.setCacheSize
cdflib.setChecksum
cdflib.setCompression
cdflib.setCompressionCacheSize
cdflib.setFormat
cdflib.setMajority
cdflib.setReadOnlyMode
cdflib.setStageCacheSize
cdflib.setValidate
cdflib.setVarAllocBlockRecords
cdflib.setVarBlockingFactor
cdflib.setVarCacheSize
cdflib.setVarCompression
cdflib.setVarlInitialRecs
cdflib.setVarPadValue
cdflib.SetVarReservePercent
cdflib.setVarsCacheSize
cdflib.setVarSparseRecords

2-7

2 Alphabetical List

2-8

cdfread
cdfwrite
ceil

cell
cell2mat
cell2struct
celldisp
cellfun
cellplot
cellstr

cgs

char
checkin
checkout
chol
cholinc
cholupdate
circshift
circumcenters
cla

clabel
class
classdef
cle

clear
clearvars
clear (serial)
clf
clipboard
clock

close

close

close (avifile)
close (ftp)
closereq
cmopts
cmpermute

cmunique
colamd

colorbar
colordef
colormap
colormapeditor
ColorSpec (Color Specification)
colperm

comet

comet3d
commandhistory
commandwindow
compan
compass
complex
computeStrip
computeTile
computer

cond

condeig

condest

coneplot

conj

continue
contour
contour3
contourc
contourf
Contourgroup Properties
contourslice
contrast

conv

conv2

convhull
convhulln

convn

copyfile

2-9

2 Alphabetical List

2-10

copyobj

corrcoef

cos

cosd

cosh

cot

cotd

coth

cov

cplxpair

cputime

create (RandStream)
createClassFromWsdl
createCopy (inputParser)
createSoapMessage
Cross

csc

csed

csch

csvread

csvwrite

ctranspose (timeseries)
cumprod

cumsum

cumtrapz

curl
currentDirectory
customverctrl
cylinder

daqread

daspect
datacursormode
datatipinfo

date

datenum

datestr

datetick

datevec
dbclear
dbcont
dbdown
dblquad
dbmex
dbquit
dbstack
dbstatus
dbstep
dbstop
dbtype

dbup

dde23
ddeget
ddesd

ddeset

deal

deblank
dec2base
dec2bin
dec2hex
decic

deconv

del2
DelaunayTri
DelaunayTri
delaunay
delaunay3
delaunayn
delete

delete (COM)
delete (ftp)
delete (handle)
delete (serial)
delete (timer)
deleteproperty

2-11

2 Alphabetical List

2-12

delevent
delsample
delsamplefromcollection
demo

depdir

depfun

det

detrend

detrend (timeseries)
deval

diag

dialog

diary

diff

diffuse

dir

dir (ftp)

disp

disp (memmapfile)
disp (MException)
disp (serial)

disp (timer)
display

dither

divergence
dlmread
dlmwrite

dmperm

doc

docsearch

dos

dot

double

dragrect
drawnow

dsearch

dsearchn

dynamicprops

echo

echodemo
edgeAttachments
edges

edit

eig

eigs

ellipj

ellipke

ellipsoid

else

elseif
enableNETfromNetworkDrive
enableservice

end

eomday

eps

eq

eq (MException)

erf, erfe, erfcx, erfinv, erfcinv
error

errorbar
Errorbarseries Properties
errordlg

etime

etree

etreeplot

eval

evalc

evalin
event.EventData
event.listener
event.PropertyEvent
event.proplistener
eventlisteners
events

2-13

2 Alphabetical List

2-14

events (COM)
Execute
exifread
exist

exit

exp

expint

expm

expml
export2wsdlg
eye
ezcontour
ezcontourf
ezmesh
ezmeshc
ezplot
ezplot3
ezpolar
ezsurf
ezsurfc
faceNormals
factor
factorial
false

fclose

fclose (serial)
feather
featureEdges
feof

ferror

feval

Feval (COM)
fft

fft2

fftn

fftshift

fitw

fgetl

fgetl (serial)
fgets

fgets (serial)
fieldnames
figure

Figure Properties
figurepalette
fileattrib
filebrowser

File Formats
filemarker
fileparts
fileread

filesep

fill

fill3

filter

filter (timeseries)
filter2

find

findall

findfigs

findobj

findobj (handle)
findprop (handle)
findstr

finish

fitsinfo

fitsread

fix

flipdim

fliplr

flipud

floor

flow
fminbnd

2-15

2 Alphabetical List

2-16

fminsearch
fopen

fopen (serial)
for

format

fplot

fprintf
fprintf (serial)
frame2im
fread

fread (serial)
freeBoundary
freqgspace
frewind
fscanf

fscanf (serial)
fseek

ftell

ftp

full

fullfile
func2str
function
function_handle (@)
functions
funm

fwrite

fwrite (serial)
fzero

gallery
gamma, gammainc, gammaln
gammainciny
gca

gcbf

gcho

ged

gef

gco

ge

genpath

genvarname

get

get

get

get (COM)

get (hgsetget)

get (memmapfile)

get

get (RandStream)

get (serial)

get (timer)

get (timeseries)

get (tscollection)
getabstime (timeseries)
getabstime (tscollection)
getappdata
getaudiodata
GetCharArray
getdatasamplesize
getDefaultStream (RandStream)
getdisp (hgsetget)
getenv

getfield

getFileFormats
getframe
GetFullMatrix
getinterpmethod
getpixelposition

getpref

getqualitydesc
getReport (MException)
getsampleusingtime (timeseries)
getsampleusingtime (tscollection)
getTag

2-17

2 Alphabetical List

getTagNames
gettimeseriesnames
gettsafteratevent
gettsafterevent
gettsatevent
gettsbeforeatevent
gettsbeforeevent
gettsbetweenevents
GetVariable
getVersion
GetWorkspaceData
ginput

global

gmres

gplot

grabcode

gradient

graymon

grid

griddata
griddata3
griddatan

gsvd

gt

gtext

guidata

guide

guihandles

gunzip

gzip

hadamard

handle

hankel

hdf

hdf5

hdf5info

hdf5read

2-18

hdf5write

hdfinfo

hdfread

hdftool

help

helpbrowser
helpdesk

helpdlg

helpwin

hess

hex2dec

hex2num

hgexport

hggroup

Hggroup Properties
hgload

hgsave

hgsetget
hgtransform
Hgtransform Properties
hidden

hilb

hist

histe

hold

home

horzcat

horzcat (tscollection)
hostid

hsv2rgh

hypot

i

idealfilter (timeseries)
idivide

if

ifft

ifft2

2-19

2 Alphabetical List

ifftn
ifftshift

ilu
im2frame
im2java
imag

image
Image Properties
imagesc
imapprox
imfinfo
imformats
import
importdata
imread
imwrite
incenters
inOutStatus
ind2rgb
ind2sub

Inf
inferiorto
info

inline
Inmem
inpolygon
input
inputdlg
inputname
inputParser
inspect
instrcallback
instrfind
instrfindall
int2str

Int8, intl6, int32, int64
interfaces

2-20

interpl

interplq

interp2

interp3

interpft

interpn
interpstreamspeed
intersect

intmax

intmin

intwarning

nv

invhilb

invoke

ipermute

1qr (timeseries)

is*

isa

isappdata

iscell

iscellstr

ischar

iscom

isdir

isEdge

isempty

isempty (timeseries)
isempty (tscollection)
isequal

isequal (MException)
isequalwithequalnans
isevent

isfield

isfinite

isfloat

isglobal

ishandle

2-21

2 Alphabetical List

2-22

ishghandle
ishold
isinf
isinteger
isinterface
isjava
isKey (Map)
iskeyword
isletter
islogical
ismac
ismember
ismethod
isnan
isnumeric
isobject
isocaps
1socolors
isonormals
1sosurface
ispc
isPlatformSupported
ispref
isprime
isprop
isreal
isscalar
issorted
isspace
issparse
isstr
1sstrprop
isstruct
isstudent
isTiled
1sunix
isvalid (handle)

isvalid (serial)
isvalid (timer)
isvarname
isvector

J

javaaddpath
javaArray
javachk
javaclasspath
javaMethod
javaMethodEDT
javaObject
javaObjectEDT
javarmpath
keyboard

keys (Map)
kron

last (M Exception)
lastDirectory
lasterr

lasterror
lastwarn

lem

1dl

Idivide, rdivide
le

legend

legendre

length

length (Map)
length (serial)
length (timeseries)
length (tscollection)
libfunctions
libfunctionsview
libisloaded
libpointer

2-23

2 Alphabetical List

2-24

libstruct

license

light

Light Properties
lightangle
lighting

lin2mu

line

Line Properties
Lineseries Properties
LineSpec (Line Specification)
linkaxes
linkdata
linkprop
linsolve
linspace

list (RandStream)
listdlg

listfonts

load

load (COM)
load (serial)
loadlibrary
loadobj

log

log10

loglp

log2

logical

loglog

logm

logspace

lookfor

lower

Is

Iscov

Isqnonneg

Isqr

It

Iu

luinc

magic

makehgtform
containers.Map
mat2cell

mat2str

material

matlabcolon (matlab:)
matlabre

matlabroot

matlab (UNIX)

matlab (Windows)
max

max (timeseries)
MaximizeCommandWindow
maxNumCompThreads
mean

mean (timeseries)
median

median (timeseries)
memmapfile

memory

menu

mesh, meshe, meshz
meshgrid

meta.class
meta.class.fromName
meta.DynamicProperty
meta.event
meta.method
meta.package
meta.package.fromName
meta.package.getAllPackages
meta.property

2-25

2 Alphabetical List

metaclass
methods
methodsview
mex
mex.getCompilerConfigurations
MException
mexext
mfilename
mget

min

min (timeseries)
MinimizeCommandWindow
minres
mislocked
mkdir

mkdir (ftp)
mkpp

mldivide \, mrdivide /
mlint

mlintrpt

mlock
mmfileinfo
mmreader

mod

mode

more

move

movefile
movegui

movie
movie2avi

mput

msgbox

mtimes

mu2lin
multibandread
multibandwrite

2-26

munlock
namelengthmax
NaN

nargchk

nargin, nargout
nargoutchk
native2unicode
nchoosek

ndgrid

ndims

ne
nearestNeighbor
ne (MException)
neighbors

NET
NET.addAssembly
NET.Assembly
NET.convertArray
NET.createArray
NET.createGeneric
NET.GenericClass
NET.GenericClass

NET.invokeGenericMethod

NET.NetException
NET.setStaticProperty
netedf

netedf.abort
netedf.close
netedf.copyAtt
netcdf.create
netcdf.defDim
netedf.defVar
netedf.delAtt
netedf.endDef
netedf.getAtt
netcdf.getConstant
netcdf.getConstantNames

2-27

2 Alphabetical List

2-28

netcdf.getVar
netedf.inqg
netedf.inqAtt
netedf.inqAttID
netcdf.inqAttName
netedf.ingDim
netcdf.ingDimID
netedf.inqLibVers
netedf.inqVar
netedf.inqVarID
netedf.open
netcdf.putAtt
netedf.putVar
netcdf.reDef
netcdf.renameAtt
netcdf.renameDim
netcdf.renameVar
netedf.setDefaultFormat
netedf.setFill
netedf.sync
newplot
nextDirectory
nextpow?2

nnz

noanimate
nonzeros

norm

normest

not

notebook

notify (handle)
now

nthroot

null

num2cell
num2hex
num2str

numberOfStrips
numberOfTiles
numel

nzmax

odelbi

ode23, ode45, odel13, odel5s, ode23s, ode23t, ode23tb
odefile

odeget

odeset

odextend
onCleanup

ones

open

openfig

opengl

openvar
optimget
optimset

or

ordeig
orderfields
ordqz

ordschur

orient

orth

otherwise

pack

padecoef
pagesetupdlg
pan

pareto

parfor

parse (inputParser)
parseSoapResponse
pascal

patch

Patch Properties

2-29

2 Alphabetical List

path
path2rc
pathsep
pathtool
pause
pbaspect
pcg

pchip
pcode
pcolor
pdepe
pdeval
peaks

perl

perms
permute
persistent
p1

pie

pie3

pinv
planerot
play

play
playblocking
playshow
plot

plot (timeseries)
plot3
plotbrowser
plotedit
plotmatrix
plottools
plotyy
pointLocation
pol2cart
polar

2-30

poly

polyarea
polyder
polyeig

polyfit

polyint
polyval
polyvalm
pow2

power

ppval

prefdir
preferences
primes

print, printopt
printdlg
printpreview
prod

profile
profsave
propedit
propedit (COM)
properties
propertyeditor
psi

publish
PutCharArray
PutFullMatrix
PutWorkspaceData
pwd

gmr

qr

qrdelete
qrinsert
qrupdate

quad

quad2d

2-31

2 Alphabetical List

2-32

quadgk

quadl

quadv

questdlg

quit

Quit (COM)

quiver

quiver3
Quivergroup Properties
qz

rand

rand (RandStream)
randi

randi (RandStream)
randn

randn (RandStream)
randperm

randperm (RandStream)
RandStream
RandStream (RandStream)
rank

rat, rats

rbbox

rcond

read

read

readasync
readEncodedStrip
readEncodedTile
real

reallog

realmax

realmin

realpow

realsqrt

record

record

recordblocking
rectangle
Rectangle Properties
rectint

recycle
reducepatch
reducevolume
refresh
refreshdata
regexp, regexpi
regexprep
regexptranslate
registerevent
rehash

release

relationaloperators (handle)

rem
remove (Map)
removets

rename

repmat

resample (timeseries)
resample (tscollection)
reset

reset (RandStream)
reshape

residue
restoredefaultpath
rethrow

rethrow (MException)
return
rewriteDirectory
rgh2hsv

rgh2ind

rgbplot

ribbon

rmappdata

2-33

2 Alphabetical List

2-34

rmdir

rmdir (ftp)
rmfield

rmpath

rmpref

root object
Root Properties
roots

rose

rosser

rot90

rotate

rotate3d

round

rref

rsf2csf

run

save

save (COM)
save (serial)
saveas

saveob]
savepath
scatter
scatter3
Scattergroup Properties
schur

script

sec

secd

sech
selectmoveresize
semilogx, semilogy
sendmail

serial
serialbreak

set

set

set

set (COM)

set (hgsetget)

set

set (RandStream)
set (serial)

set (timer)

set (timeseries)
set (tscollection)

setabstime (timeseries)
setabstime (tscollection)

setappdata

setDefaultStream (RandStream)

setdiff
setDirectory
setdisp (hgsetget)
setenv

setfield
setinterpmethod
setpixelposition
setpref

setstr
setSubDirectory
setTag
settimeseriesnames
setxor

shading

shg

shiftdim
showplottool
shrinkfaces

sign

sin

sind

single

sinh

2-35

2 Alphabetical List

size

size (Map)
size (serial)
size (timeseries)
size

size (tscollection)
slice
smooth3
snapnow
sort
sortrows
sound
soundsc
spalloc
sparse
spaugment
spconvert
spdiags
specular
speye
spfun
sph2cart
sphere
spinmap
spline
spones
spparms
sprand
sprandn
sprandsym
sprank
sprintf

spy

sqrt

sqrtm
squeeze
ss2tf

2-36

sscanf
stairs

Stairseries Properties

start

startat

startup

std

std (timeseries)
stem

stem3

Stemseries Properties

stop

stopasync
str2double
str2func
str2mat
str2num

strcat

stremp, strempi
stream?2
stream3
streamline
streamparticles
streamribbon
streamslice
streamtube
strfind

strings

strjust
strmatch
strncmp, strncmpi
strread

strrep

strtok

strtrim

struct
struct2cell

2-37

2 Alphabetical List

2-38

structfun
strvcat
sub2ind
subplot
subsasgn
subsindex
subspace
subsref
substruct
subvolume
sum

sum (timeseries)
superclasses
superiorto
support
surf, surfc
surf2patch
surface
Surface Properties
Surfaceplot Properties
surfl
surfnorm
svd

svds
swapbytes
switch
symamd
symbfact
symmlq
symrcm
symvar
synchronize
syntax
system

tan

tand

tanh

tar

tempdir
tempname
tetramesh
texlabel

text

Text Properties
textread

textscan

textwrap

tfqmr

throw (MException)
throwAsCaller (MException)
tic, toc

Tiff

timer

timerfind
timerfindall
timeseries

title

todatenum
toeplitz

toolboxdir

trace

transpose (timeseries)
trapz

treelayout

treeplot

tril

trimesh
triplequad

triplot

TriRep

TriRep
TriScatteredInterp
TriScatteredInterp
trisurf

2-39

2 Alphabetical List

2-40

triu

true

try

tscollection
tsdata.event

tsearch

tsearchn

tsprops

tstool

type

typecast
uibuttongroup
Uibuttongroup Properties
uicontextmenu
Uicontextmenu Properties
uicontrol

Uicontrol Properties
uigetdir

uigetfile

uigetpref

uiimport

uimenu

Uimenu Properties
uint8, uint16, uint32, uint64
uiopen

uipanel

Uipanel Properties
uipushtool
Uipushtool Properties
uiputfile

uiresume

uisave

uisetcolor

uisetfont

uisetpref

uistack

uitable

Uitable Properties
uitoggletool
Uitoggletool Properties
uitoolbar
Uitoolbar Properties
uiwait
undocheckout
unicode2native
union

unique

unix
unloadlibrary
unmesh

unmkpp
unregisterallevents
unregisterevent
untar

unwrap

unzip

upper

urlread

urlwrite

usejava

userpath
validateattributes
validatestring
values (Map)
vander

var

var (timeseries)
varargin
varargout
vectorize

ver

verctrl
verLessThan
version

2-41

2 Alphabetical List

2-42

vertcat

vertcat (timeseries)
vertcat (tscollection)
vertexAttachments
view

viewmtx

visdiff
volumebounds
voronoi
voronoiDiagram
voronoin

wait

waitbar

waitfor
waitforbuttonpress
warndlg

warning

waterfall

wavfinfo

wavplay

wavread
wavrecord
wavwrite

web

weekday

what

whatsnew

which

while

whitebg

who, whos
wilkinson

winopen
winqueryreg
wk1finfo

wklread

wklwrite

workspace

write
writeDirectory
writeEncodedStrip
writeEncodedTile
xlabel, ylabel, zlabel
xlim, ylim, zlim
xlsfinfo

xlsread

xlswrite

xmlread

xmlwrite

Xor

xslt

Zeros

Zip

zoom

2-43

pack

Purpose

Syntax

Description

Remarks

2-2878

Consolidate workspace memory

pack
pack filename
pack('filename')

pack frees up needed space by reorganizing information so that it only
uses the minimum memory required. All variables from your base and
global workspaces are preserved. Any persistent variables that are
defined at the time are set to their default value (the empty matrix, []).

The MATLAB software temporarily stores your workspace data in a file
called tp######.mat (Where ###### is a numeric value) that is located
in your temporary folder. (You can use the command dir (tempdir) to
see the files in this folder).

pack filename frees space in memory, temporarily storing workspace
data in a file specified by filename. This file resides in your current
working folder and, unless specified otherwise, has a .mat file extension.

pack('filename') is the function form of pack.

You can only run pack from the MATLAB command line.

If you specify a filename argument, that file must reside in a folder for
which you have write permission.

The pack function does not affect the amount of memory allocated to
the MATLAB process. You must quit MATLAB to free up this memory.

Since MATLAB uses a heap method of memory management, extended
MATLAB sessions may cause memory to become fragmented. When
memory is fragmented, there may be plenty of free space, but not
enough contiguous memory to store a new large variable.

If you get the Out of memory message from MATLAB, the pack function
may find you some free memory without forcing you to delete variables.

The pack function frees space by

pack

Examples

See Also

e Saving all variables in the base and global workspaces to a temporary
file.

® (Clearing all variables and functions from memory.

® Reloading the base and global workspace variables back from the
temporary file and then deleting the file.

If you use pack and there is still not enough free memory to proceed,
you must clear some variables. If you run out of memory often, you can
allocate larger matrices earlier in the MATLAB session and use these
system-specific tips:

® When running MATLAB on The Open Group UNIX platforms, ask
your system manager to increase your swap space.
® On Microsoft Windowsplatforms, increase virtual memory using the

Windows Control Panel.

To maintain persistent variables when you run pack, use mlock in the
function.

Change the current folder to one that is writable, run pack, and return
to the previous folder.

cwd = pwd;
cd(tempdir);

pack
cd(cwd)

clear, memory

2-2879

padecoef

Purpose
Syntax

Description

Class
Support

References

See Also

2-2880

Padé approximation of time delays
[num,den] = padecoef(T,N)

[num,den] = padecoef(T,N) returns the Nth-order Padé
approximation of the continuous-time delay 7 in transfer function form.
The row vectors num and den contain the numerator and denominator
coefficients in descending powers of T. Both are Nth-order polynomials.

Class support for input T

float: double, single

Input T support floating-point values of type single or double.

[1] Golub, G. H. and C. F. Van Loan Matrix Computations, 3rd ed.
Johns Hopkins University Press, Baltimore: 1996, pp. 572-574.

pade

pagesetupdig

Purpose

Syntax

Description

Page setup dialog box

dlg = pagesetupdlg(fig)

Note This function is obsolete. Use printpreview instead.

dlg = pagesetupdlg(fig) creates a dialog box from which a set of
pagelayout properties for the figure window, fig, can be set.

pagesetupdlg implements the "Page Setup..." option in the Figure
File Menu.

pagesetupdlg supports setting the layout for a single figure. fig must
be a single figure handle, not a vector of figures or a simulink diagram.

Page Setup - Figure 1 x|

Size and Position | Paper | Lines and Text | Aues and Figure |

rhode
 Lse screen size, centered on page

& se manual size and position

rManual size and position

Top: m Sl
lJse defaults |
Left: Io.zs 3: \4
Fill page |
Wiidth: |s.00 = [2=]

Fix aspect ratio |

Height: |5.00 —
I :I Center |
Units:linches 'l

Help.. | [o]34 I Cancel

2-2881

pagesetupdig

See Also printdlg, printpreview, printopt

2-2882

pan

Purpose

GUI
Alternatives

Syntax

Description

Pan view of graph interactively

Use the Pan tool €'r? on the figure toolbar to enable and disable pan
mode on a plot, or select Pan from the figure’s Tools menu. For details,
see “Panning — Shifting Your View of the Graph” in the MATLAB
Graphics documentation.

pan on

pan xon

pan yon

pan off

pan

pan(figure_handle,...)

h = pan(figure_handle)

pan on turns on mouse-based panning in the current figure.

pan xon turns on panning only in the x direction in the current figure.
pan yon turns on panning only in the y direction in the current figure.
pan off turns panning off in the current figure.

pan toggles the pan state in the current figure on or off.
pan(figure_handle,...) sets the pan state in the specified figure.

h = pan(figure_handle) returns the figure’s pan mode object for the
figure figure_handle for you to customize the mode’s behavior.

Using Pan Mode Obijects

Access the following properties of pan mode objects via get and modify
some of them using set:

® Fnable 'on'|'off' — Specifies whether this figure mode is

currently enabled on the figure

® Motion 'horizontal'|'vertical'|'both' — The type of panning
enabled for the figure

2-2883

pan

2-2884

® FigureHandle <handle>— The associated figure handle, a read-only
property that cannot be set

Pan Mode Callbacks

You can program the following callbacks for pan mode operations.

® ButtonDownFilter <function_handle> — Function to intercept
ButtonDown events

The application can inhibit the panning operation under
circumstances the programmer defines, depending on what the
callback returns. The input function handle should reference a
function with two implicit arguments (similar to Handle Graphics
object callbacks):

function [res] = myfunction(obj,event_obj)

obj handle to the object that has been clicked on

event_obj event data (empty in this release)

res [output] a logical flag to determine whether the pan
operation should take place or the 'ButtonDownFcn'
property of the object should take precedence

0 o° o o°

o°

® ActionPreCallback <function_handle> — Function to execute
before panning

Set this callback to if you need to execute code when a pan operation
begins. The function handle should reference a function with two
implicit arguments (similar to Handle Graphics object callbacks):

function myfunction(obj,event_obj)
% obj handle to the figure that has been clicked on
% event_obj object containing struct of event data

The event data struct has the following field:

Axes The handle of the axes that is being panned

pan

® ActionPostCallback <function_handle> — Function to execute
after panning

Set this callback if you need to execute code when a pan operation
ends. The function handle should reference a function with two
implicit arguments (similar to Handle Graphics object callbacks):

function myfunction(obj,event_obj)

% obj handle to the figure that has been clicked on
% event_obj object containing struct of event data (same as the
% event data of the 'ActionPreCallback' callback)

Pan Mode Utility Functions

The following functions in pan mode query and set certain of its
properties.

e flags = isAllowAxesPan(h,axes) — Function querying permission
to pan axes

Calling the function isAllowAxesPan on the pan object, h, with a
vector of axes handles, axes, as input returns a logical array of the
same dimension as the axes handle vector, which indicates whether a
pan operation is permitted on the axes objects.

* setAllowAxesPan(h,axes,flag) — Function to set permission to
pan axes

Calling the function setAllowAxesPan on the pan object, h, with a
vector of axes handles, axes, and a logical scalar, flag, either allows
or disallows a pan operation on the axes objects.

® info = getAxesPanMotion(h,axes) — Function to get style of pan
operations

Calling the function getAxesPanMotion on the pan object, h, with

a vector of axes handles, axes, as input will return a character

cell array of the same dimension as the axes handle vector, which
indicates the type of pan operation for each axes. Possible values for
the type of operation are 'horizontal', 'vertical' or 'both'.

2-2885

pan

Examples

2-2886

® setAxesPanMotion(h,axes,style) — Function to set style of pan
operations

Calling the function setAxesPanMotion on the pan object, h, with a
vector of axes handles, axes, and a character array, style, sets the
style of panning on each axes.

Example 1 — Entering Pan Mode

Plot a graph and turn on Pan mode:

plot(magic(10));
pan on
% pan on the plot

Example 2 — Constrained Pan

Constrain pan to x-axis using set:

plot(magic(10));

h = pan;

set(h, 'Motion', 'horizontal', 'Enable','on');

% pan on the plot in the horizontal direction.

Example 3 — Constrained Pan in Subplots

Create four axes as subplots and give each one a different panning
behavior:

ax1 = subplot(2,2,1);

plot(1:10);

h = pan;

ax2 = subplot(2,2,2);

plot(rand(3));
setAllowAxesPan(h,ax2,false);

ax3 = subplot(2,2,3);

plot(peaks);

setAxesPanMotion(h,ax3, 'horizontal');
ax4 = subplot(2,2,4);

pan

contour(peaks);
setAxesPanMotion(h,ax4, 'vertical');
% pan on the plots.

Example 4 — Coding a ButtonDown Callback

Create a buttonDown callback for pan mode objects to trigger. Copy the
following code to a new file, execute it, and observe panning behavior:

function demo

% Allow a line to have its own 'ButtonDownFcn' callback.
hLine = plot(rand(1,10));

set(hLine, 'ButtonDownFcn', 'disp(''This executes'')');
set(hLine, 'Tag', 'DoNotIgnore');

h = pan;

set(h, 'ButtonDownFilter',@mycallback);

set(h, 'Enable','on');

% mouse click on the line

o°

function [flag] = mycallback(obj,event_obj)

% If the tag of the object is 'DoNotIgnore', then return true.
% Indicate what the target is

disp(['Clicked ' get(obj,'Type') ' object'])

objTag = get(obj,'Tag');

if strcmpi(objTag, 'DoNotIgnore')

flag = true;
else

flag = false;
end

Example 5 — Coding Pre- and Post-Callback Behavior

Create callbacks for pre- and post-ButtonDown events for pan mode
objects to trigger. Copy the following code to a new file, execute it, and
observe panning behavior:

function demo

[

% Listen to pan events

2-2887

pan

Remarks

2-2888

plot(1:10);

h = pan;

set(h, 'ActionPreCallback',@myprecallback);

set(h, 'ActionPostCallback',@mypostcallback);

set(h, 'Enable','on');

function myprecallback(obj,evd)

disp('A pan is about to occur.');

function mypostcallback(obj,evd)

newLim = get(evd.Axes, 'XLim');

msgbox (sprintf('The new X-Limits are [%.2f %.2f].',newLim));

Example 6 — Creating a Context Menu for Pan Mode

Coding a context menu that lets the user to switch to Zoom mode by
right-clicking:

figure; plot(magic(10));

hCM = uicontextmenu;

hMenu = uimenu('Parent',hCM, 'Label','Switch to zoom',...
‘Callback', 'zoom(gcbf, ' 'on'"')"');

hPan = pan(gcf);

set(hPan, 'UIContextMenu',hCM) ;

pan('on'")

You cannot add items to the built-in pan context menu, but you can
replace it with your own.

You can create a pan mode object once and use it to customize the
behavior of different axes, as Example 3 illustrates. You can also
change its callback functions on the fly.

pan

See Also

Note Do not change figure callbacks within an interactive
mode. While a mode is active (when panning, zooming, etc.), you will
receive a warning if you attempt to change any of the figure’s callbacks
and the operation will not succeed. The one exception to this rule is the
figure WindowButtonMotionFcn callback, which can be changed from
within a mode. Therefore, if you are creating a GUI that updates a
figure’s callbacks, the GUI should some keep track of which interactive
mode is active, if any, before attempting to do this.

When you assign different pan behaviors to different subplot axes
via a mode object and then link them using the 1inkaxes function,
the behavior of the axes you manipulate with the mouse carries over
to the linked axes, regardless of the behavior you previously set for
the other axes.

zoom, linkaxes, rotate3d

“Object Manipulation” on page 1-110 for related functions

2-2889

../ref/figure_props.html#WindowButtonMotionFcn

pareto

Purpose

GUI
Alternatives

Syntax

Description

Examples

2-2890

Pareto chart

To graph selected variables, use the Plot Selector in the
Workspace Browser, or use the Figure Palette Plot Catalog. Manipulate
graphs in plot edit mode with the Property Editor. For details, see
Plotting Tools — Interactive Plotting in the MATLAB Graphics
documentation and Creating Graphics from the Workspace Browser in
the MATLAB Desktop Tools documentation.

pareto(Y)
pareto(Y,names)
pareto(Y,X)

H = pareto(...)

Pareto charts display the values in the vector Y as bars drawn in
descending order. Values in Y must be nonnegative and not include
NaNs. Only the first 95% of the cumulative distribution is displayed.

pareto(Y) labels each bar with its element index in Y and also plots a
line displaying the cumulative sum of Y.

pareto(Y,names) labels each bar with the associated name in the
string matrix or cell array names.

pareto(Y,X) labels each bar with the associated value from X.
pareto(ax,..) plots a Pareto chart in existing axes ax rather than GCA.
H = pareto(...) returns a combination of patch and line object
handles.

Example 1:

Examine the cumulative productivity of a group of programmers to
see how normal its distribution is:

pareto

codelines = [200 120 555 608 1024 101 57 687];

coders = ...

{'Fred', 'Ginger', 'Norman', '‘Max', 'dJulia', 'Wally', 'Heidi', 'Pat'};
pareto(codelines, coders)

title('Lines of Code by Programmer')

Lines of Code by Programmer

3352 T T T T T T 100%
3000 a99%
2500 5%
2000 B0%
1500 45%
1000 0%
500 15%
Julia Pat Max Marman Fred Ginger 0%
Example 2:

Generate a vector, X, representing diagnostic codes with values from 1 to
10 indicating various faults on devices emerging from a production line:

X = min(round(abs(randn(100,1)*4))+1,10);

Plot a Pareto chart showing the frequency of failure for each diagnostic
code from the most to the least common:

pareto(hist (X))

2-2891

pareto

100 100%

80 80%

g0 B0%
/0 0%
0 B0%
&0 50%
40 40%
30 30%
20 20%

10 10%

Remarks You can use pareto to display the output of hist, even for vectors that
include negative numbers. Because only the first 95 percent of values
are displayed, one or more of the smallest bars may not appear. If you
extend the X1im of your chart, you can display all the values, but the
new bars will not be labeled.

You cannot place datatips (use the Datacursor tool) on graphs created
with pareto.

See Also hist, bar

2-2892

parfor

Purpose

Syntax

Description

Parallel for-loop

parfor loopvar = initval:endval; statements; end
parfor (loopvar = initval:endval, M); statements; end

parfor loopvar = initval:endval; statements; end executes a
series of MATLAB commands denoted here as statements for values of
loopvar between initval and endval, inclusive, which specify a vector
of increasing integer values. Unlike a traditional for-loop, there is no
guarantee of the order in which the loop iterations are executed.

The general format of a parfor statement is:

parfor loopvar = initval:endval
<statements>
end

Certain restrictions apply to the statements to ensure that the
iterations are independent, so that they can execute in parallel. If
you have the Parallel Computing Toolbox™ software, the iterations of
statements can execute in parallel on separate MATLAB workers on
your multi-core computer or computer cluster.

To execute the loop body in parallel, you must open a pool of MATLAB
workers using the matlabpool function, which is available in Parallel
Computing Toolbox.

parfor (loopvar = initval:endval, M); statements; end
executes statements in a loop using a maximum of M MATLAB workers
to evaluate statements in the body of the parfor-loop. Input variable
M must be a nonnegative integer. By default, MATLAB uses up to as
many workers as it finds available.

When any of the following are true, MATLAB does not execute the loop
in parallel:

¢ There are no workers in a MATLAB pool

® You set M to zero

2-2893

parfor

Examples

See Also

2-2894

® You do not have Parallel Computing Toolbox

If you have Parallel Computing Toolbox, you can read more about
parfor and matlabpool by typing

doc distcomp/parfor
doc distcomp/matlabpool

Perform three large eigenvalue computations using three computers
or cores:

matlabpool(3)
parfor i=1:3, c(:,1) = eig(rand(1000)); end

for

parse (inputParser)

Purpose

Syntax

Description

Example

Parse and validate named inputs

p.parse(arglist)
parse(p, arglist)

p.parse(arglist) is part of the input argument checking mechanism
employed by the MATLAB Input Parser utility. Input Parser code
residing in a function that receives data from calling functions identifies
what types of arguments are acceptable. The parse function parses and
validates the inputs named in arglist.

parse(p, arglist)is functionally the same as the syntax above.

For more information on the inputParser class, see “Validating Inputs
with Input Parser” in the MATLAB Programming Fundamentals
documentation.

This example writes a function called photoPrint that uses the Input
Parser to check arguments passed to it. This function accepts up to eight
input arguments. When called with the full set of inputs, the syntax is:

photoPrint (filename, format, finish, colorCode,
"horizDim', hDim, 'vertDim', vDim);

Only the first two of these inputs are defined as required arguments;
the rest are optional. The 'horizDim' and 'vertDim' arguments are in
parameter name/value format. Pair the 'horizDim' parameter name
with its value hDim, and likewise the 'vertDim' name with its value
vDim. Here are several possible calling syntaxes for the function:

photoPrint (filename, format);

photoPrint(filename, format, finish)

photoPrint(filename, format, finish, colorCode)

photoPrint(filename, format, finish, colorCode,
"horizDim', hDim)

photoPrint(filename, format, finish, colorCode,
'vertDim', vDim)

2-2895

parse (inputParser)

2-2896

Begin writing the example function photoPrint by entering the
following two statements into a file named photoPrint.m. The second
statement calls the class constructor for inputParser to create an
instance p of the class. This class instance, or object, gives you access to
all of the methods and properties of the class:

function photoPrint(filename, format, varargin)
p = inputParser; % Create an instance of the class.

Add the following code to the photoPrint function. These statements
call the addRequired, addOptional, and addParamValue methods to
define the types of input data one can pass to this function:

p.addRequired('filename', @ischar);
p.addRequired('format', @(x)strcmp(x,'jpeg')
|| stremp(x, 'tiff'));

p.addOptional('finish', 'glossy', @(x)strcmpi(x,'flat')

(
|| strcmpi(x,'glossy'));
p.addOptional('colorCode', 'CMYK', @(x)strcmpi(x, 'CMYK")
|| strcmpi(x,'RGB'));

p.addParamValue('horizDim', 6, @(x)isnumeric(x) && x<=20));
p.addParamValue('vertDim', 4, @(x)isnumeric(x) && x<=20));

Just after this, call the parse method to parse and validate the inputs.
MATLAB puts the results of the parse into a property named Results:

p.parse(filename, format, varargin{:});
p.Results

Save and execute the file, passing the required and any number of the
optional input arguments. Examining p.Results displays the name of
each input as a field, and the value of each input as the value of that
field:

photoPrint('myPhoto', 'tiff', 'flat', 'RGB',
"horizDim', 10, 'vertDim', 8)

parse (inputParser)

The following inputs have been received and validated:
colorCode: 'RGB'
filename: 'myPhoto’
finish: 'flat'
format: 'tiff'
horizDim: 10
vertDim: 8

See Also inputParser, addRequired(inputParser),
addOptional(inputParser), addParamValue (inputParser),
createCopy (inputParser)

2-2897

parseSoapResponse

Purpose
Syntax

Description

Examples

2-2898

Convert response string from SOAP server into MATLAB types
parseSoapResponse(response)

parseSoapResponse(response) extracts data from response a string
returned by a SOAP server from the callSoapService function, and
converts it to appropriate MATLAB classes (types).

This example uses parseSoapResponse in conjunction with other SOAP
functions to retrieve information about books from a library database,
specifically, the author’s name for a given book title.

Note The example does not use an actual endpoint; therefore, you
cannot run it. The example only illustrates how to use the SOAP
functions.

% Create the message:

message = createSoapMessage(...
‘urn:LibraryCatalog',...

'getAuthor',...

{'In the Fall'},...

{'nameToLookUp'},...
{'{http://www.w3.0rg/2001/XMLSchema}string'},...

‘rpc’);

o°

% Send the message to the service and get the response:
response = callSoapService(...
"http://test/soap/services/LibraryCatalog',...
‘urn:LibraryCatalog#getAuthor',...

message)

o°

% Extract MATLAB data from the response
author = parseSoapResponse(response)

MATLAB returns:

parseSoapResponse

author = Kate Alvin
where author is a char class (type).

See Also callSoapService, createClassFromWsdl, createSoapMessage,
urlread, xmlread

“Using Web Services with MATLAB” in the MATLAB External
Interfaces documentation

2-2899

pascal

Purpose Pascal matrix
Syntax A = pascal(n)
A = pascal(n,1)
A = pascal(n,2)

Description A pascal(n) returns the Pascal matrix of order n: a symmetric
positive definite matrix with integer entries taken from Pascal’s
triangle. The inverse of A has integer entries.

A = pascal(n,1) returns the lower triangular Cholesky factor (up to
the signs of the columns) of the Pascal matrix. It is involutary, that is,
it is its own inverse.

A = pascal(n,2) returns a transposed and permuted version of
pascal(n,1). Ais a cube root of the identity matrix.

Examples pascal(4) returns
1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

A = pascal(3,2) produces

A =
1 1 1
-2 1 0
1 0 0
See Also chol

2-2900

patch

Purpose

Syntax

Properties

Description

Create one or more filled polygons

patch(X,Y,C)

patch(X,Y,Z,C)

patch(FV)

patch(X,Y,C, 'PropertyName' ,propertyvalue...)
patch('PropertyName' ,propertyvalue,...)
handle = patch(...)

For a list of properties, see Patch Properties.

patch(X,Y,C) adds a filled 2-D patch object to the current axes. A
patch object is one or more polygons defined by the coordinates of its
vertices. The elements of X and Y specify the vertices of a polygon . If X
and Y are m-by-n matrices, MATLAB draws n polygons with m vertices. C
determines the color of the patch. For more information on color input
requirements, see “Coloring Patches” on page 2-2905.

MATLAB does not require each face to have the same number of
vertices. In cases where they do not, pad the end of the Faces matrix
with NaNs. To define a patch with faces that do not close, add one or
more NaNs to the row in the Vertices matrix that defines the vertex
you do not want connected.

See “Creating 3-D Models with Patches” in MATLAB 3-D Visualization
for more information on using patch objects.

patch(X,Y,Z,C) creates a patch in 3-D coordinates. If the coordinate
data does not define closed polygons, patch closes the polygons. The
data can define concave or intersecting polygons. However, if the edges
of an individual patch face intersect themselves, the resulting face
might be only partly filled. In that case, it is better to divide the face
into smaller polygons.

patch(FV) creates a patch using structure FV, which contains the
fields vertices, faces, and optionally facevertexcdata. These fields
correspond to the Vertices, Faces, and FaceVertexCData patch
properties. Specifying only unique vertices and their connection matrix

2-2901

patch

Examples

2-2902

can reduce the size of the data for patches having many faces. For an
example of how to specify patches with this method, see “Specifying
Patch Object Shapes” on page 2-2902.

patch(X,Y,C, 'PropertyName' ,propertyvalue...) follows the X,

Y, (Z), and C arguments with property name/property value pairs to
specify additional patch properties. For a description of the properties,
see Patch Properties. You can specify properties as property
name/property value pairs, structure arrays, and cell arrays (see the set
and get reference pages for examples of how to specify these data types).

patch('PropertyName' ,propertyvalue,...) specifies all properties
using property name/property value pairs. This form lets you omit the
color specification because MATLAB uses the default face color and
edge color unless you explicitly assign a value to the FaceColor and
EdgeColor properties. This form also lets you specify the patch using
the Faces and Vertices properties instead of x-, y-, and z-coordinates.
See “Specifying Patch Object Shapes” on page 2-2902 for more
information.

handle = patch(...) returns the handle of the patch object it creates.
Unlike high-level area creation functions, such as fill or area, patch
does not check the settings of the figure and axes NextPlot properties.
It simply adds the patch object to the current axes.

Specifying Patch Object Shapes

The next two examples create a patch object using two methods:

® Specifying x-, y-, and z-coordinates and color data (XData, YData,
ZData, and CData properties)

® Specifying vertices, the connection matrix, and color data (Vertices,
Faces, and FaceVertexCData properties)

Create five triangular faces, each having three vertices, by specifying
the x-, y-, and z-coordinates of each vertex:

xdata = [2 2 0 2 5;

patch

282 4 5;
8 8 24 8];
ydata = [4 4 4 2 0;
8 46 2 2;
4040 0];
zdata = ones(3,5);

)

Red numbers denote the vertex indices.
For this example:
xindices = [1 4 7 10 13;

2 58 11 14;

369 12 15];
Blue numbers denote the face numbers.
patch(xdata,ydata,zdata, 'w')

d® o° o° o° o°

o°

(=]

Create the five triangular faces, specifying faces and vertices:

2-2903

patch

% The Vertices property contains the coordinates of each
% unique vertex defining the patch. The Faces property
% specifies how to connect these vertices to form each
% face of the patch. More than one face may use a given vertex.
% For this example, five triangles have 11 total vertices,
% instead of 15. Each row contains the x- and y-coordinates
% of each vertex.
verts = [2 4;
2

a o~ B DNDNDOOOO®
oONOMNMNMNOOP~OP~MO®

13

% There are five faces, defined by connecting the

% vertices in the order indicated.

faces = [
1

-~ o =
— 00 OO W N -

o°

Create the patch by specifying the Faces, Vertices,

and FaceVertexCData properties as well as the

FaceColor property. Red numbers denote the vertex
numbers, as defined in faces. Blue indicate face numbers.

o° o°

o°

patch('Faces',faces, 'Vertices',verts, 'FaceColor','w');

©

2-2904

patch

Ma

(s3]

9 1 4

% Using the previous values for verts and faces, you can
% create the same patch object using a structure:
patchinfo.Vertices = verts;

patchinfo.Faces = faces;

patchinfo.FaceColor = 'w';

patch(patchinfo);

Coloring Patches

There are many ways to customize your patch objects using colors. The
appropriate input depends on:

® Whether you want to change the edge colors
e How you specified the patch faces:

= Using face/vertex values

2-2905

patch

= Using x-, y-, and z-coordinates

The following sections present the various options available.

Specifying Edge Colors

The following options apply to the edge colors of your patch object. The
settings are independent of the face colors, but the colors themselves
depend on the colors specified at each vertex. Markers show the color
at each vertex. Specify the colors using the EdgeColor property. To
explore the options using the Sample Input Code, first start with a
base patch object:

xdata = [2 2 0 2 5;
2 8 2 4 5;
8 8 2 4 81;
ydata = [4 4 4 2 0;
8 4 6 2 2;
4 0 4 0 01;
cdata = [15 0 4 6 10;
1 2 5 7 9;
2 3 0 8 3];

p = patch(xdata,ydata,cdata, 'Marker','o', ‘MarkerFaceColor', 'flat'

For more detailed information on how the EdgeColor property works,
see the Patch Properties page.

Desired Look

EdgeColor Value Sample Code

All edges have the same color,
around all faces. This option does
not rely on the FaceColor value.

2-2906

ColorSpec

set(p, 'EdgeColor','g")

, 'Fac

patch

Desired Look EdgeColor Value Sample Code
8 .

-

ol

Al

4 * *

Al

2l

n

% 1 2 3 i 5 5 7 H

Each edge corresponds to the color | 'flat’

of the vertex that precedes the
edge, with one color per edge. This
option requires that the FaceColor
property be flat or interp. By
default, if you specify CData when
creating the patch object, its
FaceColor property is interp.

8-
7L

6L

set(p, 'EdgeColor','flat',...
'Linewidth',3)

2-2907

patch

Desired Look EdgeColor Value Sample Code

Each edge corresponds to the ‘interp'
vertex colors, interpolated between set(gcf, 'Renderer', 'zbuffer')
vertices. This option requires that set(p, 'EdgeColor’, ‘interp’, ...
the FaceColor property be flat or ‘LineWidth',5)

interp. By default, if you specify
CData when creating the patch
object, its FaceColor property is
interp.

0

Edges have no color. This option 'none’
does not rely on the FaceColor set(p, 'EdgeColor’, "none")
value. If set, markers retain vertex
colors.

2-2908

patch

Desired Look

EdgeColor Value Sample Code

*
g

n n
5 5 7

Specifying Face Colors Using Face/Vertex Input Matrics

The following options apply to the face colors of your patch object when
you specify the faces using face/vertex input matrices. To explore the
options, first start with a base patch object:

% For this example, there are five triangles (m = 5) sharing
% eleven unique vertices (k = 11).
verts = [2 4;

H

oONOMNMMNMNOOP»OI~O®

2
8
8
0
2
2
4
4
5
5
=

= 00 O W N —

o

1
1
5
7
1

A O =2 PO

—_—

1

2-2909

patch

p = patch('Faces',faces, 'Vertices',verts, 'FaceColor','b');

For more information on the relevant properties, see FaceColor,
FaceVertexCData, and CDataMapping.

Desired Look Parameter Values Sample Code

All faces have the same

® FaceColor: ColorSpec

color.

FaceVertexCData: [] (no
input)

An empty array is the
default value, and patch
ignores any input until you
set FaceColor to 'flat' or
"interp’.

Color source: truecolor

CDataMapping: 'direct' or
‘scaled’.

'scaled' is the default
value, but neither affects the
outcome.

set(p, 'FaceColor','r")

or

set(p, 'FaceColor',[1 0 0])

Each face has a single,
unique color, indexed
from a selected section
of the colormap.

FaceColor: 'flat'

FaceVertexCData: m-by-1
matrix of index values

Color source: A selected
portion of the colormap

CDataMapping: 'scaled’

clear cdata
set(gca, 'CLim',[0 40])
cdata = [15 30 25 2 60]';

set(p, 'FaceColor', 'flat',...

'FaceVertexCData',cdata...

'CDataMapping', 'scaled')

2-2910

patch

Desired Look

Parameter Values

Sample Code

Each face has a
single, unique color,
indexed from the whole
colormap.

® FaceColor: 'flat'

® FaceVertexCData: m-by-1
matrix of index values

® Color source: colormap
® CDataMapping: 'direct’

'scaled’ is the default
value when you input
CData values. If you

want to change the axes
CLim property, but want
your patch object to index
the entire colormap, use
'CDhataMapping', 'direct’.

clear cdata

set(gca, 'CLim',[0 40])

cdata = [15 30 25 2 60]"';
set(p, 'FaceColor','flat',...
'FaceVertexCData',cdata,...

'CDataMapping', 'direct')

Each face has a
single, unique color,
determined by truecolor
value input.

® FaceColor: 'flat'

® FaceVertexCData: m-by-3
matrix of truecolor values,
from 0 to 1

® (Color source: truecolor

® CDataMapping: 'direct' or
‘scaled’.

'scaled' is the default
value, but neither affects the
outcome.

clear cdata

cdata = [0 0 1 0 0.8;
0100 0.8;
10100.8]";

set(p, 'FaceColor','flat',...

'FaceVertexCData',cdata)

2-2911

patch

Desired Look

Parameter Values

Sample Code

Each unique vertex has
a single, unique color,
indexed from a selected
section of the colormap.
Faces each have a
single, unique color, but
edges may have 'flat'
or 'interp' color.

.

h\\h

i i N
R T

® FaceColor: 'flat'

® FaceVertexCData: k-by-1
matrix of index values

¢ (Color source: A selected
portion of the colormap

® CDataMapping: 'scaled’

clear cdata

set(gca, 'CLim',[0 40])

cdata = [15 30 25 2 ...

60 12 23 40 13 26 24]';
set(p, 'FaceColor', 'flat',...
'FaceVertexCData',cdata,...
'EdgeColor', 'flat',...
'LineWidth',5,...
'CDataMapping', 'scaled')

Each unique vertex
has a single, unique
color, indexed from the
whole colormap. Faces
each have a single,
unique color, but edges
may have 'flat' or
"interp' color.

8

N

® FaceColor: 'flat'

® FaceVertexCData: k-by-1
matrix of index values

¢ (Color source: colormap
® CDataMapping: 'direct’

'scaled' is the default
value when you input
CData values. If you
want to change the axes
CLim property, but want
your patch object to index
the entire colormap, use

'CDataMapping', 'direct’.

clear cdata

set(gca, 'CLim',[0 40])

cdata = [15 30 25 2 ...

60 12 23 40 13 26 24]';
set(p, 'FaceColor', 'flat',...
'FaceVertexCData',cdata,...
'CDataMapping', 'direct',...
'EdgeColor', 'flat',...
'LineWidth',5)

2-2912

patch

Desired Look

Parameter Values

Sample Code

Each unique vertex has
a single, unique color,
determined by truecolor
value input. Faces
each have a single,
unique color, but edges
may have 'flat' or
"interp' color.

® FaceColor: 'flat'

® FaceVertexCData: k-by-3
matrix of truecolor values,
from 0 to 1

® (Color source: truecolor

e CDataMapping: 'direct' or
‘scaled’.

'scaled' is the default
value, but neither affects the
outcome.

clear cdata

cdata = [0 0 1;
01 0;
01 1;

o o

.4 0.4;
.6 0.6;

0.8 0.8 0.8];
set(p, 'FaceColor','flat',...

0
0
0.2 0.2;
0
0

o O o o
o » M O

'FaceVertexCData',cdata,...
'EdgeColor', 'interp',...
'Linewidth',5)

Each unique vertex has
a single, unique color,
indexed from a selected
section of the colormap.
Edges may have 'flat'
or 'interp' color.

-

e

) .
’ "
/l \“‘x

® FaceColor: 'interp'

® FaceVertexCData: k-by-1
matrix of index values

e (Color source: A selected
portion of the colormap

e CDataMapping: 'scaled'’

clear cdata

set(gca, 'CLim',[0 40])
cdata = [15 30 25 2 ...
60 12 23 40 13 26 24]';

set(p, 'FaceColor', 'interp',...

'FaceVertexCData',cdata,...
'EdgeColor', 'flat',...
‘LineWidth',5...
'CDataMapping', 'scaled')

2-2913

patch

Desired Look

Parameter Values

Sample Code

Each unique vertex
has a single, unique
color, indexed from the
whole colormap. Edges
may have 'flat' or
"interp' color.

® FaceColor: 'interp'

® FaceVertexCData: k-by-1
matrix of index values

® Color source: colormap
® CDataMapping: 'direct’

'scaled’ is the default
value when you input
CData values. If you

want to change the axes
CLim property, but want
your patch object to index
the entire colormap, use
'ChataMapping', 'direct’.

clear cdata

set(gca, 'CLim',[0 40])
cdata = [15 30 25 2 ...
60 12 23 40 13 26 24]';

set(p, 'FaceColor', 'interp',...

'FaceVertexCData',cdata,...
'CDataMapping', 'direct',...
'EdgeColor', 'flat',...
'Linewidth',5)

Each unique vertex has
a single, unique color,
determined by truecolor
value input. Edges
may have 'flat' or
"interp' color.

® FaceColor: 'interp'

® FaceVertexCData: k-by-3
matrix of truecolor values,
from 0 to 1

® (Color source: truecolor

® CDataMapping: 'direct' or
‘scaled’.

'scaled' is the default
value, but neither affects the
outcome.

clear cdata

cdata = [0 0 1;
01 0;
01 1;
10 0;
10 1;
11 0;
00 0;
0.2 0.2 0.2;
0.4 0.4 0.4;
0.6 0.6 0.6;
0.8 0.8 0.8];

set(p, 'FaceColor', 'interp',...

'FaceVertexCData',cdata,...
'EdgeColor', 'interp',...
'Linewidth',5)

2-2914

patch

Specifying Face Colors Using x-, y-, and z-Coordinate Input

The following options apply to the face colors of your patch object when
you specify the faces using x-, y-, and z-coordinates. To explore the
options, first start with a base patch object:

% For
% The
xdata

ydata

zdata

this example, there are five (m=5) triangles (n=3).
total number of vertices is mxn, or k = 15,

=[220
2 82
8 8 2
= [4 44
8 46
40 4
= ones (3,

2

NN B D

0
5

S;
S;
81;
0;
23
01;

);

p = patch(xdata,ydata,zdata,'b’')

For more information on the relevant properties, see FaceColor, CData,
and CDataMapping.

Desired Look Parameter Values Sample Code

All faces have the same | ® FaceColor: ColorSpec
color.

FaceVertexCData: [] (no

input)

Color source: truecolor

CDataMapping: 'direct' or

'scaled’.

'scaled' is the default
value, but neither affects the

outcome.

set(p, 'FaceColor','r")

or

set(p, 'FaceColor',[1 0 0])

Each face has a single, | ®
unique color, indexed
from a selected section
of the colormap.

FaceColor:

FaceVertexCData: m-by-1
matrix of index values

‘flat'

clear cdata
set(gca, 'CLim',[0 40])
cdata = [15 30 25 2 60];

2-2915

patch

Desired Look

Parameter Values

Sample Code

® Color source: A selected
portion of the colormap

® CDataMapping: 'scaled'’

set(p, 'FaceColor','flat',...
'CData',cdata...
'CDataMapping', 'scaled')

Each face has a
single, unique color,
indexed from the whole
colormap.

® FaceColor: 'flat'

® FaceVertexCData: m-by-1
matrix of index values

® Color source: colormap
® CDataMapping: 'direct’

‘scaled' is the default
value when you input
CData values. If you
want to change the axes
CLim property, but want
your patch object to index
the entire colormap, use

'CDataMapping', 'direct"'.

clear cdata

set(gca, 'CLim',[0 40])

cdata = [15 30 25 2 60];
set(p, 'FaceColor', 'flat',...
'CData',cdata,...
'CDataMapping', 'direct')

2-2916

patch

Desired Look

Parameter Values

Sample Code

Each face has a
single, unique color,
determined by truecolor
value input.

8

N

] 1 2 E] 4 11 E

FaceColor: 'flat'

FaceVertexCData:
m-by-1-by-3 matrix of
truecolor values, from 0
to 1

Color source: truecolor

CDataMapping: 'direct’' or
‘scaled’.

‘scaled' is the default
value, but neither affects the
outcome.

clear cdata

cdata(:,:,1) = [0 0 1 0 0.8];
cdata(:,:,2) = [0 0 0 0 0.8];
cdata(:,:,3) = [1 110 0.8];

set(p, 'FaceColor','flat',...
'CData',cdata)

Each unique vertex has
a single, unique color,
indexed from a selected
section of the colormap.
Faces each have a
single, unique color, but
edges may have 'flat'
or 'interp' color.

FaceColor: 'flat'

FaceVertexCData: m-by-n
matrix of index values

Color source: A selected
portion of the colormap

CDataMapping: 'scaled’

clear cdata
set(gca, 'CLim',[0 40])
cdata = [15 30 25 2 60;
12 23 40 13 26;
24 8 1 65 42];
set(p, 'FaceColor','flat',...
'CData',cdata,...
'EdgeColor', 'flat',...
'LineWidth',5...
'CDataMapping', 'scaled')

2-2917

patch

Desired Look

Parameter Values

Sample Code

Each unique vertex
has a single, unique
color, indexed from the
whole colormap. Faces
each have a single,
unique color, but edges
may have 'flat' or
"interp' color.

FaceColor: 'flat'

FaceVertexCData: m-by-n
matrix of index values

Color source: colormap
CDataMapping: 'direct’

‘scaled' is the default
value when you input
CData values. If you

want to change the axes
CLim property, but want
your patch object to index
the entire colormap, use
‘CDataMapping', '‘direct’.

clear cdata
set(gca, 'CLim',[0 40])
cdata = [15 30 25 2 60;

12 23 40 13 26;

24 8 1 65 42];
set(p, 'FaceColor', 'flat',...
'CData',cdata,...
'CDataMapping', 'direct', ...
'EdgeColor','flat',...
'LineWidth',5)

Each vertex has a
single, unique color,
determined by truecolor
value input. Faces
each have a single,
unique color, but edges
may have 'flat' or
"interp' color.

FaceColor: 'flat'

FaceVertexCData:
m-by-n-by-3 matrix of
truecolor values, from 0
to 1

Color source: truecolor

CDataMapping: 'direct' or
'scaled’.

'scaled' is the default
value, but neither affects the
outcome.

clear cdata
cdata(:,:,1) = [0

o
=
o
o
2

cdata(:,:,2) = [0 0 0 0 0.8;
1110.20.6;
100 0.4 0];

cdata(:,:,3) = [1 110 0.8;
0100.20.6;
101 0.40];

set(p, 'FaceColor','flat',...

‘Chata',cdata,...

'EdgeColor', 'interp',...

'LineWidth',5)

2-2918

patch

Desired Look

Parameter Values

Sample Code

Each vertex has a single,
unique color, indexed
from a selected section
of the colormap. Edges
may have 'flat' or
"interp' color.

® FaceColor: 'interp'

® FaceVertexCData: m-by-n
matrix of index values

® (Color source: A selected
portion of the colormap

® CDataMapping: 'scaled’

clear cdata

set(gca, 'CLim',[0 40])

cdata = [15 30 25 2 60;
12 23 40 13 26;
24 8 1 65 42];

set(p, 'FaceColor', 'interp',...

'CData',cdata,...
'EdgeColor', 'flat',...
'LineWidth',5...
'CDataMapping', 'scaled')

Each vertex has a
single, unique color,
indexed from the
whole colormap. Edges
may have 'flat' or
"interp' color.

4

® FaceColor: '"interp'

® FaceVertexCData: m-by-n
matrix of index values

® (Color source: colormap
® CDataMapping: 'direct'

‘scaled' is the default
value when you input
CData values. If you
want to change the axes
CLim property, but want
your patch object to index
the entire colormap, use

'CDataMapping', 'direct"'.

clear cdata

set(gca, 'CLim',[0 40])

cdata = [15 30 25 2 60;
12 23 40 13 26;
24 8 1 65 42];

set(p, 'FaceColor', 'interp',...

'Chata',cdata,...
'ChataMapping', 'direct',...
'EdgeColor','flat',...
'LineWidth',5)

Each vertex has a
single, unique color,
determined by truecolor
value input. Edges

® FaceColor: '"interp'

® FaceVertexCData:
m-by-n-by-3 matrix of

clear cdata
cdata(:,:,1) = [0.8 0.1 0.2
0.9 0.3 1;

2-2919

patch

Desired Look Parameter Values Sample Code

may have 'flat' or truecolor values, from 0 0.1 0.5 0.9;
‘interp' color. to 1 0.9 1 0.5;

. e Color source: truecolor 2o (b oLl

’ ® CDataMapping: 'direct' or cdata(:,:,2) =[0.1 0.6 0.7;

/ 'scaled'. 0.4 0.1 0.7;
. 0.9 0.8 0.3;

'scaled' is the default

) - “"w- value, but neither affects the 0.70.90.6;
’ “ 0.9 0.6 0.1];
, outcome.

% ' 2 7

cdata(:,:,3) =[0.7 0.8 0.4;
0.1 0.6 0.3;
0.2 0.3 0.7;
0.0 0.9 0.7;
0.0 0.0 0.1];
set(p, 'FaceColor', 'interp',...
'CData',cdata,...
'EdgeColor', 'interp',...
'LineWidth',5)

See Also area | caxis | fill | fill3 | isosurface | surface | FaceColor |
CData | CDataMapping | FaceVertexCData | Patch Properties

Tutorials + “Creating 3-D Models with Patches”

2-2920

Patch Properties

Purpose

Creating
Patch
Obijects

Modifying
Properties

Patch
Property
Descriptions

Patch properties

Use patch to create patch objects.

You can set and query graphics object properties in two ways:

¢ “The Property Editor” is an interactive tool that enables you to see
and change object property values.

® The set and get commands enable you to set and query the values of
properties.

To change the default values of properties, see “Setting Default Property
Values”.

See “Core Graphics Objects” for general information about this type
of object.

This section lists property names along with the type of values each
accepts. Curly braces {} enclose default values.

AlphaDataMapping
none| {scaled} | direct

Transparency mapping method. This property determines how
the MATLAB software interprets indexed alpha data. This
property can be any of the following:

® none — The transparency values of FaceVertexAlphaData are
between 0 and 1 or are clamped to this range.

¢ scaled — Transform the FaceVertexAlphaData to span the
portion of the alphamap indicated by the axes ALim property,
linearly mapping data values to alpha values. (scaled is the
default)

2-2921

../ref/axes_props.html#ALim

Patch Properties

e direct — Use the FaceVertexAlphaData as indices directly
into the alphamap. When not scaled, the data are usually
integer values ranging from 1 to length(alphamap). MATLAB
maps values less than 1 to the first alpha value in the
alphamap, and values greater than length(alphamap)
to the last alpha value in the alphamap. Values with a
decimal portion are fixed to the nearest lower integer. If
FaceVertexAlphaData is an array of uint8 integers, then the
indexing begins at 0 (i.e., MATLAB maps a value of 0 to the
first alpha value in the alphamap).

AmbientStrength

scalar >=0and <=1

Strength of ambient light. This property sets the strength of
the ambient light, which is a nondirectional light source that
illuminates the entire scene. You must have at least one visible
light object in the axes for the ambient light to be visible. The
axes AmbientColor property sets the color of the ambient light,
which 1s therefore the same on all objects in the axes.

You can also set the strength of the diffuse and specular
contribution of light objects. See the DiffuseStrength and
SpecularStrength properties.

Annotation

2-2922

hg.Annotation object Read Only

Conirol the display of patch objects in legends. The Annotation
property enables you to specify whether this patch object is
represented in a figure legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Patch Properties

Once you have obtained the hg.LegendEntry object, you can set
its IconDisplayStyle property to control whether the patch
object 1s displayed in a figure legend:

IconDispIayStyIé Purpose

Value

on Represent this patch object in a legend
(default)

off Do not include this patch object in a legend

children Same as on because patch objects do not
have children

Setting the IconDisplayStyle property

These commands set the IconDisplayStyle of a graphics object
with handle hobj to off:

hAnnotation = get(hobj, 'Annotation');
hLegendEntry = get(hAnnotation', 'LegendInformation');
set(hLegendEntry, 'IconDisplayStyle', 'off"')

Using the IconDisplayStyle property

See “Controlling Legends” for more information and examples.

Selecting which objects to display in legend

Some graphics functions create multiple objects. For example,
contour3 uses patch objects to create a 3D contour graph. You
can use the Annotation property set select a subset of the objects
for display in the legend.

[X,Y] = meshgrid(-2:.1:2);
[Cm hC] = contour3(X.*exp(-X."2-Y."2));
hA = get(hC, 'Annotation');
hLL = get([hA{:}], 'LegendInformation');

2-2923

Patch Properties

% Set the IconDisplayStyle property to display

% the first, fifth, and ninth patch in the legend

set([hLL{:}],{ 'IconDisplayStyle'},...
{'on','off','off', 'off','on', 'off', 'off', 'off','on'}")

% Assign DisplayNames for the three patch

that are displayed in the legend

set(hC([1,5,9]),{'DisplayName'},{ 'bottom', 'middle', 'top'}")

legend show

BackFacelLighting
unlit | 1lit | {reverselit}

Face lighting control. This property determines how faces are lit
when their vertex normals point away from the camera:

® unlit — Face is not lit.
e 1it — Face is lit in normal way.

® reverselit — Face is lit as if the vertex pointed towards the
camera.

This property is useful for discriminating between the internal
and external surfaces of an object. See the Using MATLAB
Graphics manual for an example.

BeingDeleted
on | {off} Read Only

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in

the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property) It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions

that act on a number of different objects. These functions may not
need to perform actions on objects that are going to be deleted,

2-2924

../ref/patch_props.html#DeleteFcn

Patch Properties

and therefore, can check the object’s BeingDeleted property
before acting.

BusyAction
cancel | {queue}

Callback routine interruption. The BusyAction property enables
you to control how MATLAB handles events that potentially
interrupt executing callback routines. If there is a callback
routine executing, callback routines invoked subsequently always
attempt to interrupt it. If the Interruptible property of the
object whose callback i1s executing is set to on (the default), then
interruption occurs at the next point where the event queue is
processed. If the Interruptible property is off, the BusyAction
property (of the object owning the executing callback) determines
how MATLAB handles the event. The choices are

e cancel — Discard the event that attempted to execute a second
callback routine.

® queue — Queue the event that attempted to execute a second
callback routine until the current callback finishes.

ButtonDownFcn
function handle, cell array containing function handle and
additional arguments, or string (not recommended)

Button press callback routine. A callback routine that executes
whenever you press a mouse button while the pointer is over the
patch object.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

Set this property to a function handle that references the callback.
You can also use a string that is a valid MATLAB expression

or the name of a MATLAB file. The expressions execute in the
MATLAB workspace.

2-2925

Patch Properties

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

CDhata
scalar, vector, or matrix

Patch colors. This property specifies the color of the patch. You
can specify color for each vertex, each face, or a single color for
the entire patch. The way MATLAB interprets CData depends
on the type of data supplied. The data can be numeric values
that are scaled to map linearly into the current colormap, integer
values that are used directly as indices into the current colormap,
or arrays of RGB values. RGB values are not mapped into the
current colormap, but interpreted as the colors defined. On true
color systems, MATLAB uses the actual colors defined by the
RGB triples.

The following two diagrams illustrate the dimensions of CData
with respect to the coordinate data arrays, XData, YData, and
ZData. The first diagram illustrates the use of indexed color.

Single Color One Color One Color
Per Face Per Vertex
Coata CData
I:‘ ﬁ %Data
tx,V,z{pata TX,V,Z]Data

F|F|F

[X,Y,Z]Data

2-2926

Patch Properties

The second diagram illustrates the use of true color. True
color requires m-by-n-by-3 arrays to define red, green, and blue
components for each color.

Single Color One Color Omne Color
Per Face Per Vertex

CData

Tx,¥,zData

L 142131 4] 5] Tx,¥,z]pata

Note that if CData contains NaNs, MATLAB does not color the
faces.

See also the Faces, Vertices, and FaceVertexCData properties
for an alternative method of patch definition.

CDataMapping
{scaled} | direct

Direct or scaled color mapping. This property determines how
MATLAB interprets indexed color data used to color the patch.
(If you use true color specification for CData or FaceVertexCData,
this property has no effect.)

¢ scaled — Transform the color data to span the portion of
the colormap indicated by the axes CLim property, linearly

2-2927

Patch Properties

mapping data values to colors. See the caxis command for
more information on this mapping.

e direct — Use the color data as indices directly into the
colormap. When not scaled, the data are usually integer values
ranging from 1 to length(colormap). MATLAB maps values
less than 1 to the first color in the colormap, and values greater
than length(colormap) to the last color in the colormap.
Values with a decimal portion are fixed to the nearest lower
integer.

Children
matrix of handles

Always the empty matrix; patch objects have no children.

Clipping
{on} | off

Clipping to axes rectangle. When Clipping is on, MATLAB does
not display any portion of the patch outside the axes rectangle.

CreateFcn
string or function handle

Callback routine executed during object creation. This property

defines a callback routine that executes when MATLAB creates a
patch object. You must define this property as a default value for
patches or in a call to the patch function that creates a new object.

For example, the following statement creates a patch (assuming
X, Y, z, and ¢ are defined), and executes the function referenced by
the function handle @myCreateFcn.

patch(x,y,z,c, 'CreateFcn',@myCreateFcn)

MATLAB executes the create function after setting all properties
for the patch created. Setting this property on an existing patch
object has no effect.

2-2928

Patch Properties

The handle of the object whose CreateFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

DeleteFcn
string or function handle

Delete patch callback routine. A callback routine that executes
when you delete the patch object (for example, when you issue a
delete command or clear the axes (cla) or figure (c1f) containing
the patch). MATLAB executes the routine before deleting the
object’s properties so these values are available to the callback
routine.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

See Function Handle Callbacks for information on how to use
function handles to define the callback function.

DiffuseStrength
scalar >= 0 and <=1

Intensity of diffuse light. This property sets the intensity of the
diffuse component of the light falling on the patch. Diffuse light
comes from light objects in the axes.

You can also set the intensity of the ambient and specular
components of the light on the patch object. See the
AmbientStrength and SpecularStrength properties.

DisplayName
string (default is empty string)

2-2929

Patch Properties

String used by legend for this patch object. The legend function
uses the string defined by the DisplayName property to label this
patch object in the legend.

e If you specify string arguments with the legend function,
DisplayName is set to this patch object’s corresponding string
and that string is used for the legend.

e If DisplayName is empty, legend creates a string of the form,
['data' n], where n 1s the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

¢ Ifyou edit the string directly in an existing legend, DisplayName
is set to the edited string.

¢ If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

¢ To add programmatically a legend that uses the DisplayName
string, call legend with the toggle or show option.

See “Controlling Legends” for more examples.

EdgeAlpha

2-2930

{scalar = 1} | flat | interp

Transparency of the edges of patch faces. This property can be
any of the following:

e gcalar — A single non-NaN scalar value between 0 and 1
that controls the transparency of all the edges of the object.
1 (the default) means fully opaque and 0 means completely
transparent.

e flat — The alpha data (FaceVertexAlphaData) of each vertex
controls the transparency of the edge that follows it.

Patch Properties

e interp — Linear interpolation of the alpha data
(FaceVertexAlphaData) at each vertex determines the
transparency of the edge.

Note that you cannot specify flat or interp EdgeAlpha without
first setting FaceVertexAlphaData to a matrix containing one
alpha value per face (flat) or one alpha value per vertex (interp).

EdgeColor
{ColorSpec} | none | flat | interp

Color of the patch edge. This property determines how MATLAB
colors the edges of the individual faces that make up the patch.

e ColorSpec — A three-element RGB vector or one of the
MATLAB predefined names, specifying a single color for
edges. The default edge color is black. See ColorSpec for more
information on specifying color.

®* none — Edges are not drawn.

e flat — The color of each vertex controls the color of the edge
that follows it. This means flat edge coloring is dependent on
the order in which you specify the vertices:

——

—-—

Vertex controlling the /
color of the following edge

® interp— Linearinterpolation of the CData or FaceVertexCData
values at the vertices determines the edge color.

EdgelLighting
{none} | flat | gouraud | phong

2-2931

Patch Properties

2-2932

Algorithm used for lighting calculations. This property selects the
algorithm used to calculate the effect of light objects on patch
edges. Choices are

none — Lights do not affect the edges of this object.

flat — The effect of light objects is uniform across each edge
of the patch.

gouraud — The effect of light objects is calculated at the
vertices and then linearly interpolated across the edge lines.

phong — The effect of light objects is determined by
interpolating the vertex normals across each edge line and
calculating the reflectance at each pixel. Phong lighting
generally produces better results than Gouraud lighting, but
takes longer to render.

EraseMode
{normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses
to draw and erase patch objects. Alternative erase modes are
useful in creating animated sequences, where control of the way
individual objects redraw is necessary to improve performance
and obtain the desired effect.

normal — Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all
objects are rendered correctly. This mode produces the most
accurate picture, but is the slowest. The other modes are faster,
but do not perform a complete redraw and are therefore less
accurate.

none — Do not erase the patch when it is moved or destroyed.
While the object is still visible on the screen after erasing with
EraseMode none, you cannot print it because MATLAB stores

no information about its former location.

xor — Draw and erase the patch by performing an exclusive
OR (XOR) with each pixel index of the screen behind it. Erasing

Patch Properties

the patch does not damage the color of the objects behind it.
However, patch color depends on the color of the screen behind
it and is correctly colored only when over the axes background
Color, or the figure background Color if the axes Color is set
to none.

® packground — Erase the patch by drawing it in the axes
background Color, or the figure background Color if the axes
Color is set to none. This damages objects that are behind the
erased patch, but the patch is always properly colored.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all
objects 1s normal. This means graphics objects created

with EraseMode set to none, xor, or background can look
different on screen than on paper. On screen, MATLAB may
mathematically combine layers of colors (for example, perform
an XOR of a pixel color with that of the pixel behind it) and
ignore three-dimensional sorting to obtain greater rendering
speed. However, these techniques are not applied to the printed
output.

You can use the MATLAB getframe command or other screen
capture application to create an image of a figure containing
nonnormal mode objects.

FaceAlpha
{scalar = 1} | flat | interp

Transparency of the patch face. This property can be any of the
following:

® A scalar — A single non-NaN value between 0 and 1 that
controls the transparency of all the faces of the object. 1
(the default) means fully opaque and 0 means completely
transparent (invisible).

2-2933

Patch Properties

2-2934

e flat — The values of the alpha data (FaceVertexAlphaData)
determine the transparency for each face. The alpha data at
the first vertex determines the transparency of the entire face.

e interp — Bilinear interpolation of the alpha data
(FaceVertexAlphaData) at each vertex determines the
transparency of each face.

Note that you cannot specify flat or interp FaceAlpha without
first setting FaceVertexAlphaData to a matrix containing one
alpha value per face (flat) or one alpha value per vertex (interp).

FaceColor
{ColorSpec} | none | flat | interp

Color of the patch face. This property can be any of the following:

e ColorSpec — A three-element RGB vector or one of the
MATLAB predefined names, specifying a single color for faces.
See ColorSpec for more information on specifying color.

® none — Do not draw faces. Note that edges are drawn
independently of faces.

e flat — The CData or FaceVertexCData property must contain
one value per face and determines the color for each face in the
patch. The color data at the first vertex determines the color
of the entire face.

e interp — Bilinear interpolation of the color at each
vertex determines the coloring of each face. The CData or
FaceVertexCData property must contain one value per vertex.

FaceLighting
{none} | flat | gouraud | phong

Algorithm used for lighting calculations. This property selects the
algorithm used to calculate the effect of 1ight objects on patch
faces. Choices are

® none — Lights do not affect the faces of this object.

Patch Properties

Faces

e flat — The effect of light objects is uniform across the faces of
the patch. Select this choice to view faceted objects.

e gouraud — The effect of light objects is calculated at the
vertices and then linearly interpolated across the faces. Select
this choice to view curved surfaces.

¢ phong — The effect of light objects is determined by
interpolating the vertex normals across each face and
calculating the reflectance at each pixel. Select this choice to
view curved surfaces. Phong lighting generally produces better
results than Gouraud lighting, but takes longer to render.

m-by-n matrix

Vertex connection defining each face. This property is the
connection matrix specifying which vertices in the Vertices
property are connected. The Faces matrix defines m faces with
up to n vertices each. Each row designates the connections for a
single face, and the number of elements in that row that are not
NaN defines the number of vertices for that face.

The Faces and Vertices properties provide an alternative way
to specify a patch that can be more efficient than using x, y, and
z coordinates in most cases. For example, consider the following
patch. It is composed of eight triangular faces defined by nine
vertices.

2-2935

Patch Properties

Faces property Vertices property

Vy Vg Vg
A Fy (Vi Ve [Ve| vi[xi|v| 74
L F Fo [V1|V5|Va| Vo |X,| Yy| Zy
: Fg Fa Fs ?2'\'% Ve| V3 |X3| Yy 2
Vg, Vs ve Fe[ValVs[Val v (x,|v,|z,
i Fg | Vg |V7| Vs Vo %, | v.| 2
o Fq Fs Fg | Vy|Vg Vg Ve | Xe| Ye| Ze
oA4aF
MIII? S QEEE Vi [%[¥ 7,
V1 a 0z 04 0.8 (-} \}2 12 1.4 18 18 2V3 VS X.S YS ZS
Vg |Xg| Yo| Zo

The corresponding Faces and Vertices properties are shown to
the right of the patch. Note how some faces share vertices with
other faces. For example, the fifth vertex (V5) is used six times,
once each by faces one, two, and three and six, seven, and eight.
Without sharing vertices, this same patch requires 24 vertex
definitions.

FaceVertexAlphaData
m-by-1 matrix

Face and vertex transparency data. The FaceVertexAlphaData
property specifies the transparency of patches that have been
defined by the Faces and Vertices properties. The interpretation
of the values specified for FaceVertexAlphaData depends on the
dimensions of the data.

FaceVertexAlphaData can be one of the following:

¢ A single value, which applies the same transparency to the
entire patch. The FaceAlpha property must be set to flat.

¢ An m-by-1 matrix (where m is the number of rows in the Faces
property), which specifies one transparency value per face. The
FaceAlpha property must be set to flat.

2-2936

Patch Properties

¢ An m-by-1 matrix (where m is the number of rows in the
Vertices property), which specifies one transparency value per
vertex. The FaceAlpha property must be set to interp.

The AlphaDataMapping property determines how MATLAB
interprets the FaceVertexAlphaData property values.
FaceVertexCData

matrix

Face and vertex colors. The FaceVertexCData property specifies
the color of patches defined by the Faces and Vertices properties.
You must also set the values of the FaceColor, EdgeColor,
MarkerFaceColor, or MarkerEdgeColor appropriately. The
interpretation of the values specified for FaceVertexCData
depends on the dimensions of the data.

For indexed colors, FaceVertexCData can be

® A single value, which applies a single color to the entire patch

® An n-by-1 matrix, where n is the number of rows in the Faces
property, which specifies one color per face

® An n-by-1 matrix, where n is the number of rows in the
Vertices property, which specifies one color per vertex

For true colors, FaceVertexCData can be

® A 1-by-3 matrix, which applies a single color to the entire patch

® An n-by-3 matrix, where n is the number of rows in the Faces
property, which specifies one color per face

® An n-by-3 matrix, where n is the number of rows in the

Vertices property, which specifies one color per vertex

The following diagram illustrates the various forms of the
FaceVertexCData property for a patch having eight faces and
nine vertices. The CDataMapping property determines how

2-2937

Patch Properties

MATLAB interprets the FaceVertexCData property when you
specify indexed colors.

FaceVertexCData

Indexed True color
One color One color One color One color
Single coler per face per vertex Single coler per face per veltex
Co Cy Ry |Ga|By| |Ry| Gy |Byg
E & R3|Ggz|Bs| |Ra| Ga|Ba
& & Ry |Gy|By| |Ry|Gy|By
Cs Cs Rs|Gs|Bs| |R;|Gs|Bs
C_s C_s Ry |Gg|Bg| |Rg| Gg|Bg
Cq Cq R7|Gy7|B7| |R7| Gy| By
& & Rg |Gg|Bg| |Rs| Gg|Bs
Co Rg| By | By
HandleVisibility

2-2938

{on} | callback | off

Control access to object’s handle by command-line users and GUIs.
This property determines when an object’s handle is visible in

its parent’s list of children. HandleVisibility is useful for
preventing command-line users from accidentally drawing into or
deleting a figure that contains only user interface devices (such as
a dialog box).

Handles are always visible when HandleVisibility is on.
Setting HandleVisibility to callback causes handles to be

visible from within callback routines or functions invoked by
callback routines, but not from within functions invoked from

Patch Properties

the command line. This provides a means to protect GUIs from
command-line users, while allowing callback routines to have
complete access to object handles.

Setting HandleVisibility to off makes handles invisible at all
times. This may be necessary when a callback routine invokes

a function that might potentially damage the GUI (such as
evaluating a user-typed string), and so temporarily hides its own
handles during the execution of that function.

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, cl1f, and close

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties).

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties, and pass it to any
function that operates on handles.

HitTest
{on} | off

Selectable by mouse click. HitTest determines if the patch can
become the current object (as returned by the gco command and
the figure CurrentObject property) as a result of a mouse click on

2-2939

Patch Properties

the patch. If HitTest is of f, clicking the patch selects the object
below it (which may be the axes containing it).

Interruptible
{fon} | off

Callback routine interruption mode. The Interruptible property
controls whether a patch callback routine can be interrupted by
subsequently invoked callback routines. Only callback routines
defined for the ButtonDownFcn are affected by the Interruptible
property. MATLAB checks for events that can interrupt a callback
routine only when it encounters a drawnow, figure, getframe,

or pause command in the routine. See the BusyAction property
for related information.

LineStyle
{-Y1| --1: | -. | none

Edge linestyle. This property specifies the line style of the patch
edges. The following table lists the available line styles.

Symbol Line Style

= Solid line (default)
o Dashed line
Dotted line

-. Dash-dot line

none No line

You can use LineStyle none when you want to place a marker
at each point but do not want the points connected with a line
(see the Marker property).

LineWidth
scalar

2-2940

Patch Properties

Edge line width. The width, in points, of the patch edges (1 point
=1/, inch). The default LineWidth is 0.5 points.

Marker

character (see table)

Marker symbol. The Marker property specifies marks that
locate vertices. You can set values for the Marker property
independently from the LineStyle property. The following tables

lists the available markers.

Marker Specifier Description
+ Plus sign
0 Circle
* Asterisk
Point
X Cross
s Square
d Diamond
” Upward-pointing triangle
v Downward-pointing triangle
> Right-pointing triangle
< Left-pointing triangle
p Five-pointed star (pentagram)
h Six-pointed star (hexagram)
none No marker (default)
MarkerEdgeColor

ColorSpec | none | {auto} | flat

2-2941

Patch Properties

2-2942

Marker edge color. The color of the marker or the edge color for
filled markers (circle, square, diamond, pentagram, hexagram,
and the four triangles).

ColorSpec — Defines the color to use.

none — Specifies no color, which makes nonfilled markers
invisible.

auto — Sets MarkerEdgeColor to the same color as the
EdgeColor property.

flat — The color of each vertex controls the color of the marker
that denotes it.

MarkerFaceColor
ColorSpec | {none} | auto | flat

Marker face color. The fill color for markers that are closed shapes
(circle, square, diamond, pentagram, hexagram, and the four
triangles).

ColorSpec — Defines the color to use.

none — Makes the interior of the marker transparent, allowing
the background to show through.

auto — Sets the fill color to the axes color, or the figure color,
if the axes Color property is set to none.

flat — The color of each vertex controls the color of the marker
that denotes it.

MarkerSize
size in points

Marker size. A scalar specifying the size of the marker, in points.
The default value for MarkerSize is 6 points (1 point = '/,
inch). Note that MATLAB draws the point marker at 1/3 of the
specified size.

Patch Properties

NormalMode
{auto} | manual

MATLAB generated or user-specified normal vectors. When this
property is auto, MATLAB calculates vertex normals based on
the coordinate data. If you specify your own vertex normals,
MATLAB sets this property to manual and does not generate its
own data. See also the VertexNormals property.

Parent
handle of axes, hggroup, or hgtransform

Parent of patch object. This property contains the handle of the
patch object’s parent. The parent of a patch object is the axes,
hggroup, or hgtransform object that contains it.

See “Objects That Can Contain Other Objects” for more
information on parenting graphics objects.

Selected
on | {off}

Is object selected? When this property is on, MATLAB displays
selection handles or a dashed box (depending on the number of
faces) if the SelectionHighlight property is also on. You can, for
example, define the ButtonDownFcn to set this property, allowing
users to select the object with the mouse.

SelectionHighlight
{on} | off
Objects are highlighted when selected. When the Selected
property is on, MATLAB indicates the selected state by
¢ Drawing handles at each vertex for a single-faced patch

¢ Drawing a dashed bounding box for a multifaced patch

2-2943

Patch Properties

2-2944

When SelectionHighlight is off, MATLAB does not draw the
handles.

SpecularColorReflectance

scalar in the range 0 to 1

Color of specularly reflected light. When this property is 0, the
color of the specularly reflected light depends on both the color of
the object from which it reflects and the color of the light source.
When set to 1, the color of the specularly reflected light depends
only on the color of the light source (i.e., the light object Color
property). The proportions vary linearly for values in between.

SpecularExponent

scalar >=1

Harshness of specular reflection. This property controls the size
of the specular spot. Most materials have exponents in the range
of 5 to 20.

SpecularStrength

Tag

scalar >=0and <=1

Intensity of specular light. This property sets the intensity of the
specular component of the light falling on the patch. Specular
light comes from light objects in the axes.

You can also set the intensity of the ambient and diffuse
components of the light on the patch object. See the
AmbientStrength and DiffuseStrength properties

string

User-specified object label. The Tag property provides a means

to identify graphics objects with a user-specified label. This is
particularly useful when you are constructing interactive graphics
programs that would otherwise need to define object handles as

Patch Properties

Type

global variables or pass them as arguments between callback
routines.

For example, suppose you use patch objects to create borders for a
group of uicontrol objects and want to change the color of the
borders in a uicontrol’s callback routine. You can specify a Tag
with the patch definition

patch(X,Y, 'k','Tag', 'PatchBorder')

Then use findobj in the uicontrol’s callback routine to obtain the
handle of the patch and set its FaceColor property.

set(findobj('Tag', 'PatchBorder'), 'FaceColor','w")

string (read only)

Class of the graphics object. For patch objects, Type is always
the string 'patch'.

UIContextMenu

handle of a uicontextmenu object

Associate a context menu with the patch. Assign this property
the handle of a uicontextmenu object created in the same figure
as the patch. Use the uicontextmenu function to create the
context menu. MATLAB displays the context menu whenever
you right-click over the patch.

UserData

matrix

User-specified data. Any matrix you want to associate with the
patch object. MATLAB does not use this data, but you can access
it using set and get.

VertexNormals

matrix

2-2945

Patch Properties

Surface normal vectors. This property contains the vertex normals
for the patch. MATLAB generates this data to perform lighting
calculations. You can supply your own vertex normal data, even
if it does not match the coordinate data. This can be useful to
produce interesting lighting effects.

Vertices

matrix

Vertex coordinates. A matrix containing the x-, y-, z-coordinates
for each vertex. See the Faces property for more information.

Visible

{on} | off

Patch object visibility. By default, all patches are visible. When
set to off, the patch is not visible, but still exists, and you can
query and set its properties.

XData

vector or matrix

X-coordinates. The x-coordinates of the patch vertices. If XData
1s a matrix, each column represents the x-coordinates of a single
face of the patch. In this case, XData, YData, and ZData must
have the same dimensions.

YData

vector or matrix

Y-coordinates. The y-coordinates of the patch vertices. If YData
1s a matrix, each column represents the y-coordinates of a single
face of the patch. In this case, XData, YData, and ZData must
have the same dimensions.

ZData

2-2946

vector or matrix

Patch Properties

Z-coordinates. The z-coordinates of the patch vertices. If ZData
1s a matrix, each column represents the z-coordinates of a single
face of the patch. In this case, XData, YData, and ZData must
have the same dimensions.

See Also patch

2-2947

path

Purpose

GUI
Alternatives

Syntax

Description

Examples

2-2948

View or change search path

As an alternative to the path function, use the Set Path dialog box.

path
path('newpath')
path(path, 'newpath')
path('newpath',path)
p = path

path displays the MATLAB search path, which is stored in pathdef.m.

path('newpath') changes the search path to newpath, where newpath
is a string array of folders.

path(path, 'newpath') adds the newpath folder to the end of the search
path. If newpath is already on the search path, then path(path,
'newpath') moves newpath to the end of the search path.

path('newpath',path) adds the newpath folder to the top of the search
path. If newpath is already on the search path, then path('newpath',
path) moves newpath to the top of the search path. To add multiple
folders in one statement, instead use addpath.

p = path returns the search path to string variable p.

Display the search path:
path

MATLAB returns, for example
MATLABPATH

H:\My Documents\MATLAB

C:\Program Files\MATLAB\R200nn\toolbox\matlab\general
C:\Program Files\MATLAB\R200nn\toolbox\matlab\ops
C:\Program Files\MATLAB\R200nn\toolbox\matlab\lang

path

C:\Program Files\MATLAB\R200nn\toolbox\matlab\elmat
C:\Program Files\MATLAB\R200nn\toolbox\matlab\elfun

R200nn represents the folder for the MATLAB release, for example,
R2009b.

Add a new folder to the search path on Microsoft Windows platforms:

path(path, 'c:/tools/goodstuff')

2-2949

path

Add a new folder to the search path on UNIX'3 platforms:

path(path,'/home/tools/goodstuff')

Temporarily add the folder my files to the search path, run
my_functioninmy_ files, then restore the previous search path:

p = path
path('my_files")
my_function
path(p)

See Also addpath, cd, dir, genpath, matlabroot, pathsep, pathtool, rehash,
restoredefaultpath, rmpath, savepath, startup, userpath, what

Topics in the User Guide:

e “Using the MATLAB Search Path”
e “Making Files and Folders Accessible to MATLAB”

13. UNIX is a registered trademark of The Open Group in the United States and
other countries.

2-2950

path2rc

Purpose Save current search path to pathdef.m file
Syntax path2rc
Description path2rc runs savepath. The savepath function is replacing path2rc.

Use savepath instead of path2rc and replace instances of path2rc
with savepath.

2-2951

pathsep

Purpose Search path separator for current platform
Syntax c = pathsep
Descripl‘ion ¢ = pathsep returns the search path separator character for this

platform. The search path separator is the character that separates
path names in the pathdef.mfile, as returned by the path function. The
character is a semicolon (;). For versions of MATLAB software earlier
than version 7.7 (R2008b), the character on UNIX!* platforms was a
colon (:). Use pathsep to work programmatically with the content of
the search path file.

See Also fileparts, filesep, fullfile, path
“Using the MATLAB Search Path”

14. UNIX is a registered trademark of The Open Group in the United States and
other countries.

2-2952

pathtool

Purpose

GUI
Alternatives

Syntax

Description

) Set Path

Open Set Path dialog box to view and change search path

As an alternative to the pathtool function, select File > Set Path

in the MATLAB desktop.

pathtool

pathtool opens the Set Path dialog box, a graphical user interface you
use to view and modify the MATLAB search path.

All changes take effect immeadiately.

Add Falder...

Add with SubFolders. .. |

Mowe ko Top

Maove Up

Move Down

Move bo Bokbom

Remove |

Save | Close

MATLAE search path:

=10 %

I HADocuments\MATLAE

I C:\Program Files\MATLAB\R2009btoolbox\matlab\general
I3 C:\Program Files\MATLAB\R2009b\toolbox\matlablops
I3 C:\Program Files\MATLAB\R2009b\toolbox\matlab\lang

3 C:\Program Files\MATLAB\R2009boolbox\matlablelmat
3 C:\Program Files\MATLAB\R2009b\oolbox\matlabirandfun

I C:\Program Files\MATLAB\R200%9b\taolbox\matlablelfun
3 C:\Program Files\MATLAB\R2009b\oolbox\matlab\specfun
I3 C:\Program Files\MATLAB\R2009btoolboximatlabimatfun
£ C:\Program Files\MATLAB\R2009boolbox\matlab\datafun
I3 C:\Program Files\MATLAB\R2009b\toolbox\matlab\polyfun
2 C:\Program Files\MATLAB\R200%b\toolbox\matlab\funfun
3 C:\Program Files\MATLAB\R2009b\oolbox\matlab\sparfun
I3 C:\Program Files\MATLAB\R2009 toolbox\matlab\scribe

Revert | Defaulk b Help |

[

2-2953

pathtool

See Also addpath, cd, dir, genpath, matlabroot, path, pathsep, rehash,
restoredefaultpath, rmpath, savepath, startup, what

“Using the MATLAB Search Path”

2-2954

pause

Purpose

Syntax

Description

Halt execution temporarily

pause
pause(n)

pause on

pause off

pause query

state = pause('query')
oldstate = pause(newstate)

pause, by itself, causes the currently executing function to stop and wait
for you to press any key before continuing. Pausing must be enabled for
this to take effect. (See pause on, below). pause without arguments
also blocks execution of Simulink models, but not repainting of them.

pause(n) pauses execution for n seconds before continuing, where n can
be any nonnegative real number. The resolution of the clock is platform
specific. A fractional pause of 0.01 seconds should be supported on most
platforms. Pausing must be enabled for this to take effect.

Typing pause (inf) puts you into an infinite loop. To return to the
MATLAB prompt, type Ctrl+C.

pause on enables the pausing of MATLAB execution via the pause and
pause(n) commands. Pausing remains enabled until you enter pause
off in your function or at the command line.

pause off disables the pausing of MATLAB execution via the pause
and pause(n) commands. This allows normally interactive scripts to
run unattended. Pausing remains disabled until you enter pause on in
your function or at the command line, or start a new MATLAB session.

pause query displays 'on' if pausing is currently enabled. Otherwise,
it displays 'off'.

state = pause('query') returns 'on' in character array state if
pausing is currently enabled. Otherwise, the value of state is 'off'.

2-2955

pause

Remarks

See Also

2-2956

oldstate = pause(newstate), enables or disables pausing, depending
on the 'on' or 'off' value in newstate, and returns the former setting
(also either 'on' or 'off') in character array oldstate.

While MATLAB is paused, the following continue to execute:

¢ Repainting of figure windows, Simulink block diagrams, and Java
windows

e HG callbacks from figure windows

¢ Event handling from Java windows

keyboard, input, drawnow

pbaspect

Purpose

Syntax

Description

Remarks

Set or query plot box aspect ratio

pbaspect
pbaspect([aspect_ratio])
pbaspect('mode')
pbaspect('auto')
pbaspect('manual')
pbaspect(axes_handle,...)

The plot box aspect ratio determines the relative size of the x-, y-, and
z-axes.

pbaspect with no arguments returns the plot box aspect ratio of the
current axes.

pbaspect([aspect_ratio]) sets the plot box aspect ratio in the current
axes to the specified value. Specify the aspect ratio as three relative
values representing the ratio of the x-, y-, and z-axes size. For example,
a value of [1 1 1] (the default) means the plot box is a cube (although
with stretch-to-fill enabled, it may not appear as a cube). See Remarks.

pbaspect('mode') returns the current value of the plot box aspect ratio
mode, which can be either auto (the default) or manual. See Remarks.

pbaspect('auto') sets the plot box aspect ratio mode to auto.
pbaspect('manual') sets the plot box aspect ratio mode to manual.

pbaspect(axes_handle,...) performs the set or query on the axes
identified by the first argument, axes_handle. If you do not specify an
axes handle, pbaspect operates on the current axes.

pbaspect sets or queries values of the axes object PlotBoxAspectRatio
and PlotBoxAspectRatioMode properties.

When the plot box aspect ratio mode is auto, the MATLAB software
sets the ratio to [1 1 1], but may change it to accommodate manual
settings of the data aspect ratio, camera view angle, or axis limits. See
the axes DataAspectRatio property for a table listing the interactions
between various properties.

2-2957

pbaspect

Examples

2-2958

Setting a value for the plot box aspect ratio or setting the plot box
aspect ratio mode to manual disables the MATLAB stretch-to-fill feature
(stretching of the axes to fit the window). This means setting the plot
box aspect ratio to its current value,

pbaspect (pbaspect)

can cause a change in the way the graphs look. See the Remarks section
of the axes reference description, “Axes Aspect Ratio Properties” in the
3-D Visualization manual, and “Setting Aspect Ratio” in the MATLAB
Graphics manual for a discussion of stretch-to-fill.

The following surface plot of the function z = ye!=**~ ¥*)is useful
to 1llustrate the plot box aspect ratio. First plot the function over the
range -2<x<2,-2<y<2,

[x,y] = meshgrid([-2:.2:2]);
z = X.*exp(-x."2 - y."2);
surf(x,y,z)

pbaspect

-2 .z

Querying the plot box aspect ratio shows that the plot box is square.

pbaspect
ans =
1 1 1

It is also interesting to look at the data aspect ratio selected by
MATLAB.

daspect
ans =
4 4 A

To illustrate the interaction between the plot box and data aspect
ratios, set the data aspect ratioto [1 1 1] and again query the plot
box aspect ratio.

daspect([1 1 1])

2-2959

pbaspect

pbaspect
ans =
4 4 1

The plot box aspect ratio has changed to accommodate the specified
data aspect ratio. Now suppose you want the plot box aspect ratio to
be [1 1 1] as well.

pbaspect([1 1 1])

2-2960

pbaspect

-2 2

Notice how MATLAB changed the axes limits because of the constraints
introduced by specifying both the plot box and data aspect ratios.

You can also use pbaspect to disable stretch-to-fill. For example,
displaying two subplots in one figure can give surface plots a squashed
appearance. Disabling stretch-to-fill,

upper_plot = subplot(211);
surf(x,y,z)

lower_plot = subplot(212);
surf(x,y,z)

pbaspect (upper_plot, ‘manual’)

2-2961

pbaspect

See Also

2-2962

axis, daspect, x1im, ylim, z1lim

The axes properties DataAspectRatio, PlotBoxAspectRatio, XLim,
YLim, ZLim

Setting Aspect Ratio in the MATLAB Graphics manual

Axes Aspect Ratio Properties in the 3-D Visualization manual

Pcg

Purpose

Syntax

Description

Preconditioned conjugate gradients method

X = pcg(A,b)

pcg(A,b,tol)

pcg(A,b,tol,maxit)

pcg(A,b,tol,maxit,M)
pcg(A,b,tol,maxit,M1,M2)
pcg(A,b,tol,maxit,M1,M2,x0)

[x,flag] = pcg(A,b,...)

[x,flag,relres] = pcg(A,b,...)
[x,flag,relres,iter] = pcg(A,b,...)
[x,flag,relres,iter,resvec] = pcg(A,b,...)

X = pcg(A,b) attempts to solve the system of linear equations A*x=b
for x. The n-by-n coefficient matrix A must be symmetric and positive
definite, and should also be large and sparse. The column vector b must
have length n. A can be a function handle afun such that afun(x)
returns A*x. See Function Handles in the MATLAB Programming
documentation for more information.

“Parameterizing Functions”, in the MATLAB Mathematics
documentation, explains how to provide additional parameters to the
function afun, as well as the preconditioner function mfun described
below, if necessary.

If pcg converges, a message to that effect is displayed. If pcg fails to
converge after the maximum number of iterations or halts for any
reason, a warning message is printed displaying the relative residual
norm(b-A*x)/norm(b) and the iteration number at which the method
stopped or failed.

pcg(A,b,tol) specifies the tolerance of the method. If tol is [], then
pcg uses the default, 1e-6.

pcg(A,b,tol,maxit) specifies the maximum number of iterations. If
maxit is [], then pcg uses the default, min(n,20).

pcg(A,b,tol,maxit,M) and pcg(A,b,tol,maxit,M1,M2) use
symmetric positive definite preconditioner M or M = M1*M2 and

2-2963

pPcg

Examples

2-2964

effectively solve the system inv (M) *A*x = inv(M)*b for x. If Mis []
then pcg applies no preconditioner. M can be a function handle mfun
such that mfun(x) returns M\x.

pcg(A,b,tol,maxit,M1,M2,x0) specifies the initial guess. If x0is [],
then pcg uses the default, an all-zero vector.

[x,flag] = pcg(A,b,...) also returns a convergence flag.

Flag Convergence

0 pcg converged to the desired tolerance tol within maxit
iterations.

—_

pcg iterated maxit times but did not converge.

Preconditioner M was ill-conditioned.

pcg stagnated. (Two consecutive iterates were the same.)

£ I CS RN o)

One of the scalar quantities calculated during pcg became
too small or too large to continue computing.

Whenever flag is not 0, the solution x returned is that with minimal
norm residual computed over all the iterations. No messages are
displayed if the flag output is specified.

[x,flag,relres] = pcg(A,b,...) also returns the relative residual
norm(b-A*x)/norm(b). If flagis 0, relres <= tol.

[x,flag,relres,iter] = pcg(A,b,...) also returns the iteration
number at which x was computed, where 0 <= iter <= maxit.

[x,flag,relres,iter,resvec] = pcg(A,b,...) also returns a vector
of the residual norms at each iteration including norm(b-A*x0).

Example 1

nt = 21;

A = gallery('moler',nt);
b1 = A*ones(ni1,1);

tol = 1e-6;

Pcg

maxit = 15;
M = diag([10:-1:1 1 1:10]);
[x1,flag1,rr1,iter1,rv1] = pcg(A,b1,tol,maxit,M);

Alternatively, you can use the following parameterized matrix-vector
product function afun in place of the matrix A:

afun = @(x,n)gallery('moler',n)*x;

n2 = 21;

b2 = afun(ones(n2,1),n2);

[x2,flag2,rr2,iter2,rv2] = pcg(@(x)afun(x,n2),b2,tol,maxit,M);

Example 2
A delsq(numgrid('C',25));

b = ones(length(A),1);
[x,flag] = pcg(A,b)

flag is 1 because pcg does not converge to the default tolerance of 1e-6
within the default 20 iterations.

R = cholinc(A,1e-3);
[x2,flag2,relres2,iter2,resvec2] = pcg(A,b,1e-8,10,R',R)

flag2 is 0 because pcg converges to the tolerance of 1.2e-9 (the value of
relres2) at the sixth iteration (the value of iter2) when preconditioned
by the incomplete Cholesky factorization with a drop tolerance of 1e-3.
resvec2(1) = norm(b) and resvec2(7) = norm(b-A*x2). You can
follow the progress of pcg by plotting the relative residuals at each
iteration starting from the initial estimate (iterate number 0).

semilogy(0:iter2,resvec2/norm(b),'-0")
xlabel('iteration number')
ylabel('relative residual')

2-2965

pPcg

e laive resica |

1u 1 1 1

4] 1 2 3 4 5
iterafion number

See Also bicg, bicgstab, cgs, cholinc, gmres, 1sqr, minres, gmr, symmlq
function_handle (@), mldivide (\)

References [1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods, SIAM,
Philadelphia, 1994.

2-2966

pchip

Purpose

Syntax

Description

Piecewise Cubic Hermite Interpolating Polynomial (PCHIP)

yi = pchip(x,y,xi)
pp = pchip(x,y)

yi = pchip(x,y,xi) returns vector yi containing elements
corresponding to the elements of xi and determined by piecewise cubic
interpolation within vectors x and y. The vector x specifies the points
at which the data y is given. If y is a matrix, then the interpolation is
performed for each column of y and yi is length(xi)-by-size(y,2).

pp = pchip(x,y) returns a piecewise polynomial structure for use by
ppval. x can be a row or column vector. y is a row or column vector of
the same length as X, or a matrix with length(x) columns.

pchip finds values of an underlying interpolating function P(x) at
intermediate points, such that:

® On each subinterval x;, <x<x;,,1, P(x) is the cubic Hermite
interpolant to the given values and certain slopes at the two
endpoints.

e P(x) interpolates y, i.e., P(xj) =¥, and the first derivative P’(x) is

continuous. P”(x) is probably not continuous; there may be jumps

at the X

¢ The slopes at the x; are chosen in such a way that P(x) preserves
the shape of the data and respects monotonicity. This means that, on

intervals where the data are monotonic, so is P(x) ; at points where

the data has a local extremum, so does P(x) .

Note If y is a matrix, P(x) satisfies the above for each column of y.

2-2967

pchip

Remarks

Examples

2-2968

spline constructs S(x) in almost the same way pchip constructs P(x) .

However, spline chooses the slopes at the x j differently, namely to

make even S”(x) continuous. This has the following effects:

e spline produces a smoother result, i.e. S”(x) is continuous.

® spline produces a more accurate result if the data consists of values
of a smooth function.

® pchip has no overshoots and less oscillation if the data are not
smooth.

® pchip is less expensive to set up.

* The two are equally expensive to evaluate.

X = -3:3;
y=1[-1-1-10111];

t = -3:.01:3;

p = pchip(x,y,t);

s = spline(x,y,t);

plO (X,y,'Ol,t,p;"';tysy"-')

legend('data', 'pchip', 'spline',4)

See Also

References

15 T T T T T
1_ - HHD-\-..___ ..‘_'-J
0.5k .
or 4
-0.5F .
B .
o data
— pechip
-—- gpline
_15 1 1 1 1 1
-3 -2 -1 0 1 2 3

interpt, spline, ppval

[1] Fritsch, F. N. and R. E. Carlson, "Monotone Piecewise Cubic
Interpolation," SIAM J. Numerical Analysis, Vol. 17, 1980, pp.238-246.

[2] Kahaner, David, Cleve Moler, Stephen Nash, Numerical Methods
and Software, Prentice Hall, 1988.

2-2969

pcode

Purpose

Syntax

Description

Examples

2-2970

Create protected function file

pcode fun

pcode *.m

pcode funi fun2 ...
pcode... -inplace

pcode fun obfuscates (i.e., shrouds) the code in fun.m for the purpose of
protecting its proprietary source code. The encrypted code is written

to pcode file fun.p in the current folder. The original .m file can be
anywhere on the search path.

If the input file resides within a package and/or class folder, then the
same package and class folders are applied to the output file. See
example 2, below.

pcode *.m creates pcode files for all files in the current folder that have
a .m file extension.

pcode funi fun2 ... creates pcode files for the listed functions.

pcode... -inplace creates pcode files in the same folder as the script
or function files. An error occurs if the files cannot be created.

See “Protecting Your Source Code” in the MATLAB Programming
Fundamentals documentation for more information.

Example 1 - PCoding Multiple Files

Convert selected files from the sparfun folder into pcode files:

dir([matlabroot '\toolbox\matlab\sparfun\spr*.m'])
sprand.m sprandn.m sprandsym.m sprank.m

cd C:\work\pcodetest
pcode([matlabroot '\toolbox\matlab\sparfun\spr*.m'])

dir

pcode

sprand.p sprandn.p sprandsym.p sprank.p

Example 2 - Parsing Files That Belong to a Package and/or
Class

This example takes an input file that is part of a package and class, and
generates a pcode file for it in a separate folder. File test.m resides in
the following package and class folder:

C:\work\+mypkg\@char\test.m

Set your current working folder to empty folder math\pcodetest. This
is where you will generate the pcode file. This folder has no package or
class structure associated with it at this time:

cd C:\math\pcodetest
dir

Generate pcode for test.m. Because the input file is part of a package
and class, MATLAB creates folders +mypkg and @char so that the
output file belongs to the same:

pcode C:\work\+mypkg\@char\test.m
dir('C:\math\pcodetest\+mypkg\@char')
test.p

Example 3 - PCoding In Place

When you generate a pcode file inplace, MATLAB writes the output
file to the same folder as the input file:

pcode C:\work\+mypkg\@char\test.m -inplace
dir C:\work\+mypkg\@char

test.m test.p

See Also

depfun, depdir,

2-2971

pcolor

Purpose

GUI
Alternatives

Syntax

Description

2-2972

Pseudocolor (checkerboard) plot

| fr]plotity) ~

Workspace Browser, or use the Figure Palette Plot Catalog. Manipulate
graphs in plot edit mode with the Property Editor. For details, see
Plotting Tools — Interactive Plotting in the MATLAB Graphics
documentation and Creating Graphics from the Workspace Browser in
the MATLAB Desktop Tools documentation.

To graph selected variables, use the Plot Selector in the

pcolor(C)
pcolor(X,Y,C)
pcolor(axes_handles,...)

h = pcolor(...)

A pseudocolor plot is a rectangular array of cells with colors determined
by C. MATLAB creates a pseudocolor plot using each set of four adjacent
points in C to define a surface rectangle (i.e., cell).

The default shading is faceted, which colors each cell with a single
color. The last row and column of C are not used in this case. With

shading interp, each cell is colored by bilinear interpolation of the

colors at its four vertices, using all elements of C.

The minimum and maximum elements of C are assigned the first and
last colors in the colormap. Colors for the remaining elements in C are
determined by a linear mapping from value to colormap element.

pcolor(C) draws a pseudocolor plot. The elements of C are linearly
mapped to an index into the current colormap. The mapping from C to
the current colormap is defined by colormap and caxis.

pcolor(X,Y,C) draws a pseudocolor plot of the elements of C at the
locations specified by X and Y. The plot is a logically rectangular,
two-dimensional grid with vertices at the points [X(i,j), Y(i,j)]. X
and Y are vectors or matrices that specify the spacing of the grid lines. If

pcolor

Remarks

Examples

X and Y are vectors, X corresponds to the columns of C and Y corresponds
to the rows. If X and Y are matrices, they must be the same size as C.

pcolor(axes_handles,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

h = pcolor(...) returns a handle to a surface graphics object.

A pseudocolor plot is a flat surface plot viewed from above.
pcolor(X,Y,C) is the same as viewing surf(X,Y, zeros(size(X)),C)
using view([0 90]).

When you use shading faceted or shading flat, the constant color of
each cell is the color associated with the corner having the smallest x-y
coordinates. Therefore, C(1i,j) determines the color of the cell in the
ith row and jth column. The last row and column of C are not used.

When you use shading interp, each cell’s color results from a bilinear
interpolation of the colors at its four vertices, and all elements of C are
used.

A Hadamard matrix has elements that are +1 and -1. A colormap with
only two entries is appropriate when displaying a pseudocolor plot of
this matrix.

pcolor (hadamard(20))
colormap(gray(2))
axis ij

axis square

2-2973

pcolor

2-2974

2 4 5] g 10 12 14 18 19 20

A simple color wheel illustrates a polar coordinate system.

n = 6;
r= (0:n)'/n;

theta = pi*(-n:n)/n;
X = r*cos(theta);

Y = r*sin(theta);

C = r*cos(2*theta);
pcolor(X,Y,C)

axis equal tight

pcolor

Algorithm

See Also

=1 0.5 0 0.5 1

The number of vertex colors for pcolor(C) is the same as the number
of cells for image (C). pcolor differs from image in that pcolor(C)
specifies the colors of vertices, which are scaled to fit the colormap;
changing the axes clim property changes this color mapping. image (C)
specifies the colors of cells and directly indexes into the colormap
without scaling. Additionally, pcolor(X,Y,C) can produce parametric
grids, which is not possible with image.

caxis, image, mesh, shading, surf, view

2-2975

pdepe

Purpose Solve initial-boundary value problems for parabolic-elliptic PDEs in 1-D
Syntax sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan)
sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan,options)
[sol,tsol,sole,te,ie] = pdepe(m,pdefun,icfun,bcfun,xmesh,

tspan,options)

Arguments m A parameter corresponding to the symmetry of

the problem. m can be slab = 0, cylindrical = 1, or
spherical = 2.

pdefun A handle to a function that defines the components
of the PDE.

icfun A handle to a function that defines the initial
conditions.

bcfun A handle to a function that defines the boundary
conditions.

xmesh A vector [x0, x1, ..., xn] specifying the points at
which a numerical solution is requested for every
value in tspan. The elements of xmesh must satisfy
X0 < x1 < ... < xn. The length of xmesh must
be >= 3.

tspan A vector [tO, t1, ..., tf] specifying the points at
which a solution is requested for every value

in xmesh. The elements of tspan must satisfy

t0 < t1 < ... < tf. The length of tspan must be
>= 3.

options Some options of the underlying ODE solver are
available in pdepe: RelTol, AbsTol, NormControl,
InitialStep, MaxStep, and Events. In most cases,
default values for these options provide satisfactory
solutions. See odeset for details.

2-2976

pdepe

Description

sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan) solves
initial-boundary value problems for systems of parabolic and elliptic
PDEs in the one space variable & and time ¥. pdefun, icfun, and
bcfun are function handles. See “Function Handles” in the MATLAB
Programming documentation for more information. The ordinary
differential equations (ODESs) resulting from discretization in space
are integrated to obtain approximate solutions at times specified in
tspan. The pdepe function returns values of the solution on a mesh
provided in xmesh.

“Parameterizing Functions”, in the MATLAB Mathematics
documentation, explains how to provide additional parameters to the
functions pdefun, icfun, or bcfun, if necessary.

pdepe solves PDEs of the form:

au aH —m a m alé au
(ote)5 =" (" oo) ol 57)
The PDEs hold for fp=t= tf and @ < & < b. The interval [@; Bl must

be finite. 1 can be 0, 1, or 2, corresponding to slab, cylindrical, or
spherical symmetry, respectively. If 72 = 0, then @ must be >= 0.

In Equation 2-2, flx, t, u,du/dx) is a flux term and

six, T, i, du/dx) is a source term. The coupling of the partial
derivatives with respect to time is restricted to multiplication by a
diagonal matrix €lX, T, I, du/9x) The diagonal elements of this
matrix are either identically zero or positive. An element that is
identically zero corresponds to an elliptic equation and otherwise to a
parabolic equation. There must be at least one parabolic equation. An
element of ¢ that corresponds to a parabolic equation can vanish at
isolated values of X if those values of it are mesh points. Discontinuities
in ¢ and/or & due to material interfaces are permitted provided that a
mesh point is placed at each interface.

For ! = t0and all A&, the solution components satisfy initial conditions
of the form

2-2977

pdepe

u(x, tg) = uglx) (2-3)

For all t and either x = @ or x = b, the solution components satisfy
a boundary condition of the form

plx,t,u) + gix, I)f[x, t, u, 3—2] =0

Elements of & are either identically zero or never zero. Note that the

(2-4)

boundary conditions are expressed in terms of the flux r rather than
dit/0x. Also, of the two coefficients, only 2 can depend on L.

In the call sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan):

® m corresponds to Fi1.
e xmesh(1) and xmesh(end) correspond to & and b.
® tspan(1) and tspan(end) correspond to tpand If.

® pdefun computes the terms ¢, f, and & (Equation 2-2). It has the form

[c,f,s] = pdefun(x,t,u,dudx)

The input arguments are scalars x and t and vectors u and dudx that
approximate the solution £ and its partial derivative with respect to

X, respectively. c, f, and s are column vectors. ¢ stores the diagonal

elements of the matrix ¢ (Equation 2-2).

e jcfun evaluates the initial conditions. It has the form

u = icfun(x)

When called with an argument x, icfun evaluates and returns the
initial values of the solution components at x in the column vector u.

® bcfun evaluates the terms & and 9 of the boundary conditions
(Equation 2-4). It has the form

[pl,9l,pr,qr] = bcfun(xl,ul,xr,ur,t)

2-2978

pdepe

ul is the approximate solution at the left boundary x1 = & and ur is
the approximate solution at the right boundary xr = b. p1 and q1 are
column vectors corresponding to & and 4 evaluated at x1, similarly
pr and gr correspond to xr. When 71 > 0 and @ = 0, boundedness
of the solution near & = 0 requires that the flux/ vanishata = 0.
pdepe imposes this boundary condition automatically and it ignores
values returned in pl and ql.

E)Jdepe returns the solution as a multidimensional array sol.
i=ui=so0l(:,:,1) is an approximation to the ith component of the
solution vector I£. The element ui(j,k) = sol(j,k,i) approximates ; at

(t,x) = (tspan(j),xmesh(k)).

ui = sol(j,:,i) approximates component i of the solution at time
tspan(j) and mesh points xmesh(:). Use pdeval to compute the

du;/dx

approximation and its partial derivative at points not included

in xmesh. See pdeval for details.

sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan,options) solves
as above with default integration parameters replaced by values in
options, an argument created with the odeset function. Only some

of the options of the underlying ODE solver are available in pdepe:
RelTol, AbsTol, NormControl, InitialStep, and MaxStep. The defaults
obtained by leaving off the input argument options will generally be
satisfactory. See odeset for details.

[sol,tsol,sole,te,ie] =

pdepe (m,pdefun,icfun,bcfun,xmesh,tspan,options) with the
'"Events' property in options set to a function handle Events, solves
as above while also finding where event functions g(t,u(x,t))are
zero. For each function you specify whether the integration is

to terminate at a zero and whether the direction of the zero
crossing matters. Three column vectors are returned by events:
[value,isterminal,direction] = events(m,t,xmesh,umesh).
xmesh contains the spatial mesh and umesh is the solution at the mesh
points. Use pdeval to evaluate the solution between mesh points.
For the I-th event function, value (i) is the value of the function,

2-2979

pdepe

Remarks

2-2980

ISTERMINAL(I) = 1 if the integration is to terminate at a zero of this
event function and O otherwise. direction(i) = 0 if all zeros are to be
computed (the default), +1 if only zeros where the event function is
increasing, and -1 if only zeros where the event function is decreasing.
Output tsol is a column vector of times specified in tspan, prior to first
terminal event. SOL(j,:,:) is the solution at T(j). TE is a vector of
times at which events occur. SOLE(j,:,:) is the solution at TE(j) and
indices in vector IE specify which event occurred.

If UI = SOL(j,:,1i) approximates component 1 of the solution

at time TSPAN(j) and mesh points XMESH, pdeval evaluates the
approximation and its partial derivative aui‘f dx at the array of points
XOUT and returns them in UOUT and DUOUTDX: [UOUT,DUOUTDX] =

PDEVAL (M, XMESH, UI , XOUT)

du,;/dx ;

Note The partial derivative is evaluated here rather than
the flux. The flux is continuous, but at a material interface the partial
derivative may have a jump.

® The arrays xmesh and tspan play different roles in pdepe.

tspan — The pdepe function performs the time integration with an
ODE solver that selects both the time step and formula dynamically.
The elements of tspan merely specify where you want answers and
the cost depends weakly on the length of tspan.

xmesh — Second order approximations to the solution are made on the
mesh specified in xmesh. Generally, it is best to use closely spaced
mesh points where the solution changes rapidly. pdepe does not
select the mesh in XX automatically. You must provide an appropriate
fixed mesh in xmesh. The cost depends strongly on the length of
xmesh. When m = 0, it is not necessary to use a fine mesh near

x = 0to account for the coordinate singularity.

® The time integration is done with ode15s. pdepe exploits the
capabilities of ode15s for solving the differential-algebraic equations

pdepe

Examples

that arise when Equation 2-2 contains elliptic equations, and for
handling Jacobians with a specified sparsity pattern.

e After discretization, elliptic equations give rise to algebraic equations.
If the elements of the initial conditions vector that correspond to
elliptic equations are not "consistent" with the discretization, pdepe
tries to adjust them before beginning the time integration. For
this reason, the solution returned for the initial time may have a
discretization error comparable to that at any other time. If the mesh
is sufficiently fine, pdepe can find consistent initial conditions close
to the given ones. If pdepe displays a message that it has difficulty
finding consistent initial conditions, try refining the mesh.

No adjustment is necessary for elements of the initial conditions
vector that correspond to parabolic equations.

Example 1. This example illustrates the straightforward formulation,
computation, and plotting of the solution of a single PDE.

ZQE__Q(QQ
Jt dx\odx
This equation holds on an interval () < x < 1 for times t = 0.
The PDE satisfies the initial condition

u(x, 0) = sinnx
and boundary conditions

u(0,t)=0

-+ du
me +£(1,I)=U

It 1s convenient to use subfunctions to place all the functions required
by pdepe in a single M-file.

function pdex1

2-2981

pdepe

m = 0;
= linspace(0,1,20);
= linspace(0,2,5);

~+ X
| |

sol = pdepe(m,@pdexipde,@pdexiic,@pdexibc,x,t);
% Extract the first solution component as u.
u=so0l(:,:,1);

% A surface plot is often a good way to study a solution.
surf(x,t,u)

title('Numerical solution computed with 20 mesh points.')
xlabel('Distance x')

ylabel('Time t')

% A solution profile can also be illuminating.
figure

plot(x,u(end,:))

title('Solution at t = 2")

xlabel('Distance x')

ylabel('u(x,2)")

)
b T T T T T e T T ar

function [c,f,s] = pdexipde(x,t,u,DuDx)

c = pi~2;
f = DuDx;
s = 0;

o°

function u0 = pdexilic(x)
u0 = sin(pi*x);

function [pl,ql,pr,qr] = pdexibc(x1l,ul,xr,ur,t)

pl = ul;

ql = 0;

pr = pi * exp(-t);
qr = 1;

In this example, the PDE, initial condition, and boundary conditions
are coded in subfunctions pdexipde, pdex1ic, and pdexibc.

2-2982

pdepe

The surface plot shows the behavior of the solution.

lumerical solulion compuled with 20 mesh poims.

Tirre A

Dislanee x

The following plot shows the solution profile at the final value of t (i.e.,
t = 2).

2-2983

pdepe

Solulion ail =2

012

041

Q.03

&
= 0.08
=1
0.04
0.02
a
0,02 1 1 1 1 1 1 1 1 1
<] 2.1 0z a3 a4 Q.5 0.8 Q7 as aa 1
Distance =

Example 2. This example illustrates the solution of a system of PDEs.
The problem has boundary layers at both ends of the interval. The
solution changes rapidly for small .

The PDEs are
2

%1 _ 00242 F
Iy ﬂﬂna%z F
W = . ax—2+ {Hl—HE}

where £ (¥) = exp(5.73y) —exp(-11.46y)

This equation holds on an interval 0 < x < 1 for times ¢ = 0.

2-2984

pdepe

The PDE satisfies the initial conditions
uq(x, 0)=1
uglx,0)=0

and boundary conditions

d
~20,n=0

Hz{ﬂ, = 0

d
ﬂ(1 t)=0

In the form expected by pdepe, the equations are
1 ad |4 d ﬂﬂ?zl{aulz'ax} —F(uqy—uy)
= =
TR 1L ~ ax|p, 17n(au2,—*ax) F(uq-uy)

The boundary conditions on the partial derivatives of I have to be
written in terms of the flux. In the form expected by pdepe, the left
boundary condition is

0 s 1 0.024(du ,/dx) 0

us| o] [0.170(3u,/02)| o

and the right boundary condition is

2-2985

pdepe

-1 s 0 . 0.024(du ,/dx) 0
0 1| |0.170(du,/dx) 0

The solution changes rapidly for small £. The program selects the step
size in time to resolve this sharp change, but to see this behavior in the
plots, the example must select the output times accordingly. There are
boundary layers in the solution at both ends of [0,1], so the example
places mesh points near 0 and 1 to resolve these sharp changes. Often
some experimentation is needed to select a mesh that reveals the
behavior of the solution.

function pdex4

m = 0;
x = [0 0.005 0.01 0.05 0.1 0.2 0.5 0.7 0.9 0.95 0.99 0.995 1];
t = [0 0.005 0.01 0.05 0.1 0.5 1 1.5 2];

sol = pdepe(m,@pdex4pde,@pdex4ic,@pdexdbc,x,t);
ul = sol(:,:,1);
u2 = sol(:,:,2);

figure

surf(x,t,ul)
title('ut(x,t)")
xlabel('Distance x')
ylabel('Time t')

figure

surf(x,t,u2)
title('u2(x,t)"')
xlabel('Distance x')
ylabel('Time t')

[
b T T T T T T T T I T

function [c,f,s] = pdex4pde(x,t,u,DuDx)
c=[1; 11;

f [0.024; 0.17] .* DuDx;

y = u(1) - u(2);

2-2986

F = exp(5.73*y)-exp(-11.47*y);
s = [-F; FI;

function u0 = pdex4ic(x);

uo = [1; 0];

function [pl,ql,pr,qr] = pdexd4bc(xl,ul,xr,ur,t)
pl = [0; ul(2)];

al = [1; O];
pr = [ur(1)-1; 0];
ar = [0; 1];

In this example, the PDEs, initial conditions, and boundary conditions
are coded in subfunctions pdex4pde, pdex4ic, and pdex4bc.

The surface plots show the behavior of the solution components.

ulixd]

Tirre: 4 Dislanee x

2-2987

pdepe

See Also

References

2-2988

Tirre A

Disdance =
function_handle (@), pdeval, ode15s, odeset, odeget

[1] Skeel, R. D. and M. Berzins, "A Method for the Spatial Discretization
of Parabolic Equations in One Space Variable," SIAM Journal on
Scientific and Statistical Computing, Vol. 11, 1990, pp.1-32.

pdeval

Purpose

Syntax

Arguments

Description

See Also

Evaluate numerical solution of PDE using output of pdepe

[uout,duoutdx] = pdeval(m,x,ui,xout)

m Symmetry of the problem: slab = 0, cylindrical = 1,
spherical = 2. This is the first input argument used
in the call to pdepe.

xmesh A vector [x0, x1, ..., xn] specifying the points at which
the elements of ui were computed. This is the same
vector with which pdepe was called.

ui A vector so0l(j,:;,i) that approximates component i of

the solution at time f and mesh points xmesh, where
sol is the solution returned by pdepe.

xout A vector of points from the interval [x0,xn] at which
the interpolated solution is requested.

[uout,duoutdx] = pdeval(m,x,ui,xout) approximates the solution

. . . . L. X . .
u_‘l and its partial derivative 1 at points from the interval
[x0,xn]. The pdeval function returns the computed values in uout and
duoutdx, respectively.

Note pdeval evaluates the partial derivative aui’l dx rather than

the flux / . Although the flux is continuous, the partial derivative may
have a jump at a material interface.

pdepe

2-2989

peaks

Purpose

Syntax

Description

2-2990

Example function of two variables

Peaks

Z = peaks;

Z = peaks(n);

Z = peaks(V);

Z = peaks(X,Y);
peaks;
peaks(N) ;
peaks(V);

peaks(X,Y);

peaks;
peaks(n);
peaks(V);

[X,Y,Z
xvz

]
]
Z]

peaks is a function of two variables, obtained by translating and scaling
Gaussian distributions, which is useful for demonstrating mesh, surf,
pcolor, contour, and so on.

Z = peaks; returns a 49-by-49 matrix.

Z = peaks(n); returns an n-by-n matrix.
Z = peaks(V); returns an n-by-n matrix, where n = length(V).
Z = peaks(X,Y); evaluates peaks at the given X and Y (which must be

the same size) and returns a matrix the same size.

peaks

See Also

peaks(...) (with no output argument) plots the peaks function with
surf.

[X,Y,Z] = peaks(...); returns two additional matrices, X and Y, for
parametric plots, for example, surf(X,Y,Z,del2(Z)). If not given as
input, the underlying matrices X and Y are

[X,Y] = meshgrid(V,V)
where V is a given vector, or V is a vector of length n with elements
equally spaced from -3 to 3. If no input argument is given, the default

nis 49.

meshgrid, surf

2-2991

perl

Purpose

Syntax

Description

Examples

Call Perl script using appropriate operating system executable

perl('perlfile')
perl('perlfile',argl,arg2,...)
result = perl(...)

[result, status] = perl(...)

perl('perlfile') calls the Perl script perlfile, using the appropriate
operating system Perl executable. Perl is included with the MATLAB
software on Microsoft Windows systems, and thus MATLAB users

can run M-files containing the perl function. On UNIX '® systems,
MATLAB calls the Perl interpreter available with the operating system.

perl('perlfile',argl,arg2,...) calls the Perl script perlfile,
using the appropriate operating system Perl executable, and passes the
arguments argi, arg2, and so on, to perlfile.

result = perl(...) returns the results of attempted Perl call to
result.

[result, status] = perl(...) returns the results of attempted Perl
call to result and its exit status to status.

It is sometimes beneficial to use Perl scripts instead of MATLAB code.
The perl function allows you to run those scripts from MATLAB.
Specific examples where you might choose to use a Perl script include:

® Perl script already exists

¢ Perl script preprocesses data quickly, formatting it in a way more
easily read by MATLAB

¢ Perl has features not supported by MATLAB

Given the Perl script, hello.pl:

$input = $ARGV[O];

15. UNIX is a registered trademark of The Open Group in the United States and

2-2992

other countries.

perl

print "Hello $input.";
At the MATLAB command line, type:
perl('hello.pl’', 'World"')
MATLAB displays:

ans =
Hello World.

See Also ! (exclamation point), dos, regexp, system, unix

2-2993

perms

Purpose All possible permutations
Syntax P = perms(v)
Description P = perms(v), where v is a row vector of length n, creates a matrix

whose rows consist of all possible permutations of the n elements of v.
Matrix P contains n! rows and n columns.

Examples The command perms([2 4 6]) returns all the permutations of the
numbers 2, 4, and 6:
6 4 2
6 2 4
4 6 2
4 2 6
2 4 6
2 6 4
Limitations This function is only practical for situations where n is less than about
15.
See Also nchoosek, permute, randperm

2-2994

permute

Purpose
Syntax

Description

Remarks

Examples

See Also

Rearrange dimensions of N-D array

B

permute (A,order)

B = permute(A,order) rearranges the dimensions of A so that they are
in the order specified by the vector order. B has the same values of A
but the order of the subscripts needed to access any particular element
is rearranged as specified by order. All the elements of order must

be unique.

permute and ipermute are a generalization of transpose (. ') for
multidimensional arrays.

Given any matrix A, the statement

permute (A, [2 1])

is the same as A."'.

For example:
A= [12; 3 4]; permute(A,[2 1])
ans =

1 3
2 4

The following code permutes a three-dimensional array:

X = rand(12,13,14);

Y = permute(X,[2 3 1]);
size(Y)

ans =

13 14 12

ipermute, circshift, shiftdim, reshape

2-2995

persistent

Purpose
Syntax

Description

Remarks

Example

2-2996

Define persistent variable
persistent X Y Z

persistent X Y Z defines X, Y, and Z as variables that are local to
the function in which they are declared; yet their values are retained
in memory between calls to the function. Persistent variables are
similar to global variables because the MATLAB software creates
permanent storage for both. They differ from global variables in that
persistent variables are known only to the function in which they are
declared. This prevents persistent variables from being changed by
other functions or from the MATLAB command line.

Whenever you clear or modify a function that is in memory, MATLAB
also clears all persistent variables declared by that function. To keep a
function in memory until MATLAB quits, use mlock.

If the persistent variable does not exist the first time you issue the
persistent statement, it is initialized to the empty matrix.

It is an error to declare a variable persistent if a variable with the same
name exists in the current workspace. MATLAB also errors if you
declare any of a function’s input or output arguments as persistent
within that same function. For example, the following persistent
declaration is invalid:

function myfun(argA, argB, argC)
persistent argB

There is no function form of the persistent command (i.e., you cannot
use parentheses and quote the variable names).

This function writes a large array to a spreadsheet file and then reads
several rows from the same file. Because you only need to write the
array to the spreadsheet one time, the program tests whether an array
can be read from the file and, if so, does not waste time in repeating
that task. By defining the dblArray variable as persistent, you can
easily check whether the array has been read from the spreadsheet file.

persistent

Here 1s the arrayToXLS function:

function arrayToXLS(A, xlsfile, x1, x2)
persistent dblArray;

if isempty(dblArray)
disp 'Writing spreadsheet file ...'
xlswrite(xlsfile, A);

end

disp 'Reading array from spreadsheet ...'
dblArray = xlsread(xlsfile, 'Sheet1', [x1 ':' x2])
fprintf('\n');

Run the function three times and observe the time elapsed for each run.
The second and third run take approximately one tenth the time of the
first run in which the function must create the spreadsheet:

largeArray = rand (4000, 200);

tic, arrayToXLS(largeArray, 'myTest.xls',6 'E254', 'J256'), toc

Writing spreadsheet file ...

Reading array from spreadsheet

dblArray =
0.0982 0.3783 0.1264 0.7880 0.1902 0.5811
0.2251 0.2704 0.5682 0.7271 0.8028 0.2834
0.6453 0.5568 0.8254 0.4961 0.9096 0.5402

Elapsed time is 8.990525 seconds.

tic, arrayToXLS(largeArray, 'myTest.xls',6 'E257', 'J258'), toc
Reading array from spreadsheet
dblArray =
0.4620 0.3781 0.6386 0.5930 0.0946 0.4865
0.1605 0.1251 0.8709 0.5188 0.6702 0.2138

2-2997

persistent

See Also

2-2998

Elapsed time is 0.912534 seconds.

tic, arrayToXLS(largeArray, 'myTest.x1ls',6 'E259', 'J262'), toc

Reading array from spreadsheet

dblArray =
0.7015 0.6588 0.4023 0.0359 0.4512 0.6097
0.1308 0.6441 0.0431 0.6396 0.7481 0.8688
0.8278 0.2686 0.5475 0.8550 0.5896 0.1080
0.9437 0.1671 0.0505 0.1203 0.2461 0.7306

Elapsed time is 0.928843 seconds.

Now clear the arrayToXLS function from memory and observe that
running it takes much longer again:

clear functions

tic, arrayToXLS(largeArray, 'myTest.xls',6 'E263', 'J264'), toc
Writing spreadsheet file
Reading array from spreadsheet
dblArray =
0.6292 0.7788 0.0732 0.6481 0.9299 0.8631
0.7700 0.5181 0.9805 0.5092 0.8658 0.4070

Elapsed time is 7.603461 seconds.

global, clear, mislocked, mlock, munlock, isempty

Purpose Ratio of circle’s circumference to its diameter
Syntax pi
Description pi returns the floating-point number nearest the value of m. The
expressions 4*atan(1) and imag(log(-1)) provide the same value.
Examples Find the sine of m:
sin(pi)
returns
ans =
1.2246e-16

The expression sin(pi) is not exactly zero because pi is not exactly .

2-2999

pie

Purpose Pie chart
A plotlty) = | .
GUI To graph selected variables, use the Plot Selector in the

Alternatives Workspace Browser, or use the Figure Palette Plot Catalog. Manipulate
graphs in plot edit mode with the Property Editor. For details, see
Plotting Tools — Interactive Plotting in the MATLAB Graphics
documentation and Creating Graphics from the Workspace Browser in
the MATLAB Desktop Tools documentation.

Syntax pie
pie

X)

X,explode)
pie(...,labels)
pie(axes_handle,...)
h = pie(...)

—_— o~~~

Description pie(X) draws a pie chart using the data in X. Each element in X is
represented as a slice in the pie chart.

pie(X,explode) offsets a slice from the pie. explode is a vector or
matrix of zeros and nonzeros that correspond to X. A nonzero value
offsets the corresponding slice from the center of the pie chart, so that
X(i,j) is offset from the center if explode(i,j) is nonzero. explode
must be the same size as X.

pie(...,labels) specifies text labels for the slices. The number of
labels must equal the number of elements in X. For example,

pie(1:3,{'Taxes', 'Expenses', 'Profit'})

pie(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

h = pie(...) returns a vector of handles to patch and text graphics
objects.

2-3000

Remarks The values in X are normalized via X/sum(X) to determine the area of
each slice of the pie. If sum(X) 1, the values in X directly specify the
area of the pie slices. MATLAB draws only a partial pie if sum(X) < 1.

Examples Emphasize the second slice in the chart by setting its corresponding
explode element to 1.

x =[13 0.5 2.5 2];
explode = [0 1 0 0 0];
pie(x,explode)
colormap jet

11%

3%

See Also pie3

2-3001

pied

Purpose

GUI
Alternatives

Syntax

Description

2-3002

3-D pie chart

To graph selected variables, use the Plot Selector

| fr]plotity) ~

Workspace Browser, or use the Figure Palette Plot Catalog. Manipulate
graphs in plot edit mode with the Property Editor. For details, see
Plotting Tools — Interactive Plotting in the MATLAB Graphics
documentation and Creating Graphics from the Workspace Browser in
the MATLAB Desktop Tools documentation.

in the

pie3(X)

pie3 (X,explode)
pie3(...,labels)
pie3(axes_handle,...)
h = pie3(...)

pie3(X) draws a three-dimensional pie chart using the data in X. Each
element in X is represented as a slice in the pie chart.

pie3(X,explode) specifies whether to offset a slice from the center
of the pie chart. X(i,j) is offset from the center of the pie chart if
explode(i,j) is nonzero. explode must be the same size as X.

pie3(...,labels) specifies text labels for the slices. The number of
labels must equal the number of elements in X. For example,

pie3(1:3,{'Taxes', 'Expenses', 'Profit'})

pie3(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

h = pie3(...) returns a vector of handles to patch, surface, and text
graphics objects.

pie3
|

Remarks The values in X are normalized via X/sum(X) to determine the area of
each slice of the pie. If sum(X) 1, the values in X directly specify the
area of the pie slices. MATLAB draws only a partial pie if sum(X) < 1.

Examples Offset a slice in the pie chart by setting the corresponding explode
element to 1:

x =[13 0.5 2.5 2];
explode = [0 1 0 0 0];
pie3(x,explode)
colormap hsv

2%

See Also pie

2-3003

pinv

Purpose

Syntax

Definition

Description

Examples

2-3004

Moore-Penrose pseudoinverse of matrix

B
B

pinv (A)
pinv(A,tol)

The Moore-Penrose pseudoinverse is a matrix B of the same dimensions
as A' satisfying four conditions:

A*B*A = A
B*A*B = B
A*B is Hermitian
B*A is Hermitian

The computation is based on svd(A) and any singular values less than
tol are treated as zero.

B = pinv(A) returns the Moore-Penrose pseudoinverse of A.

B = pinv(A,tol) returns the Moore-Penrose pseudoinverse and
overrides the default tolerance, max(size (A))*norm(A)*eps.

If A is square and not singular, then pinv(A) is an expensive way to
compute inv (A). If A is not square, or is square and singular, then
inv(A) does not exist. In these cases, pinv(A) has some of, but not all,
the properties of inv(A).

If A has more rows than columns and is not of full rank, then the
overdetermined least squares problem

minimize norm(A*x-b)

does not have a unique solution. Two of the infinitely many solutions are

X = pinv(A)*b

and

y = A\b

pinv

These two are distinguished by the facts that norm(x) is smaller than
the norm of any other solution and that y has the fewest possible
nonzero components.

For example, the matrix generated by
A = magic(8); A = A(:,1:6)
1s an 8-by-6 matrix that happens to have rank(A) = 3.

A =
64 2 3 61 60 6

9 55 54 12 13 51

17 47 46 20 21 43

40 26 27 37 36 30

32 34 35 29 28 38

41 23 22 44 45 19

49 15 14 52 53 11

8 58 59 5 4 62

The right-hand side is b = 260*ones(8,1),

b =
260
260
260
260
260
260
260
260

The scale factor 260 is the 8-by-8 magic sum. With all eight columns,
one solution to A*x = b would be a vector of all 1’s. With only six
columns, the equations are still consistent, so a solution exists, but it
is not all 1’s. Since the matrix is rank deficient, there are infinitely
many solutions. Two of them are

X = pinv(A)*b

2-3005

pinv

See Also

2-3006

which 1is
X =
1.1538
1.4615
1.3846
1.3846
1.4615
1.1538
and
y = A\b

which produces this result.

Warning: Rank deficient, rank = 3 tol = 1.8829¢e-013.
y:
4.0000
5.0000
0
0
0
-1.0000

Both of these are exact solutions in the sense that norm(A*x-b) and
norm(A*y-b) are on the order of roundoff error. The solution x is special
because

norm(x) = 3.2817

is smaller than the norm of any other solution, including

norm(y) = 6.4807

On the other hand, the solution y is special because it has only three
nonzero components.

inv, gr, rank, svd

planerot

Purpose Givens plane rotation
Syntax [G,y] = planerot(x)
Description [G,y] = planerot(x) where x is a 2-component column vector, returns

a 2-by-2 orthogonal matrix G so thaty = G*x hasy(2) = 0.

Examples X = [3 4];
[G,y] = planerot(x"')

G =
0.6000 0.8000
-0.8000 0.6000
y =
5
0
See Also grdelete, qrinsert

2-3007

audioplayer.play

Purpose

Syntax

Description

Example

See Also

How To

2-3008

Play audio from audioplayer object

play(playerObj)
play(playerObj, start)
play(playerObj, [start stop])

play(playerObj) plays the audio associated with audioplayer object
playerObj from beginning to end.

play(playerObj, start) plays audio from the sample indicated by
start to the end.

play(playerObj, [start stop]) plays audio from the sample
indicated by start to the sample indicated by stop.

Load the demo file handel.mat and play the first 3 seconds of audio:

load handel.mat;
handel = audioplayer(y, Fs);
play(handel, [1 handel.SampleRate*3]);

audioplayer | playblocking

+ “Playing Audio”

audiorecorder.play

Purpose

Syntax

Description

Examples

See Also

Play audio from audiorecorder object

player = play(recObj)
player = play(recObj, start)
player = play(recObj, [start stop])

player = play(recObj) plays the audio associated with
audiorecorder object recObj from beginning to end, and returns an
audioplayer object.

player = play(recObj, start) plays audio from the sample indicated
by start to the end.

player = play(recObj, [start stop]) plays audio from the sample
indicated by start to the sample indicated by stop.

Record 5 seconds of your speech with a microphone, and play it back.
Display the properties of the audioplayer object.

myVoice = audiorecorder;

disp('Start speaking.');
recordblocking(myVoice, 5);

disp('End of recording. Playing back ...');
playerObj = play(myVoice);

disp('Properties of playerObj:');
get(playerObj)

Play back only the first 3 seconds of the speech recorded in the previous
example:

play(myVoice, [1 myVoice.SampleRate*3]);

audioplayer | audiorecorder

2-3009

audioplayer.playblocking

Purpose

Syntax

Description

Examples

2-3010

Play audio from audioplayer object, holding control until playback
completes

playblocking(playeroObj)
playblocking(playerObj, start)
playblocking(playerObj, [start stopl])

playblocking(playerObj) plays the audio associated with
audioplayer object playerObj from beginning to end. playblocking
does not return control until playback completes.

playblocking(playerObj, start) plays audio from the sample
indicated by start to the end

playblocking(playerObj, [start stop]) plays audio from the
sample indicated by start to the sample indicated by stop.

Load the demo files chirp.mat and gong.mat. Play with and without
blocking.

chirpData = load('chirp.mat');
chirpObj = audioplayer(chirpData.y, chirpData.Fs);

gongData = load('gong.mat');
gongObj = audioplayer(gongData.y, gongData.Fs);

% Play with blocking, one after the other.
playblocking(chirpObj);
playblocking(gongObj);

% Play without blocking: audio overlaps.
play(chirpObj);
play(gongObj);

Load the demo file handel.mat and play the first 3 seconds. Beep
when finished.

audioplayer.playblocking
|

load handel.mat;
handel = audioplayer(y, Fs);
playblocking(handel, [1 handel.SampleRate*3]);

beep;
See Also audioplayer | play
How To + “Playing Audio”

2-3011

playshow

Purpose Run M-file demo (deprecated; use echodemo instead)
Syntax playshow filename
Description playshow filename runs filename, which is a demo. Replace playshow

filename with echodemo filename. Note that other arguments supported
by playshow are not supported by echodemo.

See Also demo, echodemo, helpbrowser

2-3012

plot

Purpose

Syntax

Description

2-D line plot

plot(Y)

plot(X1,Y1,...,Xn,Yn)

plot(X1,Y1,LineSpec,...,Xn,Yn,LineSpec)

plot(X1,Y1,LineSpec, 'PropertyName' ,PropertyValue)
plot(axes_handle,X1,Y1,LineSpec, 'PropertyName' ,PropertyValue)
h = plot(X1,Y1,LineSpec, 'PropertyName' ,PropertyValue)

plot(Y) plots the columns of Y versus the index of each value
when Y is a real number. For complex Y, plot(Y) is equivalent to
plot(real(Y),imag(Y)).

plot(X1,Y1,...,Xn,Yn) plots each vector Yn versus vector Xn on the
same axes. If one of Yn or Xn is a matrix and the other is a vector, plots
the vector versus the matrix row or column with a matching dimension
to the vector. If Xn is a scalar and Yn is a vector, plots discrete Yn points
vertically at Xn. If Xn or Yn are complex, imaginary components are
ignored. plot automatically chooses colors and line styles in the order
specified by ColorOrder and LineStyleOrder properties of current
axes.

plot(X1,Y1,LineSpec,...,Xn,Yn,LineSpec) plots lines defined by
the Xn,Yn,LineSpec triplets, where LineSpec specifies the line type,
marker symbol, and color. You can mix Xn,Yn,LineSpec triplets with
Xn,Yn pairs: plot(X1,Y1,X2,Y2,LineSpec,X3,Y3).

plot(X1,Y1,LineSpec, 'PropertyName' ,PropertyValue) manipulates
plot characteristics by setting lineseries properties (of lineseries
graphics objects created by plot). Enter properties as one or more
name and value pairs.

plot(axes_handle,X1,Y1,LineSpec, 'PropertyName' ,PropertyValue)
plots using axes with the handle axes_handle instead of the
current axes (gca).

h = plot(X1,Y1,LineSpec, 'PropertyName' ,PropertyValue) returns
a column vector of handles to 1ineseries objects, one handle per line.

2-3013

plot

Examples Plot a sine curve:

X = -pi:.1:pi;
y = sin(x);
plot(x,y)

D8

0.6

021

=]
o
1

Create line plot using specific line width, marker color, and marker size:

X = -pi:pi/10:pi;

y = tan(sin(x)) - sin(tan(x));

plot(x,y,"'--rs', 'LineWwidth',2,...
'MarkerkedgeColor', 'k',...

2-3014

plot

'MarkerFaceColor','g',...
'MarkerSize',10)

3 T T T T T T T
g
It
2F P o i
I Yy Fh
I Lf oL
a L1
=] =
A
1+ ; . -
! =
r L
E'I L
o Eﬂ ;JnE]{J-E][J-E] (| -
" f
[
a '
1k 1 I .
1 1
o o
1 FI)
LI T
-2 h ‘1 :]
ir
o
_3 1 1 1 1 1 1 1
4 -3 2 -1 a 1 2 3 4

Modify axis tick marks and tick labels:

X = -pi:.1:pi;

y = sin(x);

plot(x,y)

set(gca, 'XTick',-pi:pi/2:pi)

set(gca, 'XTickLabel',{'-pi',"'-pi/2','0','pi/2',"'pi'})

2-3015

plot

0.6 1

V)] o 1

0.4r —

0.2F B

-1 1 L L 1 1

—pi —-pi2 a pir2 pi

Add a plot title, axis labels, and annotations:

X = -pi:.1:pi;

y = sin(x);

p = plot(x,y)

set(gca, 'XTick',-pi:pi/2:pi)

set(gca, 'XTickLabel',{'-pi','-pi/2','0','pi/2','pi'})

xlabel('-\pi \leq \Theta \leq \pi')

ylabel('sin(\Theta)"')

title('Plot of sin(\Theta)')

% \Theta appears as a Greek symbol (see String)

% Annotate the point (-pi/4, sin(-pi/4))

text(-pi/4,sin(-pi/4),'\leftarrow sin(-\pi\div4)',...
'HorizontalAlignment','left')

% Change the line color to red and

% set the line width to 2 points

2-3016

plot

set(p,'Color', 'red', 'Linewidth',2)

Plot ot sin(@}
1 T T T

Q&

04r

02r

sin i)
o
T

-0z

-0.4

-06

sin|—m+4)

-1 1
—pi —pil2 a pi2 pi

Plot multiple line plots on the same axes:

plot(rand(12,1))

% hold axes and all lineseries properties, such as
% ColorOrder and LineStyleOrder, for the next plot
hold all

plot(randn(12,1))

Set line color to be always black and line style order to cycle through
solid, dash-dot, dash-dash, and dotted line styles:

2-3017

plot

Alternatives

See Also

How To

2-3018

set (0, 'DefaultAxesColorOrder',[0 O O],...
'DefaultAxesLineStyleOrder','-|-.|--|:")

plot(rand(12,1))

hold all

plot(rand(12,1))

hold all

plot(rand(12,1))

To plot variables in the MATLAB workspace:

1 In the MATLAB workspace browser, select one or more variables.

| [plotity) -

2 Choose the plot type from the -==—— " Imenu.

axis | axes | bar | gca | grid | hold | legend | line | lineseries
properties | LineSpec | LineWidth | loglog | MarkerEdgeColor

| MarkerFaceColor | MarkerSize | plot3 | plotyy | semilogx |
semilogy | subplot | title | xlabel | x1im | ylabel | ylim

Editing Plot Characteristics

Creating Line Plots

Annotating Graphs

Creating Graphics from the Workspace Browser

“Axes Objects — Defining Coordinate Systems for Graphs”

plot (timeseries)

Purpose

Syntax

Description

Remarks

Plot time series

plot(ts)

plot(tsc.tsname)

plot(...,linespec)

plot(...,'Propertyi',valuetl, 'Property2',value2,...)

plot(ts) plots the time-series data ts against time and interpolates
values between samples by using either zero-order-hold ('zoh') or
linear interpolation (the default). The plot displays in the current axes.
A figure and axes is created if none exists.

plot(tsc.tsname) plots the timeseries object tsname that is part
of the tscollection tsc.

plot(...,linespec) plots a line graph and applies the specified
linespec to lines and/or markers.

plot(...,'Property1',valuel, 'Property2',value2,...) plotsa
line graph using the values specified for 1ineseries properties.

The timeseries/plot method generates titles and axis labels
automatically, as the following example illustrates. These labels are:

¢ Plot Title — 'Time Series Plot: <name>'

e X-Axis Label — 'Time (<units>)'

® Y-Axis Label — '<name>'

where <name> is the string assigned to ts.Name, or by default,

"unnamed'. <units> is the value of the ts.TimeInfo.Units field, which
defaults to 'seconds'.

You can place new time-series data on a time-series plot (by setting
hold on, for example, and issuing another timeseries/plot command).
When you add data to a plot, the title and axis labels are replaced by
blank strings to avoid labeling confusion. You can add your own labels
after plotting using the title, xlabel, and ylabel commands.

2-3019

plot (timeseries)

Example

2-3020

Time-series events, when defined, are marked in the plot by a circular
marker with red fill. You can also specify markers for all data points
using a linespec or property/value syntax in addition to any event
markers your data defines. The event markers plot on top of the
markers you define.

The value assigned to ts.DataInfo.Interpolation.Name controls the
type of interpolation used when plotting and resampling time series
data. Invoke the timeseries method setinterpmethod to change default
linear interpolation to zero-order hold interpolation (staircase). This
method creates a new timeseries object, with which you can overwrite
the original one if you want. For example, to cause time series ts to use
zero-order hold interpolation, type the following:

ts = ts.setinterpmethod('zoh');

Create two time-series objects from traffic count data and plot them
in sequence on the same axes. Add an event to one series, which is
automatically displayed by a red marker.

load count.dat;
counti=timeseries(count(:,1),1:24);
counti.Name = 'Oak St. Traffic Count';
count1.TimeInfo.Units = 'Hours';
plot(count1,':b'), grid on

plot (timeseries)

Dak St. Traffic Count

Time Series Plot:0ak St. Traffic Count

= : : :
Y E— T o froeeee
B0veoeee i
o NN T T N £ |
40p------mmmme- ; ;~4LLJL ---------- -
Wpeeeees :";ié """"""" ?E;':::::::::=%{r """"""" ?"'Ef """" 7
L i ;

0 5 10 15 20 25

Time (hours)

% Obtain time of maximum value and add it as an event
[~,index] = max(counti.Data);

max_event = tsdata.event('peak',counti.Time(index));
max_event.Units = 'hours';

% Add the event to the time series

count1 = addevent(count1,max_event);

% Replace plot with new one showing the event
plot(counti,'.-b'), grid on

2-3021

plot (timeseries)

Time Series Plot:0ak St. Traffic Count

Qak St. Traffic Count

Time (hours)

% Make a new ts object from column 2 of the same data source
count2=timeseries(count(:,2),1:24);
count2.Name = 'Maple St. Traffic Count';

count2.TimeInfo.Units = 'Hours';
% Turn hold on to add the new data to the plot
hold on

% The plot method does not add labels to a held plot
% Use property/value pair to customize markers
plot(count2,'s-m', 'MarkerSize',6),

2-3022

plot (timeseries)

[

% Labels are erased, so generate them manually
title('Time Series: Oak Street and Maple Street')
xlabel('Hour of day')

ylabel('Vehicle count')

% Add a legend in the upper left

legend('Oak St.', 'Maple St.','Location', 'northwest')

2-3023

plot (timeseries)

Time Series: Oak Street and Maple Street

150 1 r ;
—— 0ak St. : i
—H— Maple St.
00 prmmmmmm e b e L EEEEEEEERES —
= : : :
= 1
(=] 1
o '
P :
= :
£ : : : :
= : : : :
1 T B L o] B 1 .
; i i i i
0 5 10 15 20 25
Hour of day
See Also setinterpmethod, timeseries, tscollection, tsdata.event,

tsprops, plot

2-3024

plot3

Purpose

GUI
Alternatives

Syntax

Description

3-D line plot

=

To graph selected variables, use the Plot Selector in the
Workspace Browser, or use the Figure Palette Plot Catalog. Manipulat
graphs in plot edit mode with the Property Editor. For details, see
Plotting Tools — Interactive Plotting in the MATLAB Graphics
documentation and Creating Graphics from the Workspace Browser in
the MATLAB Desktop Tools documentation.

plot3(X1,Y1,Z1,...)
plot3(X1,Y1,Z1,LineSpec,...)

plot3(..., 'PropertyName',PropertyValue,...)
h = plot3(...)

The plot3 function displays a three-dimensional plot of a set of data
points.

plot3(X1,Y1,Z1,...), where X1, Y1, Z1 are vectors or matrices, plots
one or more lines in three-dimensional space through the points whose
coordinates are the elements of X1, Y1, and Z1.

e

plot3(X1,Y1,Z1,LineSpec,...) creates and displays all lines defined
by the Xn,Yn,Zn,LineSpec quads, where LineSpec is a line specification
that determines line style, marker symbol, and color of the plotted lines.

plot3(..., 'PropertyName' ,PropertyValue,...) sets properties to
the specified property values for all line graphics objects created by
plot3.

h = plot3(...) returns a column vector of handles to lineseries
graphics objects, with one handle per object.

2-3025

plot3

Remarks

Examples

2-3026

If one or more of X1, Y1, Z1 1s a vector, the vectors are plotted versus the
rows or columns of the matrix, depending whether the vectors’ lengths
equal the number of rows or the number of columns.

You can mix Xn,Yn,Zn triples with Xn,Yn,Zn,LineSpec quads, for
example,

plot3(X1,Y1,21,X2,Y2,Z2,LineSpec,X3,Y3,Z3)
See LineSpec and plot for information on line types and markers.

Plot a three-dimensional helix.

t = 0:pi/50:10*pi;
plot3(sin(t),cos(t),t)
grid on

axis square

plot3

See Also axis, barg, grid, 1line, LineSpec, loglog, plot, semilogx, semilogy,
subplot

2-3027

plotbrowser

Purpose Show or hide figure plot browser

Flot Brwssy ——————————————— W M

[¥ Peaks
[v

Add Data,..

GUI Click the larger Plotting Tools icon - on the figure toolbar to

Alternatives
collectively enable plotting tools, and the smaller icon O to collectively

disable them. Open or close the Plot Browser tool from the figure’s
View menu. For details, see “The Plot Browser” in the MATLAB
Graphics documentation.

Syntax plotbrowser('on")
plotbrowser('off')
plotbrowser('toggle')
plotbrowser
plotbrowser(figure_handle,...)

Description plotbrowser('on') displays the Plot Browser on the current figure.

plotbrowser('off') hides the Plot Browser on the current figure.

plotbrowser('toggle') or plotbrowser toggles the visibility of the
Plot Browser on the current figure.

plotbrowser(figure handle,...) shows or hides the Plot Browser on
the figure specified by figure handle.

See Also plottools, figurepalette, propertyeditor

2-3028

plotedit

Purpose

Syntax

Description

Interactively edit and annotate plots

plotedit on
plotedit off
plotedit
plotedit(h)
plotedit('state')
plotedit(h, 'state')

plotedit on starts plot edit mode for the current figure, allowing you
to use a graphical interface to annotate and edit plots easily. In plot
edit mode, you can label axes, change line styles, and add text, line, and
arrow annotations.

plotedit off ends plot mode for the current figure.
plotedit toggles the plot edit mode for the current figure.

plotedit(h) toggles the plot edit mode for the figure specified by figure
handle h.

plotedit('state') specifies the plotedit state for the current figure.
Values for state can be as shown.

Value for state Description

on Starts plot edit mode

off Ends plot edit mode

showtoolsmenu Displays the Tools menu in the
menu bar

hidetoolsmenu Removes the Tools menu from

the menu bar

Note hidetoolsmenu is intended for GUI developers who do not want
the Tools menu to appear in applications that use the figure window.

2-3029

plotedit

Remarks

Examples

2-3030

plotedit(h, 'state') specifies the plotedit state for figure handle h.

Plot Editing Mode Graphical Interface Components

To start plot edit mode, click
this button.

Use these toolbar buttons to add a legend, text, and arrows.

<} Figure 1 =10]x]
Use ﬂ'ﬁ Edﬁ, Insert, File Edit Yiew Infert Tools Desktop ‘Window Help,
andToolsmenstocdd D E &K RA 8[| 0EFH O
obiedts or edit existing 2L|AA|B 7|E==00MNNNXXN|HE
OIJFdS ina gruph. Lotka-Volterra Predator-Prey Population Model
350 . :
. . Prey
Double-dlick on an object Predator
fo select it. R g
Many predators; Cut
250+ prey population Copy
- will decline Delat
Position labeks, legends, o C:;re
. & 200
and f)iher 0|J|eds bY 2 Line Width »
dicking and dragging. = line Styls b
§_ 150 Marker »
o F::'w prajj‘lt::zg?n Marker Size »
Access ob!eclspeqflc plot Jool R o e Froperties...
edit functions through 7 Shaw M-cade
context-sensifive pop-up % \
menus. I
0 1
0 5 10 15

Time t (Years)

Start plot edit mode for figure 2.

plotedit(2)

End plot edit mode for figure 2.

plotedit(2, '

off')

plotedit
|

Hide the Tools menu for the current figure:

plotedit('hidetoolsmenu')

See Also axes, line, open, plot, print, saveas, text, propedit

2-3031

plotmatrix

Purpose

Syntax

Description

Examples

2-3032

Scatter plot matrix

%L ot |
e .lL -
e DS
Bl 1?1l |

0 10200 10200 20 40

plotmatrix(X,Y)

plotmatrix(X)
plotmatrix(...,'LineSpec')
[H,AX,BigAXx,P] = plotmatrix(...)

plotmatrix(X,Y) scatter plots the columns of X against the columns
of Y. If X 1s p-by-m and Y is p-by-n, plotmatrix produces an n-by-m
matrix of axes.

plotmatrix(X) is the same as plotmatrix(X,X), except that the
diagonal is replaced by hist (X(:,1i)).

plotmatrix(...,'LineSpec') uses a LineSpec to create the scatter
plot. The defaultis '."'.

[H,AX,BigAx,P] = plotmatrix(...) returns a matrix of handles to
the objects created in H, a matrix of handles to the individual subaxes in
AX, a handle to a big (invisible) axes that frames the subaxes in BigAx,
and a matrix of handles for the histogram plots in P. BigAx is left as the
current axes so that a subsequent title, xlabel, or ylabel command
1s centered with respect to the matrix of axes.

Generate plots of random data.

x = randn(50,3); y = x*[-1 2 1;2 0 1;1 -2 3;]"';
plotmatrix(y,'*r")

plotmatrix

] a 5 -5 a 5 10 -10 -5 a 5 10

See Also scatter, scatter3

2-3033

plottools

Purpose

GUI

Alternatives

Syntax

2-3034

Show or hide plot tools

i x]
File Edit WView Insert Tools Debug Desktop Window Help | | Ao
DCWe|[h[RLTDE£-B|/0E(0@ BOBE50
Figue Pal... Ww [0 & X Plot Brp... W[A X
10m =] : =
w New Subplats - | Axes (no title)
- |7
i______| 20 Axes ¥V —
1 . 3D Axes o —
: F
F —
w Variables v
Ex v
ans M —
F —
F —
w Annakations [LI
. o : L= :]
\Llne LI i 10 20 30 40 &0 Add Data... |
T T T B T R R R R R A R RS + 02 x
Colars: . I - | X Axis I ¥ Axis | Z Axis | Font | More Propertiss. .. |
gid: T x [y [z ¥ Label: I— : |i|
Ticks. ..
¥ Rox LI
A

[

Click the larger Plotting Tools icon on the figure toolbar to

collectively enable plotting tools, and the smaller icon to collectively
disable them. Individually select the Figure Palette, Plot Browser,
and Property Editor tools from the figure’s View menu. For details,
see “Plotting Tools — Interactive Plotting” in the MATLAB Graphics
documentation.

plottools('on')
plottools('off')

plottools
plottools(figure_handle,...)

plottools

Description

See Also

plottools(..., 'tool"')

plottools('on') displays the Figure Palette, Plot Browser, and
Property Editor on the current figure, configured as you last used them.

plottools('off') hides the Figure Palette, Plot Browser, and
Property Editor on the current figure.

plottools with no arguments, is the same as plottools('on')

plottools(figure_handle,...) displays or hides the plot tools on the
specified figure instead of on the current figure.

plottools(...,'tool') operates on the specified tool only. tool can
be one of the following strings:

e figurepalette

® plotbrowser

® propertyeditor

Note The first time you open the plotting tools, all three of them
appear, grouped around the current figure as shown above. If you
close, move, or undock any of the tools, MATLAB remembers the
configuration you left them in and restores it when you invoke the tools
for subsequent figures, both within and across MATLAB sessions.

figurepalette, plotbrowser, propertyeditor

2-3035

plotyy

Purpose

GUI
Alternatives

Syntax

Description

2-3036

2-D line plots with y-axes on both left and right side

WAV

| fr]plotity) ~

Workspace Browser, or use the Figure Palette Plot Catalog. Manipulate
graphs in plot edit mode with the Property Editor. For details, see
“Plotting Tools — Interactive Plotting” in the MATLAB Graphics
documentation and “Creating Plots from the Workspace Browser” in the
MATLAB Desktop Tools documentation.

To graph selected variables, use the Plot Selector in the

plotyy(X1,Y1,X2,Y2)
plotyy(X1,Y1,X2,Y2,function)
plotyy(X1,Y1,X2,Y2, 'functioni','function2')
[AX,H1,H2] = plotyy(...)

plotyy(X1,Y1,X2,Y2) plots X1 versus Y1 with y-axis labeling on the
left and plots X2 versus Y2 with y-axis labeling on the right.

plotyy(X1,Y1,X2,Y2,function) uses the specified plotting function to
produce the graph.

function can be either a function handle or a string specifying plot,
semilogx, semilogy, loglog, stem, or any MATLAB function that
accepts the syntax

h = function(x,y)

For example,

plotyy(x1,y1,x2,y2,@loglog) % function handle
plotyy(x1,y1,x2,y2,'loglog') % string

Function handles enable you to access user-defined subfunctions and
can provide other advantages. See @ for more information on using
function handles.

plotyy

Examples

plotyy(X1,Y1,X2,Y2,"'functioni', 'function2') uses
functioni(X1,Y1) to plot the data for the left axis and
function2(X2,Y2) to plot the data for the right axis.

[AX,H1,H2] = plotyy(...) returns the handles of the two axes
created in AX and the handles of the graphics objects from each plot in
H1 and H2. AX(1) is the left axes and AX(2) is the right axes.

This example graphs two mathematical functions using plot as the
plotting function. The two y-axes enable you to display both sets of data
on one graph even though relative values of the data are quite different.

x = 0:0.01:20;

y1 = 200*exp(-0.05*x).*sin(x);

y2 = 0.8*exp(-0.5*x).*sin(10*x);
[AX,H1,H2] = plotyy(x,y1,x,y2, 'plot’);

You can use the handles returned by plotyy to label the axes and set
the line styles used for plotting. With the axes handles you can specify
the YLabel properties of the left- and right-side y-axis:

set(get(AX(1), 'Ylabel'),'String','Slow Decay')
set(get(AX(2), 'Ylabel'), 'String','Fast Decay')

Use the xlabel and title commands to label the x-axis and add a title:

xlabel('Time (\musec)')
title('Multiple Decay Rates')

Use the line handles to set the LineStyle properties of the left- and
right-side plots:

set(H1, 'LineStyle','--")
set(H2, 'LineStyle',': ")

2-3037

plotyy

Labeling plotyy

200 T T T

08

0.4

0.z
A0
7 :
5=
g
-0z
-04
_150—:;" \w’r -06
-200 L : L -06
4] 5 10 15 20
Zam to 20 pssc.
See Also plot, linkaxes, linkprop, loglog, semilogx, semilogy,

XAxisLocation, YAxisLocation

See “Using Multiple X- and Y-Axes” for more information.

2-3038

Right Y—axis

DelaunayTri.pointLocation

Purpose

Syntax

Description

Input
Arguments

Output
Arguments

Simplex containing specified location

SI = pointLocation(DT,QX)
SI = pointLocation(DT,QX,QY)
SI = pointLocation(DT,QX,QY,QZ)

[SI, BC] = pointLocation(DT,...)

SI = pointLocation(DT,QX) returns the indices SI of the enclosing
simplex (triangle/tetrahedron) for each query point location in QX. The
enclosing simplex for point QX(k, :) is SI(k). pointLocation returns
NaN for all points outside the convex hull.

SI = pointLocation(DT,QX,QY) and SI =
pointLocation(DT,QX,QY,QZ) allow the query point locations to be
specified in alternative column vector format when working in 2-D
and 3-D.

[SI, BC] = pointLocation(DT,...) returns the barycentric
coordinates BC.

DT Delaunay triangulation.

ax Matrix of size mpts-by-ndim, mpts being the
number of query points.

SI Column vector of length mpts containing the
indices of the enclosing simplex for each query
point. mpts is the number of query points.

BC BC is a mpts-by-ndim matrix, each row BC(1i,:)
represents the barycentric coordinates of
QX(1i,:) with respect to the enclosing simplex
SI(i).

2-3039

DelaunayTri.pointLocation

Examples

See Also

2-3040

Example 1

Create a 2-D Delaunay triangulation:

X = rand(10,2);
dt = DelaunayTri(X);

Find the triangles that contain specified query points:

grypts = [0.25 0.25; 0.5 0.5];
triids pointLocation(dt, qrypts)

Example 2

Create a 3-D Delaunay triangulation:

X = rand(10,1);
y = rand(10,1);
z = rand(10,1);

dt = DelaunayTri(x,y,z);

Find the triangles that contain specified query points and evaluate
the barycentric coordinates:

qrypts = [0.25 0.25 0.25; 0.5 0.5 0.5];
[tetids, bcs] = pointLocation(dt, qrypts)

nearestNeighbor

pol2cart

Purpose

Syntax

Description

Algorithm

Transform polar or cylindrical coordinates to Cartesian

[X,Y]

= pol2cart(THETA,RHO)
[X,Y,Z] =

pol2cart(THETA,RHO,Z)

[X,Y] = pol2cart(THETA,RHO) transforms the polar coordinate data
stored in corresponding elements of THETA and RHO to two-dimensional
Cartesian, or xy, coordinates. The arrays THETA and RHO must be the
same size (or either can be scalar). The values in THETA must be in
radians.

xyz, [X,Y,Z] = pol2cart(THETA,RHO,Z) transforms the cylindrical
coordinate data stored in corresponding elements of THETA, RHO, and Z
to three-dimensional Cartesian, or coordinates. The arrays THETA, RHO,
and Z must be the same size (or any can be scalar). The values in THETA
must be in radians.

The mapping from polar and cylindrical coordinates to Cartesian
coordinates is:

Y
P
o : 5
¥ . ;
theta |
Lol
Polar to Corfesion Mapping (ylindrical #o Cartesian Mapping
theta = atan2(y,x) theta = atan2(y,x)
rho = sgrt(x.”2 + y."2) rho = sgrt(x."2 + y."2)

Z = Z

2-3041

pol2cart

See Also cart2pol, cart2sph, sph2cart

2-3042

polar

Purpose

GUI
Alternatives

Syntax

Description

Remarks

Polar coordinate plot

K

| fr]plotity) ~

Workspace Browser, or use the Figure Palette Plot Catalog. Manipulate
graphs in plot edit mode with the Property Editor. For details, see
Plotting Tools — Interactive Plotting in the MATLAB Graphics
documentation and Creating Graphics from the Workspace Browser in
the MATLAB Desktop Tools documentation.

To graph selected variables, use the Plot Selector in the

polar(theta,rho)
polar(theta,rho,LineSpec)
polar(axes_handle,...)

h = polar(...)

The polar function accepts polar coordinates, plots them in a Cartesian
plane, and draws the polar grid on the plane.

polar(theta,rho) creates a polar coordinate plot of the angle theta
versus the radius rho. theta is the angle from the x-axis to the radius
vector specified in radians; rho is the length of the radius vector
specified in dataspace units.

polar(theta,rho,LineSpec) LineSpec specifies the line type, plot
symbol, and color for the lines drawn in the polar plot.

polar(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

h = polar(...) returns the handle of a line object in h.
Negative r values reflect through the origin, rotating by pi (since
(theta,r) transforms to (r*cos(theta), r*sin(theta))). If you

want different behavior, you can manipulate r prior to plotting. For
example, you can make r equal to max(0,r) or abs(r).

2-3043

polar

Examples Create a simple polar plot using a dashed red line:

t = 0:.01:2*pi;
polar(t,sin(2*t).*cos(2*t),'--r'")

160

270

See Also cart2pol, compass, LineSpec, plot, pol2cart, rose

2-3044

poly

Purpose

Syntax

Description

Remarks

Examples

Polynomial with specified roots

p = poly(A)
p = poly(r)
p = poly(A) where A is an n-by-n matrix returns an n+1 element

row vector whose elements are the coefficients of the characteristic
polynomial, det(s/ — A). The coefficients are ordered in descending
powers: if a vector ¢ has n+1 components, the polynomial it represents
iscst+. e s te,

p = poly(r) where r is a vector returns a row vector whose elements
are the coefficients of the polynomial whose roots are the elements of r.

Note the relationship of this command to

r = roots(p)

which returns a column vector whose elements are the roots of the
polynomial specified by the coefficients row vector p. For vectors, roots
and poly are inverse functions of each other, up to ordering, scaling,
and roundoff error.

MATLAB displays polynomials as row vectors containing the coefficients
ordered by descending powers. The characteristic equation of the matrix

A =
1 2 3
4 5 6
7 8 0

is returned in a row vector by poly:

p = poly(A)

p:

2-3045

poly

Algorithm

2-3046

1 -6 -72 -27

The roots of this polynomial (eigenvalues of matrix A) are returned in
a column vector by roots:

r = roots(p)

r‘:
12.1229
-5.7345
-0.3884

The algorithms employed for poly and roots illustrate an interesting
aspect of the modern approach to eigenvalue computation. poly(A)
generates the characteristic polynomial of A, and roots (poly(A)) finds
the roots of that polynomial, which are the eigenvalues of A. But both
poly and roots use eig, which is based on similarity transformations.
The classical approach, which characterizes eigenvalues as roots of the
characteristic polynomial, is actually reversed.

If A is an n-by-n matrix, poly(A) produces the coefficients ¢ (1) through
c(n+1), withc(1) =1, 1in

det(M-A) = eqA"+...+c,A+ec, 4

The algorithm is

z eig(A);
c zeros(n+1,1); c(1) = 1;
for j = 1:n
c(2:j+1) = c(2:j+1)-z(j)*c(1:]);
end

This recursion is easily derived by expanding the product.

(A=A —Rg) (A= 1,)

poly

See Also

It is possible to prove that poly(A) produces the coefficients in the
characteristic polynomial of a matrix within roundoff error of A. This is
true even if the eigenvalues of A are badly conditioned. The traditional
algorithms for obtaining the characteristic polynomial, which do not use
the eigenvalues, do not have such satisfactory numerical properties.

conv, polyval, residue, roots

2-3047

polyarea

Purpose

Syntax

Description

Examples

2-3048

Area of polygon

A = polyarea(X,Y)
A = polyarea(X,Y,dim)
A = polyarea(X,Y) returns the area of the polygon specified by the

vertices in the vectors X and Y.

If X and Y are matrices of the same size, then polyarea returns the area
of polygons defined by the columns X and Y.

If X and Y are multidimensional arrays, polyarea returns the area of
the polygons in the first nonsingleton dimension of X and Y.

A = polyarea(X,Y,dim) operates along the dimension specified by
scalar dim.

L = linspace(0,2.*pi,6); xv = cos(L)';yv = sin(L)"';
(113

xv = [xv ; xv(1)]; yv = [yv ; yv 3
A = polyarea(xv,yv);
plot(xv,yv); title(['Area = ' num2str(A)]); axis image

polyarea

See Also

DB

0.6

04r

n2r

Area=23776

convhull, inpolygon, rectint

2-3049

polyder

Purpose

Syntax

Description

Examples

See Also

2-3050

Polynomial derivative

k polyder(p)
k polyder(a,b)
[g,d] = polyder(b,a)

The polyder function calculates the derivative of polynomials,
polynomial products, and polynomial quotients. The operands a, b, and
p are vectors whose elements are the coefficients of a polynomial in
descending powers.

k = polyder(p) returns the derivative of the polynomial p.

k = polyder(a,b) returns the derivative of the product of the
polynomials a and b.

[q,d] = polyder(b,a) returns the numerator q and denominator d of
the derivative of the polynomial quotient b/a.

The derivative of the product

(3:{.‘2‘ +6x + 9}(3{.‘2 +2x)

1s obtained with

[3 6 9];
[1 2 0];
polyder(a,b)

X X O 9
I}

12 36 42 18

This result represents the polynomaial
123 + 3622 + 42x + 18

conv, deconv

polyeig

Pu rpose Polynomial eigenvalue problem

Syntax [X,e] = polyeig(A0,Al,...Ap)
e = polyeig(AO0,A1,..,Ap)
[X, e, s] = polyeig(AO0,A1,..,AP)

Description [X,e] = polyeig(A0,Al1,...Ap) solves the polynomial eigenvalue
problem of degree p

P -
(Ag+AA 1+ .. +A A)x =0

where polynomial degree p is a non-negative integer, and A0,A1,...Ap
are input matrices of order n. The output consists of a matrix X of size

n-by-n*p whose columns are the eigenvectors, and a vector e of length

n*p containing the eigenvalues.

If 1lambda is the jth eigenvalue in e, and x is the jth column of
eigenvectors in X, then (A0 + lambda*A1 + ... + lambda”p*Ap)*x
is approximately 0.

e = polyeig(A0,A1,..,Ap) is a vector of length n*p whose elements
are the eigenvalues of the polynomial eigenvalue problem.

[X, e, s] = polyeig(AO,A1,..,AP) also returns a vector s of length
p*n containing condition numbers for the eigenvalues. At least one of
A0 and AP must be nonsingular. Large condition numbers imply that
the problem is close to a problem with multiple eigenvalues.

Remarks Based on the values of p and n, polyeig handles several special cases:

® p = 0,or polyeig(A) is the standard eigenvalue problem: eig(A).

® p = 1, or polyeig(A,B) is the generalized eigenvalue problem:
eig(A,-B).

* n = 1,orpolyeig(a0,at,...ap) for scalars a0, a1 ..., ap is the standard
polynomial problem: roots([ap ... a1l a0]).

2-3051

polyeig

Algorithm

See Also

References

2-3052

If both A0 and Ap are singular the problem is potentially ill-posed.
Theoretically, the solutions might not exist or might not be unique.
Computationally, the computed solutions might be inaccurate. If one,
but not both, of A0 and Ap is singular, the problem is well posed, but
some of the eigenvalues might be zero or infinite.

Note that scaling A0,A1,..,Ap to have norm(Ai) roughly equal 1 may
increase the accuracy of polyeig. In general, however, this cannot be
achieved. (See Tisseur [3] for more detail.)

The polyeig function uses the QZ factorization to find intermediate
results in the computation of generalized eigenvalues. It uses
these intermediate results to determine if the eigenvalues are
well-determined. See the descriptions of eig and gz for more on this.

condeig, eig, qz

[1] Dedieu, Jean-Pierre Dedieu and Francoise Tisseur, “Perturbation
theory for homogeneous polynomial eigenvalue problems,” Linear
Algebra Appl., Vol. 358, pp. 71-94, 2003.

[2] Tisseur, Francoise and Karl Meerbergen, “The quadratic eigenvalue
problem,” SIAM Rev., Vol. 43, Number 2, pp. 235-286, 2001.

[3] Francoise Tisseur, “Backward error and condition of polynomial
eigenvalue problems” Linear Algebra Appl., Vol. 309, pp. 339-361, 2000.

polyfit

Purpose

Syntax

Description

Examples

Polynomial curve fitting

p = polyfit(x,y,n)
[p,S] = polyfit(x,y,n)
[p,S,mu] = polyfit(x,y,n)

p = polyfit(x,y,n) finds the coefficients of a polynomial p(x) of
degree n that fits the data, p(x(1i)) to y(i), in a least squares sense.
The result p is a row vector of length n+1 containing the polynomial
coefficients in descending powers:

p(x) = p1a™ + pox™ L 4+ P x+ D

[p,S] = polyfit(x,y,n) returns the polynomial coefficients p

and a structure S for use with polyval to obtain error estimates or
predictions. Structure S contains fields R, df, and normr, for the
triangular factor from a QR decomposition of the Vandermonde matrix
of x, the degrees of freedom, and the norm of the residuals, respectively.
If the data y are random, an estimate of the covariance matrix of p is
(Rinv*Rinv')*normr~2/df, where Rinv is the inverse of R. If the errors
in the data y are independent normal with constant variance, polyval
produces error bounds that contain at least 50% of the predictions.

[p,S,mu] = polyfit(x,y,n) finds the coefficients of a polynomial in

X—H
)

X =

where 1y =mean(x) and py =std(x). mu is the two-element vector
[1,,1,]. This centering and scaling transformation improves the
numerical properties of both the polynomial and the fitting algorithm.

This example involves fitting the error function, erf (x), by a polynomial
in x. This is a risky project because erf (x) is a bounded function, while
polynomials are unbounded, so the fit might not be very good.

2-3053

polyfit

2-3054

First generate a vector of x points, equally spaced in the interval [0,

2.5]; then evaluate erf (x) at those points.

X
y

(0: 0.1: 2.5)"';
erf(x);

The coefficients in the approximating polynomial of degree 6 are

p

p:

0.008

4 -0.0983

polyfit(x,y,6)

0.4217

-0.7435 0.1471

There are seven coefficients and the polynomaial is

.0084x5 —0.0983x% +0.4217x +0.1471x% +1.106x + 0.0004 .
To see how good the fit is, evaluate the polynomial at the data points

with:

f = polyval(p,x);

A table showing the data, fit, and error is

table

table

O OO oo

MNMNONDDNDDN -

=[xy fy-f]
0
.1000 0.1125
.2000 0.2227
.3000 0.3286
.4000 0.4284
.1000 0.9970
.2000 0.9981
.3000 0.9989
.4000 0.9993
.5000 0.9996

o OO oo

o O o oo

.0004
L1119
.2223
.3287
.4288

.9969
.9982
.9991
.9995
.9994

.0004
.0006
.0004
.0001
.0004

.0001
.0001
.0003
.0002
.0002

1.1064 0.0004

polyfit
|

So, on this interval, the fit is good to between three and four digits.
Beyond this interval the graph shows that the polynomial behavior
takes over and the approximation quickly deteriorates.

Xx = (0: 0.1: 5)';
y = erf(x);
f = polyval(p,Xx);

plOt(X5y5IOI5X1fJI'I)
axis([0 5 0 2])

1.6

14F .

1- O 00000000 [i i i i R

08F -

0.6t -

|:| I_ L I_
0 0.5 1 1.5

I3
(]
Ln
L3
bed
Ln
I
I
Ln
Ln

Algorithm The polyfit MATLAB file forms the Vandermonde matrix, V, whose

elements are powers of x. v; ; =«
K

2-3055

polyfit

It then uses the backslash operator, \, to solve the least squares
problem Vp=Zy.

You can modify the MATLAB file to use other functions of x as the
basis functions.

See Also poly, polyval, roots, 1scov, cov

2-3056

./arithmeticoperators.html

polyint

Purpose

Syntax

Description

See Also

Integrate polynomial analytically

polyint(p,k)
polyint(p)

polyint(p,k) returns a polynomial representing the integral of
polynomial p, using a scalar constant of integration k.

polyint(p) assumes a constant of integration k=0.

polyder, polyval, polyvalm, polyfit

2-3057

polyval

Purpose

Syntax

Description

Remarks

2-3058

Polynomial evaluation

y = polyval(p,x)

[y,delta] = polyval(p,x,S)

y = polyval(p,x,[],mu)
[y,delta] = polyval(p,x,S,mu)

y = polyval(p,x) returns the value of a polynomial of degree n
evaluated at x. The input argument p is a vector of length n+1 whose
elements are the coefficients in descending powers of the polynomial
to be evaluated.

-1
y=p1x" + pax" T 4 PpX+ Puyy
X can be a matrix or a vector. In either case, polyval evaluates p at
each element of x.

[y,delta] = polyval(p,x,S) uses the optional output structure S
generated by polyfit to generate error estimates delta. deltais an
estimate of the standard deviation of the error in predicting a future
observation at x by p(x). If the coefficients in p are least squares
estimates computed by polyfit, and the errors in the data input to
polyfit are independent, normal, and have constant variance, then
ytdelta contains at least 50% of the predictions of future observations
at x.

y = polyval(p,x,[],mu) or [y,delta] = polyval(p,Xx,S,mu) use
X =(x—pq)/ py in place of x. In this equation, py = mean(x) and

Uo =std(x) . The centering and scaling parameters mu = [y, uy] are
optional output computed by polyfit.

The polyvalm(p,x) function, with x a matrix, evaluates the polynomial
in a matrix sense. See polyvalm for more information.

polyval
|

Examples The polynomial p(x) = 3x2 +2x+1 is evaluated at x = 5,7, and 9 with

p=10[321];
polyval(p,[5 7 9])

which results in

ans =
86 162 262
For another example, see polyfit.

See Also polyfit, polyvalm, polyder, polyint

2-3059

polyvalm

Purpose
Syntax

Description

Examples

2-3060

Matrix polynomial evaluation

Y

polyvalm(p,X)

Y = polyvalm(p,X) evaluates a polynomial in a matrix sense. This is
the same as substituting matrix X in the polynomial p.

Polynomial p is a vector whose elements are the coefficients of a

polynomial in descending powers, and X must be a square matrix.

The Pascal matrices are formed from Pascal’s triangle of binomial
coefficients. Here is the Pascal matrix of order 4.

X = pascal(4)

X =
1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

Its characteristic polynomial can be generated with the poly function.

p = poly(X)

p =
1 -29 72 -29 1
This represents the polynomial x* —nga + 7'2:!:2 —29x + 1.

Pascal matrices have the curious property that the vector of coefficients
of the characteristic polynomial is palindromic; it is the same forward
and backward.

Evaluating this polynomial at each element is not very interesting.

polyval(p,X)

ans =
16 16 16 16
16 15 -140 -563
16 -140 -2549 -12089

polyvalm

16 -563 -12089 -43779

But evaluating it in a matrix sense is interesting.

polyvalm(p,X)

ans =
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

The result is the zero matrix. This is an instance of the Cayley-Hamilton
theorem: a matrix satisfies its own characteristic equation.

See Also polyfit, polyval

2-3061

pow2

Purpose

Syntax

Description

Remarks

Examples

See Also

2-3062

Base 2 power and scale floating-point numbers

X = pow2(Y)
X = pow2(F,E)
X = pow2(Y) returns an array X whose elements are 2 raised to the

power Y.

X = pow2(F,E) computes X = f¥ QE for corresponding elements
of F and E. The result is computed quickly by simply adding E to the
floating-point exponent of F. Arguments F and E are real and integer
arrays, respectively.

This function corresponds to the ANSI C function 1dexp() and the
IEEE floating-point standard function scalbn().

For IEEE arithmetic, the statement X = pow2 (F,E) yields the values:

F E X

1/2 1 1

pi/4 2 pi

-3/4 2 -3

1/2 -51 eps
1-eps/2 1024 realmax
1/2 -1021 realmin

log2, exp, hex2num, realmax, realmin

The arithmetic operators ~ and ."

power

Purpose
Syntax

Description

See Also

Array power
Z = X."Y

Z = X."Y denotes element-by-element powers. X and Y must have the
same dimensions unless one is a scalar. A scalar is expanded to an
array of the same size as the other input.

C = power(A,B) is called for the syntax 'A .~ B' when A or B is an
object.

Note that for a negative value X and a non-integer value Y, if the abs(Y)
is less than one, the power function returns the complex roots. To obtain
the remaining real roots, use the nthroot function.

nthroot, realpow

2-3063

ppval

Purpose
Syntax

Description

Examples

2-3064

Evaluate piecewise polynomial

v = ppval(pp,xx)

v = ppval(pp,xx) returns the value of the piecewise polynomial f,
contained in pp, at the entries of xx. You can construct pp using the
functions interp1, pchip, spline, or the spline utility mkpp.

v is obtained by replacing each entry of xx by the value of f there. If fis
scalar-valued, v is of the same size as xx. xx may be N-dimensional.

If pp was constructed by pchip, spline, or mkpp using the orientation of
non-scalar function values specified for those functions, then:

If fis [D1,..,Dr]-valued, and xx is a vector of length N, then V has size

[D1,...,Dr, N],withV(:,...,:,d) the value of f at xx(J).

If fis [D1,..,Dr]-valued, and xx has size [N1,...,Ns], then V has size
[D1,...,Dr, N1,...,Ns],withV(:,...,:, J1,...,Jds) thevalueof f
at xx(J1,...,ds).

If pp was constructed by interp1 using the orienatation of non-scalar
function values specified for that function, then:

If fis [D1,..,Dr]-valued, and xx is a vector of length N, then V has size

[N,D1,...,Dr], withV(J,:,...,:) the value of f at xx(J).

If fis [D1,..,Dr]-valued, and xx has size [N1,...,Ns], then V has size
[N1,...,Ns,D1,...,Dr], with V(J1,...,ds,:,...,:) the value of f
at xx(J1,...,ds).

Compare the results of integrating the function cos

a=20; b =10;
int1 = quad(@cos,a,b)

int1 =
-0.5440

ppval

See Also

with the results of integrating the piecewise polynomial pp that
approximates the cosine function by interpolating the computed values
x and vy.

X = a:b;

y COS(X);

pp = spline(x,Yy);

int2 = quad(@(x)ppval(pp,x),a,b)

int2 =
-0.5485

int1 provides the integral of the cosine function over the interval
[a,b], while int2 provides the integral over the same interval of the
piecewise polynomial pp.

mkpp, spline, unmkpp

2-3065

prefdir

Purpose

Syntax

Description

Remarks

2-3066

Folder containing preferences, history, and layout files

prefdir
f = prefdir
f = prefdir(1)

prefdir returns the folder that contains

¢ Preferences for MATLAB and related products (matlab.prf)
¢ Command history file (history.m)
® MATLAB shortcuts (shortcuts.xml)

e MATLAB desktop layout files (MATLABDesktop.xml and
Your_Saved LayoutMATLABLayout.xml)

e Other related files

f = prefdir assigns to f the name of the folder containing preferences
and related files.

f = prefdir(1) creates a folder for preferences and related files if one
does not exist. If the folder does exist, the name is assigned to f.

You must have write access to the preferences folder, or MATLAB
generates an error in the Command Window when you try to change
preferences.

The folder might be a hidden folder, for example,
myname/ .matlab/R2009a. For more information, see “Viewing Hidden
Files and Folders”.

The preferences folder MATLAB uses and how preferences migrate
when you use a new version of MATLAB depend on the version. In
R14SP3, there was a change to the way that the preference folders
were named and how they migrated, affecting R13 through R14SP2.
The differences are relevant if you run multiple versions of MATLAB
and one version is prior to R14SP3:

prefdir

® For R2009b back through and including R2006a, and R14SP3,
MATLAB uses the name of the release for the preference folder. For
example, R2009b, R2009a, ... through R14SP3. When you install
R2009b, MATLAB migrates the files in the R2009a preferences folder
to the R2009b preferences folder. While running R2009b through
R14SP3, any changes made to files in those preferences folders
(R2009b through R14SP3) are used only in their respective versions.
As an example, commands you run in R2009b will not appear in the
Command History when you run R2009a, and so on. The converse
is also true.

Upon startup, MATLAB 7.9 (R2009b) looks for, and if found uses, the
R2009b preferences folder. If not found, MATLAB creates an R2009b
preferences folder. This happens when the R2009b preferences
folder is deleted or does not exist for some other reason. MATLAB
then looks for the R2009a preferences folder, and if found, migrates
the R2009a preferences to the R2009b preferences. If it does not
find the R2009a preferences folder, it uses the default preferences
for R2009b. This process also applies when starting MATLAB 7.8
(R2009a) through 7.1 (R14SP3).

If you want to use default preferences for R2009b, and do not

want MATLAB to migrate preferences from R2009a, the R2009b
preferences folder must exist but be empty when you start MATLAB.
If you want to maintain some of your R2009b customizations, but
restore the defaults for others, in the R2009b preferences folder,
delete the files for which you want the defaults to be restored.

One file you might want to maintain 1s history.m—for more
information about the file, see “Viewing Statements in the Command
History Window” in the MATLAB Desktop Tools and Development
Environment documentation.

® The R14 through R14SP2 releases all share the R14 preferences
folder. While running R14SP1, for example, any changes made to
files in the preferences folder, R14, are used when you run R14SP2
and R14. As another example, commands you run in R14 appear
in the Command History when you run R14SP2, and the converse
is also true. The preferences are not used when you run R14SP3 or

2-3067

prefdir

Examples

See Also

2-3068

later versions because those versions each use their own preferences
folders.

e All R13 releases use the R13 preferences folder. While running
R13SP1, for example, any changes made to files in the preferences
folder, R13, are used when you run R13. As an example, commands
you run in R13 will appear in the Command History when you run
R13SP1, and the converse is true. The preferences are not used when
you run any R14 or later releases because R14 and later releases use
different preferences folders, and the converse is true.

View the location of the preferences folder:
prefdir

MATLAB returns:
ans =

C:\WINNT\Profiles\my_user_name\MATHWORKS\Application Data\MathWorks\MATLAB\R2009a

Run dir for the folder to see the files for customizing MathWorks
products:

history.m
- matlab.prf
cwdhistory.m MATLABDesktop.xml
shortcuts.xml MATLAB EditorDesktop.xml

In MATLAB, run cd(prefdir) to make the preferences folder become
the current folder.

On Windows platforms, go directly to the preferences folder in Microsoft
Windows Explorer by running winopen (prefdir).

preferences, winopen

prefdir

“Specifying Options for MATLAB Using Preferences” in the MATLAB
Desktop Tools and Development Environment documentation

2-3069

preferences

Purpose

GUI
Alternatives

Syntax

Description

See Also

2-3070

Open Preferences dialog box

As an alternative to the preferences function, select
File > Preferences in the MATLAB desktop or any desktop tool.

preferences

preferences displays the Preferences dialog box, from which you can
make changes to options for MATLAB and related products.

prefdir

“Specifying Options for MATLAB Using Preferences” in the MATLAB
Desktop Tools and Development Environment documentation

primes

Purpose
Syntax

Description

Examples

See Also

Generate list of prime numbers

p = primes(n)

p primes(n) returns a row vector of the prime numbers less than
or equal to n. A prime number is one that has no factors other than
1 and itself.

p = primes(37)
p=2 3 5 7 11 13 17 19 23 29 31 37
factor

2-3071

print, printopt

Purpose

GUI
Alternative

Syntax

Description

2-3072

Print figure or save to file and configure printer defaults

Contents

“GUI Alternative” on page 2-3072
“Syntax”

“Description” on page 2-3072

“Printer Drivers” on page 2-3074
“Graphics Format Files” on page 2-3079
“Printing Options” on page 2-3083
“Paper Sizes” on page 2-3086

“Printing Tips” on page 2-3087
“Examples” on page 2-3090

“See Also” on page 2-3092

Select File > Print from the figure window to open the Print dialog box

and File > Print Preview to open the Print Preview GUI. For details,
see “How to Print or Export” in the MATLAB Graphics documentation.

print

print(‘'argumenti', 'argument2',...)
print(handle, 'filename')

print argumenti1 argument2 ... argumentn

[pcmd,dev] = printopt

print and printopt produce hard-copy output. All arguments to the
print command are optional. You can use them in any combination
or order.

print sends the contents of the current figure, including bitmap
representations of any user interface controls, to the printer using the
device and system printing command defined by printopt.

print, printopt

print('argumenti1','argument2',...) is the function form of
print. It enables you to pass variables for any input arguments.

This form is useful for passing file names and handles (for example,
print(handle,'filename'). See “Batch Processing” on page 2-3091
for an example. Also see “Specifying the Figure to Print” on page 2-3090
for further examples.

print argumenti argument2 ... argumentn prints the figure using
the specified arguments.

The following arguments apply to both the function and the command
form:

Argument Description
handle Print the specified object.
filename Direct the output to the PostScript file designated

by filename. If filename does not include an
extension, print appends an appropriate extension.

-ddriver Print the figure using the specified printer driver,
(such as color PostScript). If you omit -ddriver,
print uses the default value stored in printopt.m.
The table in “Printer Drivers” on page 2-3074 lists
all supported device types.

-dformat Copy the figure to the system Clipboard (Microsoft
Windows platforms only). To be valid, the format
for this operation must be either -dmeta (Windows
Enhanced Metafile) or -dbitmap (Windows

Bitmap).
-dformat Export the figure to the specified file using the
filename specified graphics format (such as TIFF). The table

of “Graphics Format Files” on page 2-3079 lists all
supported graphics file formats.

2-3073

print, printopt

Printer
Drivers

2-3074

Argument Description
-smodelname Print the current Simulink model modelname.
-options Specify print options that modify the action of the

print command. (For example, the -noui option
suppresses printing of user interface controls.)
“Printing Options” on page 2-3083 lists available
options.

[pcmd,dev] = printopt returns strings containing the current
system-dependent printing command and output device. printopt is a
file used by print to produce the hard-copy output. You can edit the file
printopt.m to set your default printer type and destination.

pcmd and dev are platform-dependent strings. pcmd contains the
command that print uses to send a file to the printer. dev contains the
printer driver or graphics format option for the print command. Their
defaults are platform dependent.

Platform Print Command Driver or Format
Mac and lpr -r -dps2

UNIX

Windows COPY /B %s LPT1: -dwin

The following table shows the more widely used printer drivers
supported by MATLAB software. If you do not specify a driver, the
default setting shown in the previous table is used. For a list of all
supported printer drivers, type print -d at the MATLAB prompt.
Some things to remember:

¢ Asindicated in “Description” on page 2-3072 the -d switch specifies a
printer driver or a graphics file format:

= Specifying a printer driver without a file name or printer name
(the -P option) sends the output formatted by the specified driver
to your default printer, which may not be what you want to do.

print, printopt

Note On Windows systems, when you use the -P option to identify
a printer to use, if you specify any driver other than -dwin or
-dwinc, MATLAB writes the output to a file with an appropriate
extension but does not send it to the printer. You can then copy
that file to a printer.

= Specifying a -dmeta or a -dbitmap graphics format without a
file name places the graphic on the system Clipboard, if possible
(Windows platforms only).

= Specifying any other graphics format without a file name creates a
file in the current folder with a name such as figureN. fmt, where
Nis 1, 2, 3, ... and fmt indicates the format type, for example, eps
or png.

e Several drivers come from a product called Ghostscript, which is
shipped with MATLAB software. The last column indicates when
Ghostscript is used.

® Not all drivers are supported on all platforms. Non support is noted
in the first column of the table.

¢ If you specify a particular printer with the -P option and do not
specify a driver, a default driver for that printer is selected, either by
the operating system or by MATLAB , depending on the platform:

= On Windows, the driver associated with this particular printing
device is used.

= On Macintosh and UNIX platforms, the driver specified in
printopt.m is used

See Selecting the Printer in the Graphics documentation for more
information.

2-3075

print, printopt

2-3076

Note The MathWorks™ is planning to leverage existing operating
system (OS) support for printer drivers and devices. As a result, the
ability to specify certain print devices using the print -d command,
and certain graphics formats using the print -d command and/or the
saveas command, will be removed in a future release. In the following
table, the affected formats have an asterisk (*) next to the print
command option string. The asterisks provide a link to the Web site
which supplies a form for users to give feedback about these changes.

Printer Driver Print Command Option | Ghostscript
String

Canon BubbledJet BJ10e | -dbj10e * Yes

Canon Bubbledet BJ200 | -dbj200 * Yes

color

Canon Color Bubbledet | -dbjc600 * Yes

BJC-70/BJC-600/BJC-4000

Canon Color Bubbledet | -dbjc800 * Yes

BJC-800

Epson and compatible 9- | -depson * Yes

or 24-pin dot matrix print

drivers

Epson and compatible -deps9high * Yes

9-pin with interleaved

lines (triple resolution)

Epson LQ-2550 and -depsonc * Yes

compatible; color (not

supported on HP-700)

Fujitsu 3400/2400/1200 -depsonc * Yes

http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html

print, printopt

Printer Driver Print Command Option | Ghostscript
String

HP Designdet 650C -ddnj650c * Yes

color (not supported on

Windows)

HP Deskdet 500 -ddjet500 * Yes

HP Deskdet 500C -dcdjmono * Yes

(creates black and white

output)

HP DeskdJet 500C -dcdjcolor * Yes

(with 24 bit/pixel

color and high-quality

Floyd-Steinberg color

dithering) (not supported

on Windows)

HP Deskdet 500C/540C | -dcdj500 * Yes

color (not supported on

Windows)

HP Deskjet 550C -dcdj550 * Yes

color (not supported

on Windows)

HP Deskdet and -ddeskjet * Yes

Deskdet Plus

HP Laserdet -dlaserjet * Yes

HP LaserdJet+ -dljetplus * Yes

HP LaserdJet IIP -dljet2p * Yes

HP Laserdet III -dljet3 * Yes

HP Laserdet 4, 5L and | -dljet4 * Yes

5P

HP Laserdet 5 and 6 -dpx1lmono * Yes

2-3077

http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html

print, printopt

2-3078

Printer Driver Print Command Option | Ghostscript
String

HP Paintdet color -dpaintjet * Yes

HP PaintJet XL color -dpjx1 * Yes

HP PaintdJet XL color -dpjetxl * Yes

HP PaintdJet XL300 -dpjx1300 * Yes

color (not supported on

Windows)

HPGL for HP 7475A and | -dhpgl * No

other compatible plotters.

(Renderer cannot be set to

Z-buffer.)

IBM 9-pin Proprinter -dibmpro * Yes

PostScript black and -dps No

white

PostScript color -dpsc No

PostScript Level 2 black | -dps2 No

and white

PostScript Level 2 color -dpsc2 No

Windows color -dwinc No

(Windows only)

Windows monochrome | -dwin No

(Windows only)

http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html

print, printopt

Graphics
Format
Files

Tip Generally, Level 2 PostScript files are smaller and are rendered
more quickly when printing than Level 1 PostScript files. However, not
all PostScript printers support Level 2, so determine the capabilities of
your printer before using those drivers. Level 2 PostScript printing is
the default for UNIX platforms. You can change this default by editing
the printopt.m file. Likewise, if you want color PostScript printing

to be the default instead of black-and-white PostScript printing, edit
the line in the printopt.m file that reads dev = '-dps2'; to be

dev = '-dpsc2';.

To save your figure as a graphics format file, specify a format switch
and file name. To set the resolution of the output file for a built-in
MATLAB format, use the -r switch. (For example, -r300 sets the
output resolution to 300 dots per inch.) The -r switch is also supported
for Windows Enhanced Metafiles, JPEG, TIFF and PNG files, but is
not supported for Ghostscript raster formats. For more information,
see “Printing and Exporting without a Display” on page 2-3082 and
“Resolution Considerations” on page 2-3085.

Note When you print to a file, the file name must have fewer than
128 characters, including path name. When you print to a file in your
current folder, the filename must have fewer than 126 characters,
because MATLAB places './' or '.\"'’ at the beginning of the filename
when referring to it.

The following table shows the supported output formats for exporting

from figures and the switch settings to use. In some cases, a format is
available both as a MATLAB output filter and as a Ghostscript output
filter. All formats except for EMF are supported on both PC and UNIX
platforms.

2-3079

print, printopt

2-3080

Bitmap

or Print Command MATLAB or
Graphics Format | Vector | Option String Ghostscript
BMP monochrome | Bitmap -dbmpmono Ghostscript
BMP
BMP 24-bit BMP Bitmap -dbmp16m Ghostscript
BMP 8-bit Bitmap | -dbmp256 Ghostscript
(256-color) BMP
(this format uses a
fixed colormap)
BMP 24-bit Bitmap | -dbmp MATLAB
EMF Vector -dmeta MATLAB
EPS black and Vector -deps MATLAB
white
EPS color Vector -depsc MATLAB
EPS Level 2 black | Vector -deps2 MATLAB
and white
EPS Level 2 color Vector -depsc2 MATLAB
HDF 24-bit Bitmap | -dhdf MATLAB
ILL (Adobe Vector -dill MATLAB
Illustrator)
JPEG 24-bit Bitmap | -djpeg MATLAB
PBM (plain format) | Bitmap | -dpbm Ghostscript
1-bit
PBM (raw format) | Bitmap | -dpbmraw Ghostscript
1-bit
PCX 1-bit Bitmap -dpcxmono Ghostscript

print, printopt

Bitmap

or Print Command MATLAB or
Graphics Format | Vector | Option String Ghostscript
PCX 24-bit color Bitmap | -dpcx24b Ghostscript
PCX file format,
three 8-bit planes
PCX 8-bit newer Bitmap | -dpcx256 Ghostscript
color PCX file
format (256-color)
PCX Older color Bitmap -dpcx16 Ghostscript
PCX file format
(EGA/VGA,
16-color)
PDF Color PDF file | Vector -dpdf Ghostscript
format
PGM Portable Bitmap -dpgm Ghostscript
Graymap (plain
format)
PGM Portable Bitmap | -dpgmraw Ghostscript
Graymap (raw
format)
PNG 24-bit Bitmap | -dpng MATLAB
PPM Portable Bitmap | -dppm Ghostscript
Pixmap (plain
format)
PPM Portable Bitmap | -dppmraw Ghostscript
Pixmap (raw
format)
SVG Scalable Vector -dsvg MATLAB
Vector Graphics

2-3081

print, printopt

2-3082

Bitmap

or Print Command MATLAB or
Graphics Format | Vector | Option String Ghostscript
TIFF 24-bit Bitmap | -dtiff or -dtiffn MATLAB

TIFF preview for | Bitmap | -tiff
EPS files

The TIFF image format is supported on all platforms by almost all
word processors for importing images. The -dtiffn variant writes an
uncompressed TIFF. JPEG is a lossy, highly compressed format that
is supported on all platforms for image processing and for inclusion
into HTML documents on the Web. To create these formats, MATLAB
renders the figure using the Z-buffer rendering method and the
resulting bitmap is then saved to the specified file.

Printing and Exporting without a Display

On a UNIX platform (including Macintosh), where you can start in
MATLAB nodisplay mode (matlab -nodisplay), you can print using
most of the drivers you can use with a display and export to most of the
same file formats. The PostScript and Ghostscript devices all function
in nodisplay mode on UNIX platforms. The graphic devices -djpeg,
-dpng, -dtiff (compressed TIFF bitmaps), and -tiff (EPS with TIFF
preview) work as well, but under nodisplay they use Ghostscript

to generate output instead of using the drivers built into MATLAB.
However, Ghostscript ignores the -r option when generating -djpeg,
-dpng, -dtiff, and -tiff image files. This means that you cannot vary
the resolution of image files when running in nodisplay mode.

Naturally, the Windows only -dwin and -dwinc output formats cannot
be used on UNIX or Mac platforms with or without a display.

The same holds true on Windows platforms with the -noFigureWindows
startup option. The -dwin, -dwinc, and -dsetup options operate as
usual under -noFigureWindows. However, the printpreview GUI does
not function in this mode.

print, printopt

Printing
Options

The formats which you cannot generate in nodisplay mode on UNIX
and Mac platforms are:

bitmap (-dbitmap) — Windows bitmap file (except for Simulink

models)

bmp (-dbmp...) — Monochrome and color bitmaps

hdf (-dhdf) — Hierarchical Data Format

svg (-dsvg) — Scalable Vector Graphics file (except for Simulink

models)

tiffn (-dtiffn) — TIFF image file, no compression

In addition, uicontrols do not print or export in nodisplay mode.

This table summarizes options that you can specify for print. The
second column links to tutorials in “Printing and Exporting” in the
MATLAB Graphics documentation that provide operational details.
Also see “Resolution Considerations” on page 2-3085 for information
on controlling output resolution.

Option Description

-adobecset PostScript devices only. Use PostScript default
character set encoding. See “Early PostScript 1
Printers”.

-append PostScript devices only. Append figure to existing
PostScript file. See “Settings That Are Driver
Specific”.

-cmyk PostScript devices only. Print with CMYK colors
instead of RGB. See “Setting CMYK Color”.

-ddriver Printing only. Printer driver to use. See “Printer
Drivers” on page 2-3074 table.

-dformat Exporting only. Graphics format to use. See

“Graphics Format Files” table.

2-3083

print, printopt

Option

Description

-dsetup

Windows printing only. Display the
(platform-specific) Print Setup dialog. Settings
you make in it are saved, but nothing is printed.

-fhandle

Handle of figure to print. Note that you cannot
specify both this option and the -swindowtitle
option. See “Which Figure Is Printed”.

-loose

PostScript and Ghostscript printing only. Use
loose bounding box for PostScript output. See
“Producing Uncropped Figures”.

-noui

Suppress printing of user interface controls. See
“Excluding User Interface Controls”.

-opengl

Render using the OpenGL algorithm. Note that
you cannot specify this method in conjunction
with -zbuffer or -painters. See “Selecting a
Renderer”.

-painters

Render using the Painter’s algorithm. Note that
you cannot specify this method in conjunction
with -zbuffer or -opengl. See “Selecting a
Renderer”.

-Pprinter

Specify name of printer to use. See “Selecting
the Printer”.

-rnumber

PostScript and built-in raster formats, and
Ghostscript vector format only. Specify resolution
in dots per inch. Defaults to 90 for Simulink, 150
for figures in image formats and when printing in
Z-buffer or OpenGL mode, screen resolution for
metafiles, and 864 otherwise. Use -ro0 to specify
screen resolution. For details, see “Resolution
Considerations” on page 2-3085 and “Setting the
Resolution”.

2-3084

print, printopt

Option Description

-swindowtitle Specify name of Simulink system window to
print. Note that you cannot specify both this
option and the -fhandle option. See “Which
Figure Is Printed”.

-V Windows printing only. Display the Windows
Print dialog box. The v stands for “verbose mode.”

-zbuffer Render using the Z-buffer algorithm. Note that

you cannot specify this method in conjunction
with -opengl or -painters. See “Selecting a
Renderer”.

Resolution Considerations

Use -rnumber to specify the resolution of the generated output. In
general, using a higher value will yield higher quality output but at the
cost of larger output files. It affects the resolution and output size of all
MATLAB built-in raster formats (which are identified in column four of
the table in “Graphics Format Files” on page 2-3079).

Note Built-in graphics formats are generated directly from MATLAB
without conversion through the Ghostscript library. Also, in headless
(nodisplay) mode, writing to certain image formats is not done by
built-in drivers, as it is when a display is being used. These formats are
-djpeg, -dtiff, and -dpng. Furthermore, the -dhdf and -dbmp formats
cannot be generated in headless mode (but you can substitute -dbmp16m
for -dbmp). See “Printing and Exporting without a Display” on page
2-3082 for details on printing when not using a display.

Unlike the built-in MATLAB formats, graphic output generated via
Ghostscript does not directly obey -r option settings. However, the
intermediate PostScript file generated by MATLAB as input for

the Ghostscript processor is affected by the -r setting and thus can

2-3085

print, printopt

Paper
Sizes

2-3086

indirectly influence the quality of the final Ghostscript generated
output.

The effect of the -r option on output quality can be subtle at ordinary
magnification when using the OpenGL or ZBuffer renderers and writing
to one of the MATLAB built-in raster formats, or when generating vector
output that contains an embedded raster image (for example, PostScript
or PDF). The effect of specifying higher resolution is more apparent
when viewing the output at higher magnification or when printed, since
a larger -r setting provides more data to use when scaling the image.

When generating fully vectorized output (as when using the Painters
renderer to output a vector format such as PostScript or PDF), the
resolution setting affects the degree of detail of the output; setting
resolution higher generates crisper output (but small changes in the
resolution may have no observable effect). For example, the gap widths
of lines that do not use a solid (' - ') linestyle can be affected.

MATLAB printing supports a number of standard paper sizes. You can
select from the following list by setting the PaperType property of the
figure or selecting a supported paper size from the Print dialog box.

Property Value Size (Width by Height)
usletter 8.5 by 11 inches
uslegal 8.5 by 14 inches
tabloid 11 by 17 inches
A0 841 by 1189 mm
Al 594 by 841 mm
A2 420 by 594 mm
A3 297 by 420 mm
A4 210 by 297 mm
A5 148 by 210 mm
BO 1029 by 1456 mm

print, printopt

Printing
Tips

Property Value Size (Width by Height)
B1 728 by 1028 mm
B2 514 by 728 mm
B3 364 by 514 mm
B4 257 by 364 mm
B5 182 by 257 mm
arch-A 9 by 12 inches
arch-B 12 by 18 inches
arch-C 18 by 24 inches
arch-D 24 by 36 inches
arch-E 36 by 48 inches
A 8.5 by 11 inches
B 11 by 17 inches
C 17 by 22 inches
D 22 by 34 inches
E 34 by 43 inches

Figures with Resize Functions

The print command produces a warning when you print a figure
having a callback routine defined for the figure ResizeFcn. To avoid the
warning, set the figure PaperPositionModeproperty to auto or select
Match Figure Screen Size in the File > Page Setup dialog box.

Troubleshooting Microsoft Windows Printing

If you encounter problems such as segmentation violations, general
protection faults, or application errors, or the output does not appear as
you expect when using Microsoft printer drivers, try the following:

2-3087

../ref/figure_props.html#ResizeFcn
../ref/figure_props.html#PaperPositionMode

print, printopt

2-3088

If your printer 1s PostScript compatible, print with one of the
MATLAB built-in PostScript drivers. There are various PostScript
device options that you can use with print , which all start with -dps.

The behavior you are experiencing might occur only with certain
versions of the print driver. Contact the print driver vendor for
information on how to obtain and install a different driver.

Try printing with one of the MATLAB built-in Ghostscript devices.
These devices use Ghostscript to convert PostScript files into other
formats, such as HP Laserdet, PCX, Canon Bubbledet, and so on.

Copy the figure as a Windows Enhanced Metafile using the Edit >
Copy Figure menu item on the figure window menu or the print
-dmeta option at the command line. You can then import the file into
another application for printing.

You can set copy options in the figure’s File > Preferences >
Copying Options dialog box. The Windows Enhanced Metafile
Clipboard format produces a better quality image than Windows
Bitmap.

Printing MATLAB GUIs

You can generally obtain better results when printing a figure window
that contains MATLAB uicontrols by setting these key properties:

® Set the figure PaperPositionMode property to auto. This ensures

that the printed version is the same size as the on-screen version.
With PaperPositionMode set to auto MATLAB, does not resize
the figure to fit the current value of the PaperPosition. This is
particularly important if you have specified a figure ResizeFcn,
because if MATLAB resizes the figure during the print operation,
ResizeFcn is automatically called.

To set PaperPositionMode on the current figure, use the command:

set(gcf, 'PaperPositionMode', 'auto')

Set the figure InvertHardcopy property to off. By default, MATLAB
changes the figure background color of printed output to white,

print, printopt

but does not change the color of uicontrols. If you have set the
background color, for example, to match the gray of the GUI devices,
you must set InvertHardcopy to off to preserve the color scheme.

To set InvertHardcopy on the current figure, use the command:

set(gcf, 'InvertHardcopy', 'off')

e Use a color device if you want lines and text that are in color on the
screen to be written to the output file as colored objects. Black and
white devices convert colored lines and text to black or white to
provide the best contrast with the background and to avoid dithering.

¢ Use the print command’s -loose option to keep a bounding box from
being too tightly wrapped around objects contained in the figure.
This is important if you have intentionally used space between
uicontrols or axes and the edge of the figure and you want to
maintain this appearance in the printed output.

If you print or export in nodisplay mode, none of the uicontrols the
figure has will be visible. If you run code that adds uicontrols to a
figure when the figure is invisible, the controls will not print until the
figure is made visible.

Printing Interpolated Shading with PostScript Drivers

You can print MATLAB surface objects (such as graphs created with
surf or mesh) using interpolated colors. However, only patch objects
that are composed of triangular faces can be printed using interpolated
shading.

Printed output is always interpolated in RGB space, not in the colormap
colors. This means that if you are using indexed color and interpolated
face coloring, the printed output can look different from what is
displayed on screen.

PostScript files generated for interpolated shading contain the color
information of the graphics object’s vertices and require the printer

to perform the interpolation calculations. This can take an excessive
amount of time and in some cases, printers might time out before

2-3089

print, printopt

Examples

2-3090

finishing the print job. One solution to this problem is to interpolate
the data and generate a greater number of faces, which can then be
flat shaded.

To ensure that the printed output matches what you see on the screen,
print using the -zbuffer option. To obtain higher resolution (for
example, to make text look better), use the -r option to increase the
resolution. There is, however, a tradeoff between the resolution and the
size of the created PostScript file, which can be quite large at higher
resolutions. The default resolution of 150 dpi generally produces good
results. You can reduce the size of the output file by making the figure
smaller before printing it and setting the figure PaperPositionMode to
auto, or by just setting the PaperPosition property to a smaller size.

Specifying the Figure to Print

Pass a figure handle as a variable to the function form of print. For
example:

h = figure;
plot(1:4,5:8)
print(h)

Save the figure with the handle h to a PostScript file named Figure2,
which can be printed later:

print(h,'-dps', 'Figure2.ps')
Pass in a file name as a variable:

filename = 'mydata’;
print(h, '-dpsc', filename);

(Because a file name is specified, the figure will be printed to a file.)

Specifying the Model to Print

Print a noncurrent Simulink model using the -s option with the title
of the window (in this case, f14):

print, printopt

print('-sf14')

If the window title includes any spaces, you must call the function form
rather than the command form of print. For example, this command
saves the Simulink window title Thruster Control:

print('-sThruster Control')

To print the current system, use:
print('-s')

For information about issues specific to printing Simulink windows,
see the Simulink documentation.

Printing Figures at Screen Size

This example prints a surface plot with interpolated shading. Setting
the current figure’s (gcf) PaperPositionMode to auto enables you to
resize the figure window and print it at the size you see on the screen.
See “Printing Options” on page 2-3083 and “Printing Interpolated
Shading with PostScript Drivers” on page 2-3089 for information on
the -zbuffer and -r200 options.

surf (peaks)

shading interp

set(gcf, 'PaperPositionMode’, 'auto')
print('-dpsc2',"'-zbuffer','-r200")

For additional details, see “Printing Images” in the MATLAB Graphics
documentation.
Batch Processing

You can use the function form of print to pass variables containing
file names. For example, this for loop uses file names stored in a cell
array to create a series of graphs and prints each one with a different
file name:

fnames = {'file1', 'file2', 'file3'};

2-3091

print, printopt

See Also

2-3092

for k=1:length(fnames)
surf (peaks)
print('-dtiff','-r200',fnames{k})
end

Tiff Preview

The command
print('-depsc','-tiff','-r300', 'picturel')

saves the current figure at 300 dpi, in a color Encapsulated PostScript
file named picturei.eps. The -tiff option creates a 72 dpi TIFF
preview, which many word processor applications can display on screen
after you import the EPS file. This enables you to view the picture

on screen within your word processor and print the document to a
PostScript printer using a resolution of 300 dpi.

figure, hgsave, imwrite, orient, printdlg, printopt, saveas

printdlg

Purpose

Syntax

Description

See Also

Print dialog box

printdlg

printdlg(fig)
printdlg('-crossplatform',fig)
printdlg('-setup',fig)

printdlg prints the current figure.

printdlg(fig) creates a modal dialog box from which you can print
the figure window identified by the handle fig. Note that uimenus
do not print.

printdlg('-crossplatform',fig) displays the standard
cross-platform MATLAB printing dialog rather than the built-in
printing dialog box for Microsoft Windows computers. Insert this option
before the fig argument.

printdlg('-setup',fig) forces the printing dialog to appear in a
setup mode. Here one can set the default printing options without
actually printing.

Note A modal dialog box prevents the user from interacting with other
windows before responding. For more information, see WindowStyle in
the MATLAB Figure Properties.

pagesetupdlg, printpreview

2-3093

printpreview

Purpose

GUI
Alternative

Syntax

Description

2-3094

Preview figure to print

Contents
“GUI Alternative” on page 2-3094

“Description” on page 2-3094

“Right Pane Controls” on page 2-3095
“The Layout Tab” on page 2-3096
“The Lines/Text Tab” on page 2-3097
“The Color Tab” on page 2-3099

“The Advanced Tab” on page 2-3101
“See Also” on page 2-3102

Use File > Print Preview on the figure window menu to access the
Print Preview dialog box, described below. For details, see “Using Print
Preview” in the MATLAB Graphics documentation.

printpreview
printpreview(f)

printpreview displays a dialog box showing the figure in the currently
active figure window as it will print. A scaled version of the figure
displays in the right-hand pane of the GUI.

printpreview(f) displays a dialog box showing the figure having the
handle f as it will print.

Use the Print Preview dialog box, shown below, to control the layout
and appearance of figures before sending them to a printer or print file.
Controls are grouped into four tabbed panes: Layout, Lines/Text,
Color, and Advanced.

printpreview

) Print Preview

StyleShest Idefault 'I e B |

Layout I Lines/Text | Colorl Adwvanced |

Placement
£ Auka (Bckual Size, Centered)
% Use manual size and position
Lefk: I 0.z25=
Top: | z.50
‘Width: I a_guﬁ
Height: I s_ggil
Use defaults | Fill page |
Fix aspect ratio | Center |
~Paper
Format: IUSLetter ;I
width: I B.SDﬁ
Height: I 11_00?’
~Uniks:———————— Crientation
¥ Inches * Partrait
£ Centimeters i Landscape
= Paints " Rotated

o] 4|
Zoom I Oreer vl Prink | Refresh | Help | Close |
0 2 4 6 8

| I Il | I]

10

11

p B 8 8 B

E) o 1

Prormins clesl of ormn d siridies

a_ s = m =

TE T AR

Right Pane Controls

You can position and scale plots on the printed page using the rulers in

the right-hand pane of the Print Preview dialog. Use the outer ruler
handlebars to change margins. Moving them changes plot proportions.
Use the center ruler handlebars to change the position of the plot on

the page. Plot proportions do not change, but you can move portions of

2-3095

printpreview

2-3096

the plot off the paper. The buttons on that pane let you refresh the
plot, close the dialog (preserving all current settings), print the page
immediately, or obtain context-sensitive help. Use the Zoom box and
scroll bars to view and position page elements more precisely.

The Layout Tab

Use the Layout tab, shown above, to control the paper format and
placement of the plot on printed pages. The following table summarizes
the Layout options:

Group

Placement

Paper

Units

Option
Auto

Use manual...

Top, Left, Width,
Height

Use defaults
Fill page

Fix aspect ratio
Center

Format

Width, Height

Inches
Centimeters

Points

Orientation Portrait

Description

Let MATLAB decide placement of
plot on page

Specify position parameters for
plot on page

Standard position parameters in
current units

Revert to default position

Expand figure to fill printable area
(see note below)

Correct height/width ratio
Center plot on printed page

U.S. and ISO® sheet size selector
Sheet size in current units

Use inches as units for dimensions
and positions

Use centimeters as units for
dimensions and positions

Use points as units for dimensions
and positions

Upright paper orientation

printpreview

Group Option Description
Landscape Sideways paper orientation
Rotated Currently the same as Landscape

Note Selecting the Fill page option changes the PaperPosition
property to fill the page, allowing objects in normalized units to expand
to fill the space. If an object within the figure has an absolute size, for
example a table, it can overflow the page when objects with normalized
units expand. To avoid having objects fall off the page, do not use Fill
page under such circumstances.

The Lines/Text Tab

Use the Lines/Text tab, shown below, to control the line weights, font
characteristics, and headers for printed pages. The following table
summarizes the Lines/Text options:

2-3097

printpreview

2-3098

L thl Colorl ﬁdvancedl
rLines l"\&
Line Width 5 pafaul
" Scale By IU *
" Custom IDS— s
i Widkh {* Default

" Cuskom I

Lawouk |—

—Text
FontMame & pefault

" Custom I Helvetica vI

Fant Size @ Default
" Scale By ID e
" Custom IID 'l paints

Font Weight | Default =l
Font &ngle | Default [
Header

Header Text

Fork. .. |

Date Style I JE— LI
Group Option Description
Lines Line Scale all lines by a percentage from 0
Width upward (100 being no change), print lines

at a specified point size, or default line
widths used on the plot

Min Width Smallest line width (in points) to use when
printing; defaults to 0.5 point

Text Font Select a system font for all text on plot, or
Name default to fonts currently used on the plot

printpreview

Group Option
Font Size

Font
Weight

Font
Angle

Header Header
Text

Date Style

Description

Scale all text by a percentage from 0
upward (100 being no change), print text
at a specified point size, or default to this

Select Normal ... Bold font styling for all
text from drop-down menu or default to the
font weights used on the plot

Select Normal, Italic or Oblique font
styling for all text from drop-down menu or
default to the font angles used on the plot

Type the text to appear on the header at
the upper left of printed pages, or leave
blank for no header

Select a date format to have today’s date
appear at the upper left of printed pages,
or none for no date

The Color Tab

Use the Color tab, shown below, to control how colors are printed for
lines and backgrounds. The following table summarizes the Color

options:

2-3099

printpreview

2-3100

Lavout | Lines) Text

Color Scale

£ Black and White (Lines and Text anby)

" Gray Scale
* Color
* RisE

= CMYK

Background color

£ Same as figure

% Custom | white j
Group Option Description
Color Scale Black and Select to print lines and text in black
White and white, but use color for patches
and other objects
Gray Scale Convert colors to shades of gray on

printed pages

printpreview

Group Option

Color

Background Same as
Color figure

Custom

Description

Print everything in color, matching
colors on plot; select RGB (default) or
CMYK color model for printing

Print the figure’s background color
as it is

Select a color name, or type a
colorspec for the background; white
(default) implies no background
color, even on colored paper.

The Advanced Tab

Use the Advanced tab, shown below, to control finer details of printing,
such as limits and ticks, renderer, resolution, and the printing of
UlIControls. The following table summarizes the Advanced options:

Layoutl Linesll'Textl Caolor "\ %
Bxes limiks and ticks
% Recompute limits and ticks

™ Keep screen limits and ticks

Miscellaneous

Renderer I auto

L+l L

Resolution I auto

[¥ Print UlContrals

2-3101

printpreview

Group Option
Axes limits Recompute
and ticks limits and ticks

Keep limits and
ticks

Miscellaneous Renderer

Description

Redraw x- and y-axes ticks and
limits based on printed plot size
(default)

Use the x- and y-axes ticks and
limits shown on the plot when
printing the previewed figure

Select a rendering algorithm for
printing: painters, zbuffer,
opengl, or auto (default)

Resolution Select resolution to print at in
dots per inch: 150, 300, 600, or
auto (default), or type in any
other positive value

Print Print all visible UIControls in

UIControls the figure (default), or uncheck
to exclude them from being
printed

See Also printdlg, pagesetupdlg

For more information, see How to Print or Export in the MATLAB

Graphics documentation.

2-3102

prod

Purpose Product of array elements

Syntax B = prod(A)
B = prod(A,dim)

Description B = prod(A) returns the products along different dimensions of an
array.

If Ais a vector, prod(A) returns the product of the elements.

If A is a matrix, prod(A) treats the columns of A as vectors, returning
a row vector of the products of each column.

If A is a multidimensional array, prod(A) treats the values along the
first non-singleton dimension as vectors, returning an array of row
vectors.

B = prod(A,dim) takes the products along the dimension of A specified
by scalar dim.

Examples The magic square of order 3 is
M = magic(3)
M =
8 1 6
3 5 7
4 9 2

The product of the elements in each column is

prod(M) =
96 45 84

The product of the elements in each row can be obtained by:
prod(M,2) =

48

2-3103

prod

105
72

See Also cumprod, diff, sum

2-3104

profile

Purpose

GUI
Alternatives

Syntax

Description

Profile execution time for function

As an alternative to the profile function, select Desktop > Profiler
to open the Profiler.

profile on

profile -history

profile -nohistory

profile -history -historysize integer
profile -timer clock

profile -history -historysize integer -timer clock
profile off

profile resume

profile clear

profile viewer

S = profile(status')

stats = profile('info')

The profile function helps you debug and optimize MATLAB code files
by tracking their execution time. For each MATLAB function, MATLAB
subfunction, or MEX-function in the file, profile records information
about execution time, number of calls, parent functions, child functions,
code line hit count, and code line execution time. Some people use
profile simply to see the child functions; see also depfun for that
purpose. To open the Profiler graphical user interface, use the profile
viewer syntax. By default, Profiler time is CPU time. The total time
reported by the Profiler is not the same as the time reported using the
tic and toc functions or the time you would observe using a stopwatch.

2-3105

profile

Note If your system uses Intel multi-core chips, you may want to
restrict the active number of CPUs to 1 for the most accurate and
efficient profiling. See “Intel Multi-Core Processors — Setting for
Most Accurate Profiling on Windows Systems” or “Intel Multi-Core
Processors — Setting for Most Accurate Profiling on Linux Systems” for
details on how to do this.

profile on starts the Profiler, clearing previously recorded profile
statistics. Note the following:

® You can specify all, none, or a subset, of the history, historysize
and timer options with the profile on syntax.

® You can specify options in any order, including before or after on.

e [If the Profiler is currently on and you specify profile with one of the
options, MATLAB software returns an error message and the option
has no effect. For example, if you specify profile timer real,
MATLAB returns the following error: The profiler has already
been started. TIMER cannot be changed.

® To change options, first specify profile off, and then specify
profile onor profile resume with new options.

profile -history records the exact sequence of function calls. The
profile function records, by default, up to 1,000,000 function entry
and exit events. For more than 1,000,000 events, profile continues to
record other profile statistics, but not the sequence of calls. To change
the number of function entry and exit events that the profile function
records, use the historysize option. By default, the history option
1s not enabled.

profile -nohistory disables further recording of the history (exact
sequence of function calls). Use the -nohistory option after having
previously set the -history option. All other profiling statistics
continue to be collected.

2-3106

profile

profile -history -historysize integer specifies the number of
function entry and exit events to record. By default, historysize
is set to 1,000,000.

profile -timer clock specifies the type of time to use. Valid values
for clock are:

e 'cpu' — The Profiler uses computer time (the default).

e 'real' — The Profiler uses wall-clock time.

For example, cpu time for the pause function is typically small, but real
time accounts for the actual time paused, and therefore would be larger.

profile -history -historysize integer -timer clock specifies all
of the options. Any order is acceptable, as is a subset.

profile off stops the Profiler.

profile resume restarts the Profiler without clearing previously
recorded statistics.

profile clear clears the statistics recorded by profile.

profile viewer stops the Profiler and displays the results in the
Profiler window. For more information, see Profiling for Improving
Performance in the Desktop Tools and Development Environment
documentation.

S = profile(status') returns a structure containing information
about the current status of the Profiler. The table lists the fields in the
order that they appear in the structure.

Default
Field Values Value
ProfilerStatus 'on' or 'off!' off
Detaillevel "mmex' ‘mmex’
Timer 'cpu' or 'real' cpu’

2-3107

profile

Default
Field Values Value
HistoryTracking 'on' or 'off!' ‘off’
HistorySize integer 1000000

stats = profile('info') displays a structure containing the results.
Use this function to access the data generated by profile. The table
lists the fields in the order that they appear in the structure.

Field Description

FunctionTable Structure array containing statistics
about each function called

FunctionHistory Array containing function call history

ClockPrecision Precision of the profile function’s time
measurement

ClockSpeed Estimated clock speed of the CPU

Name Name of the profiler

The FunctionTable field is an array of structures, where each structure
contains information about one of the functions or subfunctions called
during execution. The following table lists these fields in the order
that they appear in the structure.

Field Description

CompleteName Full path to FunctionName, including
subfunctions

FunctionName Function name; includes subfunctions

FileName Full path to FunctionName, with file extension,

excluding subfunctions

2-3108

profile

Field
Type

NumCalls
TotalTime

TotalRecursiveTime
Children
Parents

ExecutedLines

IsRecursive

PartialData

Description

MATLAB functions, MEX-functions, and
many other types of functions including
MATLABsubfunctions, nested functions, and
anonymous functions

Number of times the function was called

Total time spent in the function and its child
functions

No longer used.
FunctionTable indices to child functions
FunctionTable indices to parent functions

Array containing line-by-line details for the
function being profiled.

Column 1: Number of the line that executed.
If a line was not executed, it does not appear
in this matrix.

Column 2: Number of times the line was
executed

Column 3: Total time spent on that line.
Note: The sum of Column 3 entries does not
necessarily add up to the function’s TotalTime.

BOOLEAN value: Logical 1 (true) if recursive,
otherwise logical 0 (false)

BOOLEAN value: Logical 1 (true) if function
was modified during profiling, for example by
being edited or cleared. In that event, data
was collected only up until the point when the
function was modified.

2-3109

profile

Examples

2-3110

Profile and Display Results

This example profiles the MATLAB magic command and then displays
the results in the Profiler window. The example then retrieves the
profile data on which the HTML display is based and uses the profsave
command to save the profile data in HTML form.

profile on

plot(magic(35))

profile viewer

p = profile('info');
profsave(p, 'profile_results')

Profile and Save Results

Another way to save profile data is to store it in a MAT-file. This
example stores the profile data in a MAT-file, clears the profile data
from memory, and then loads the profile data from the MAT-file. This
example also shows a way to bring the reloaded profile data into the
Profiler graphical interface as live profile data, not as a static HTML

page.

p = profile('info');
save myprofiledata p
clear p

load myprofiledata
profview(0,p)

Profile and Show Results Including History

This example illustrates an effective way to view the results of profiling
when the history option is enabled. The history data describes the
sequence of functions entered and exited during execution. The profile
command returns history data in the FunctionHistory field of the
structure it returns. The history data is a 2-by-n array. The first row
contains Boolean values, where 0 means entrance into a function and

1 means exit from a function. The second row identifies the function
being entered or exited by its index in the FunctionTable field.

profile

See Also

This example reads the history data and displays it in the MATLAB
Command Window.

profile on -history
plot(magic(4));
p = profile('info');

for n = 1:size(p.FunctionHistory,2)
if p.FunctionHistory(1,n)==0
str = 'entering function: ';
else
str = 'exiting function: ';
end
disp([str p.FunctionTable(p.FunctionHistory(2,n)).FunctionName])
end

depdir, depfun, mlint, profsave

Profiling for Improving Performance in the MATLAB Desktop Tools
and Development Environment documentation

“Using the Parallel Profiler” in the Parallel Computing Toolbox
documentation

2-3111

profsave

Purpose

Syntax

Description

Examples

See Also

2-3112

Save profile report in HTML format

profsave
profsave(profinfo)
profsave(profinfo,dirname)

profsave executes the profile('info') function and saves the results
in HTML format. profsave creates a separate HTML file for each
function listed in the FunctionTable field of the structure returned by
profile. By default, profsave stores the HTML files in a subfolder of
the current folder named profile results.

profsave(profinfo) saves the profiling results, profinfo, in HTML
format. profinfo is a structure of profiling information returned by the
profile('info') function.

profsave(profinfo,dirname) saves the profiling results, profinfo,
in HTML format. profsave creates a separate HTML file for each
function listed in the FunctionTable field of profinfo and stores them
in the folder specified by dirname.

Run profile and save the results.

profile on

plot(magic(5))

profile off

profsave(profile('info'), 'myprofile_results')

profile

Profiling for Improving Performance in the MATLAB Desktop Tools
and Development Environment documentation

propedit
|

Pu rpose Open Property Editor

Fropeity Editar - Fiquis AN

Figure MName: I [+ Show Figure Mumber More Fropetties. .. |
Colarmap: %I m I =t ;I Export Setup, .. |
Figure Color: fiy v|

Syntax propedit
propedit(handle_list)

Description propedit starts the Property Editor, a graphical user interface to the
properties of graphics objects. If no current figure exists, propedit
will create one.

propedit(handle list) edits the properties for the object (or objects)
in handle list.

Starting the Property Editor enables plot editing mode for the figure.

See Also inspect, plotedit, propertyeditor

2-3113

propedit (COM)

Purpose

Syntax

Description

Remarks

Examples

See Also

2-3114

Open built-in property page for control

h.propedit
propedit(h)

h.propedit requests the control to display its built-in property page.

Note that some controls do not have a built-in property page. For those
controls, this command fails.

propedit(h) is an alternate syntax for the same operation.
COM functions are available on Microsoft Windows systems only.

Create a Microsoft Calendar control and display its property page:

cal = actxcontrol('mscal.calendar', [0 O 500 500]);
cal.propedit

inspect, get (COM)

properties

Purpose

Syntax

Description

Definitions

Examples

Class property names

properties('classname')
properties(obj)
p = properties(...)

properties('classname') displays the names of the public properties
for the MATLAB class named by classname. The properties function
also displays inherited properties.

properties(obj) obj can be either a scalar object or an array of objects.
When obj is scalar, properties also returns dynamic properties.

See “Dynamic Properties — Adding Properties to an Instance” for
information on using dynamic properties.

p = properties(...) returns the property names in a cell array of
strings.

A property is public when its GetAccess attribute value is public and
its Hidden attribute value is false (default values for these attributes).
See “Property Attributes” for a complete list of attributes.

properties is also a MATLAB class-definition keyword. See classdef
for more information on class definition keywords.

Retrieve the names of the public properties of class memmapfile and
store the result in a cell array of strings:

p = properties('memmapfile');

p

ans =
'writable’
'offset’
‘format'
'repeat’
'filename'

2-3115

properties

Construct an instance of the MException class and get its properties
names:

me = MException('Msg:ID', 'MsgText');
properties(me)
Properties for class MException:

identifier
message

cause
stack

Alternatives You can use the Workspace browser to browse current property
values. See “MATLAB Workspace” for more information on using the
Workspace browser.

See Also fieldnames | events | methods

Tutorials + “Properties — Storing Class Data”

2-3116

propertyeditor

Purpose

GUI
Alternatives

Syntax

Description

See Also

Show or hide property editor

Fropeity Editar - Fiquis AN

Figure MName: I [+ Show Figure Mumber More Fropetties. .. |
Colarmap: %I m I =t ;I Export Setup, .. |
Figure Color: fiy v|

[

Click the larger Plotting Tools icon on the figure toolbar to

collectively enable plotting tools, and the smaller icon = to collectively
disable them. Open or close the Property Editor tool from the figure’s
View menu. For details, see “The Property Editor” in the MATLAB
Graphics documentation.

propertyeditor('on')
propertyeditor('off')
propertyeditor('toggle')
propertyeditor
propertyeditor(figure_handle,...)

propertyeditor('on') displays the Property Editor on the current
figure.

propertyeditor('off') hides the Property Editor on the current
figure.

propertyeditor('toggle') or propertyeditor toggles the visibility of
the property editor on the current figure.

propertyeditor(figure_handle,...) displays or hides the Property
Editor on the figure specified by figure handle.

plottools, plotbrowser, figurepalette, inspect

2-3117

Purpose

Syntax

Description

Examples

2-3118

Psi (polygamma) function

Y = psi(X)

Y = psi(k,X)

Y = psi(k0:k1,X)

Y = psi(X) evaluates the y function for each element of array X. X

must be real and nonnegative. The g function, also known as the
digamma function, is the logarithmic derivative of the gamma function

v (x) = digamma(x)
_ d(log(I'(x)))
- dx
_ d(I(x)) / dx
I E)

Y = psi(k,X) evaluates the kth derivative of y at the elements of X.
psi(0,X) is the digamma function, psi(1,X) is the trigamma function,
psi(2,X) is the tetragamma function, etc.

Y = psi(k0:k1,X) evaluates derivatives of order kO through k1 at X.
Y(k,j) is the (k-1+k0)th derivative of y, evaluated at X(j).

Example 1

Use the psi function to calculate Euler’s constant, y.

format long

-psi(1)

ans =
0.57721566490153

-psi(0,1)
ans =
0.57721566490153

See Also

References

Example 2

The trigamma function of 2, psi(1,2), is the same as (7%/6) — 1.

format long

psi(1,2)

ans =
0.64493406684823

pi*2/6 - 1
ans =
0.64493406684823

Example 3

This code produces the first page of Table 6.1 in Abramowitz and
Stegun [1].

x = (1:.005:1.250)';
[x gamma(x) gammaln(x) psi(0:1,x)"' x-1]

Example 4

This code produces a portion of Table 6.2 in [1].

psi(2:3,1:.01:2)"
gamma, gammainc, gammaln

[1] Abramowitz, M. and I. A. Stegun, Handbook of Mathematical
Functions, Dover Publications, 1965, Sections 6.3 and 6.4.

2-3119

publish

Purpose

Syntax

Description

Input
Arguments

2-3120

Publish MATLAB file with code cells, saving output to specified file type

publish('file')
publish('file','format')
publish('file', options)
my_doc = publish('file',...)

publish('file') publishes file.m by running it in the base
workspace, one cell at a time. It saves the code, comments, and results
to an HTML output file, file.html. The MATLAB software stores this
output file, along with other supporting output files, in a subfolder of
the folder containing file.m. The subfolder is named html.

publish('file', 'format') saves the code, comments, and results
to an output file, file.format. The output subfolder is named html,
regardless of the output file format.

publish('file', options) publishes file.m using the structure
options.

my_doc = publish('file',...) returns the output resulting from
publishing file.m to my_doc.
file
Specifies the file to publish.
format

Specifies the format to which you want to publish the file. Valid
formats appear in the “Options for the publish Function” table
under options.

options

A structure with the fields listed in the following table.

publish

Options for the publish Function

Field

Values

format

Specifies the output format for the published document:
® 'doc' — Microsoft Word output format.

e 'latex' — LaTeX output format.

® 'ppt' — Microsoft PowerPoint output format.

e 'xml' — Extensible Markup Language output format.
e 'pdf' — Portable Document Format output format.

If you specify 'pdf', then specify imageFormat as '.bmp' (the
default) or '.jpg"'.

® 'html' (default)— Hypertext Markup Language output format.

If you specify html, MATLAB includes the code at the end of the
published HTML file as comments, even when you set the showCode
option to false. Because MATLAB includes the code as comments,
the code does not display in a Web browser. Use the grabcode
function to extract the MATLAB code from the HTML file.

stylesheet

Specifies the Extensible Stylesheet Language (XSL) file that you
want MATLAB to use when you specify a format of 'html', 'xml’,
or 'latex':

e '' (default) — The MATLAB default stylesheet

e XSL file name — The full path of the XSL file

outputDir

Specifies the folder to which you want MATLAB to publish the output
document and its associated image files:

e '' (default) — MATLAB places output in the html subfolder of the
current folder, which MATLAB creates.

e full path — MATLAB places output in the folder you specify.

2-3121

publish

Options for the publish Function (Continued)

Field

Values

imageFormat

Specifies the file type for images that MATLAB produces when

publishing files:

® 'png' (default unless format is latex or pdf)

e 'egpsc2' (default when format is latex)

‘bmp' (default when format is 'pdf"')

Alternatively, '.jpg' when the format is 'pdf"'

¢ Any format supported by print when figureSnapMethod is print,

unless format is pdf

® Any format supported by imwrite when figureSnapMethod is
getframe, entireFigureWindow, or entireGUIWindow, unless

format is pdf

figureSnapMethod

Specifies how figure windows and GUI dialog boxes that the code
creates appear in published documents. Window decorations are the

title bar, toolbar, menu bar, and window border.

Window Background
Decorations for Color for ...
Values
GUlIs Figures | GUIs Figures
'entireGUIWindow' Included| Excluded | Match White
(default) screen
'print' Excluded| Excluded | White White
'getframe' Excluded| Excluded | Match Match
screen screen
"entireFigureWindow' | Included | Included | Match Match
screen screen

2-3122

publish
|

Options for the publish Function (Continued)

Field Values

useNewFigure A logical value that specifies whether MATLAB creates a Figure
window for figures that the code generates:

® true (default) — If the code generates a figure, then MATLAB
creates a Figure window with a white background, and at the
default size before publishing.

e false — MATLAB does not create a figure window.

This value enables you to use a figure with different properties
for publishing. Open a Figure window, change the size and
background color, for example, and then publish. Figures in your
published document use the characteristics of the figure you
opened before publishing.

maxHeight Specifies the maximum height, in pixels, for an image that the code

generates:

e [] (default) — Height is unrestricted. Always used when the
format is pdf.

® Any positive integer — Height is the specified value.

maxWidth Specifies the maximum width, in pixels, for an image that the code

generates:

e [] (default) — Width is unrestricted. Always used when the
format is pdf.

® Any positive integer — Width is the specified value.

showCode Logical value that specifies whether MATLAB includes the code in
the published document:

® true (default)

e false

2-3123

publish

Options for the publish Function (Continued)

Field Values

evalCode Logical value that specifies whether MATLAB runs the code that
it is publishing:

® true (default)

Use this option if you want to run the code. If set to true and you
are publishing a function file that requires inputs, specify the
codeToEvaluate option too.

e false

Use this option if you do not want to run the code, but do want

to present it (without output) in the published document. If you
use the publish command to publish the file that contains the
command, set this option to false. Otherwise, MATLAB attempts
to publish the file recursively.

catchError Logical value that specifies what MATLAB does if there is an error
in the code that it is publishing:

e true (default) — MATLAB continues publishing and includes the
error in the published file.

e false — MATLAB displays the error and publishing ends.

codeToEvaluate Specifies the code that MATLAB is to evaluate. By default, MATLAB
evaluates the code in the file you are publishing.

2-3124

publish
|

Options for the publish Function (Continued)

Field Values

createThumbnail | Logical value that specifies whether MATLAB creates a thumbnail
image of the published document:

® true (default)

e false

maxOutputLines Value that specifies the maximum number of output lines per cell
that you want to publish before truncating the output:
e Inf (default) — MATLAB includes all output lines.

* Nonnegative integer — MATLAB includes, at most, the number
of lines you specify.

Examples Copy sine_wave.m, publish the file to HTML, and then view the
published document:

copyfile(fullfile(docroot, 'techdoc', 'matlab_env', 'examples’',
‘sine_wave.m'),'."','f")

% When you run the command that follows, MATLAB runs sine_wave.m,
and saves the code, comments, and results to
/html/sine_wave.html:

I

publish('sine_wave.m', 'html")

% View the published output file in the Web browser:
web('html/sine_wave.html"')

Copy sine_wave.m, publish the file to Microsoft Word format by using a
structure, and then view the published document:

copyfile(fullfile(docroot, 'techdoc', 'matlab_env', 'examples’',

2-3125

publish

'sine_wave.m'),'."','f")

% Define the structure, options_doc_nocode,
% to exclude code from the output

% and publish to Microsoft Word format:
options_doc_nocode.format="'doc"'
options_doc_nocode.showCode=false

% Publish sine_wave.m:
publish('sine_wave.m',options_doc_nocode)

% View the published output file in Microsoft Word:
winopen('html/sine_wave.doc')

Copy collatz.m, create a structure to specify the input values, publish
the file to HTML, and then view the published document:

copyfile(fullfile(docroot, 'techdoc', 'matlab_env', 'examples’,
'collatz.m'),'.','f")

% Create a structure, opts, that contains the code that you
% want collatz.m to evaluate when it runs:
opts.codeToEvaluate = 'n = 3; collatz(n)';

% In the MATLAB Web browser, display the results of
% publishing collatz.m when it runs with the values
% specified in opts:

web (publish('collatz',opts))

Copy sine_wave.m, publish the file capturing window decorations, and
then view the published document:

copyfile(fullfile(docroot, 'techdoc', 'matlab_env', 'examples’,
'sine_wave.m'),'.','f")

% Create an options file that causes the published document
% to capture window decorations:

2-3126

publish
|

function_options.format="html';
function_options.figureSnapMethod="'entireGUIWindow';

% Publish the script using the options file:
publish('sine_wave.m',function_options);

% View the output in the MATLAB Web browser
web('html/sine_wave.html')

Publish a demo file to PDF, and then open the published document:

open(publish('sparsity',struct('format', 'pdf', 'outputDir',tempname)

Alternatives To publish a file from the desktop:

1 Open the MATLAB code file that you want to publish in the Editor.

2 Choose one of the following:

¢ Publish with default options by choosing File > Publish
filename.

e Publish with customized options by choosing File > Publish
Configuration for filename > Edit Publish Configurations
for filename, and then adjust the Publish settings.
See Also grabcode | notebook

How To + “Publishing MATLAB Code Files”
* “Defining Code Cells”

2-3127

PutCharArray

Purpose

Syntax

Description

Remarks

2-3128

Store character array in Automation server

MATLAB Client

h.PutCharArray('varname', 'workspace', 'string')
PutCharArray(h, 'varname', 'workspace', 'string')
invoke(h, 'PutCharArray', 'varname', 'workspace', 'string')

IDL Method Signature
PutCharArray([in] BSTR varname, [in] BSTR workspace,
[in] BSTR string)

Microsoft Visual Basic Client
PutCharArray(varname As String, workspace As String,
string As String)

PutCharArray stores the character array in string in the specified
workspace of the server attached to handle h, assigning to it the variable
varname. The workspace argument can be either base or global.

The character array specified in the string argument can have any
dimensions. However, PutCharArray changes the dimensions to a
1-by-n column-wise representation, where n is the number of characters
in the array. Executing the following commands in MATLAB illustrates
this behavior:

h = actxserver('matlab.application');
chArr = ['abc'; 'def'; 'ghk']

chArr =

abc

def

ghk

h.PutCharArray('Foo', 'base', chArr)
tstArr = h.GetCharArray('Foo', 'base')
tstArr =

adgbehcfk

PutCharArray
|

Server function names, like PutCharArray, are case sensitive when
using the dot notation syntax shown in the Syntax section.

There 1s no difference in the operation of the three syntaxes shown
above for the MATLAB client.

Examples Store string str in the base workspace of the server using
PutCharArray.

MATLAB Client

h = actxserver('matlab.application');
h.PutCharArray('str', 'base',
'He jests at scars that never felt a wound.')

w
|

= h.GetCharArray('str', 'base')

He jests at scars that never felt a wound.

Visual Basic .NET Client

This example uses the Visual Basic MsgBox command to control flow
between MATLAB and the Visual Basic Client.

Dim Matlab As Object
Try

Matlab = GetObject(, "matlab.application")
Catch e As Exception

Matlab = CreateObject("matlab.application")
End Try
MsgBox ("MATLAB window created; now open it...")

Open the MATLAB window, then click Ok.

Matlab.PutCharArray("str", "base", _
"He jests at scars that never felt a wound.")
MsgBox("In MATLAB, type" & vbCrLf _
& "str")

2-3129

PutCharArray

In the MATLAB window type str; MATLAB displays:

str =
He jests at scars that never felt a wound.

Click Ok.

MsgBox ("closing MATLAB window...")

Click Ok to close and terminate MATLAB.

Matlab.Quit()

See Also GetCharArray, PutWorkspaceData, GetWorkspaceData, Execute

2-3130

PutFullMatrix

Purpose

Syntax

Description

Examples

Matrix in Automation server workspace

MATLAB Client
h.PutFullMatrix('varname', 'workspace', xreal, ximag)
PutFullMatrix(h, 'varname', 'workspace', xreal, ximag)

IDL Method Signature

PutFullMatrix([in] BSTR varname, [in] BSTR
workspace, [in] SAFEARRAY (double) xreal, [in]
SAFEARRAY (double) ximag)

Microsoft Visual Basic Client

PutFullMatrix([in] varname As String, [in] workspace As
String, [in] xreal As Double, [in] ximag As Double)

h.PutFullMatrix('varname', 'workspace', xreal, ximag) stores
a matrix in the specified workspace of the server attached to handle h
and assigns it to variable varname. Use xreal and ximag for the real
and imaginary parts of the matrix. The matrix cannot be a scalar,
an empty array, or have more than two dimensions. The values for
workspace are base or global.

PutFullMatrix(h, 'varname', 'workspace', xreal, ximag) is an
alternate syntax.

For VBScript clients, use the GetWorkspaceData and PutWorkspaceData
functions to pass numeric data to and from the MATLAB workspace.
These functions use the variant data type instead of safearray which
1s not supported by VBScript.

Use a MATLAB client to write a matrix to the base workspace of the
server:

h = actxserver('matlab.application');
h.PutFullMatrix('M', 'base', rand(5), zeros(5))

%Use one output for real values only

xreal = h.GetFullMatrix('M', 'base', zeros(5), zeros(5))

2-3131

PutFullMatrix

2-3132

Use a Visual Basic .NET client to write a matrix to the base workspace
of the server:

Dim MatLab As Object
Dim XReal(4, 4) As Double
Dim XImag(4, 4) As Double
Dim ZReal(4, 4) As Double
Dim ZImag(4, 4) As Double
Dim i, j As Integer

For i = 0 To 4
For j = 0 To 4
XReal(i, j) = Rnd() * 6
XImag(i, j) = O
Next j
Next i

Matlab = CreateObject("matlab.application")
MatLab.PutFullMatrix("M", "base", XReal, XImag)
MatLab.GetFullMatrix("M", "base", ZReal, ZImag)

Use a MATLAB client to write a matrix to the global workspace of the
server:

h = actxserver('matlab.application');

h.PutFullMatrix('X', 'global', [1 3 5; 2 4 6],
[111; 111])

h.invoke('Execute', 'whos global')

Use a Visual Basic .NET client to write a matrix to the global workspace
of the server:

PutFullMatrix
|

Dim MatLab As Object
Dim XReal(1, 2) As Double
Dim XImag(1, 2) As Double
Dim result As String
Dim i, j As Integer

For i = 0 To 1
For j = 0 To
XReal(i, j)
XImag(i, j)
Next j

Next i

\V]

2 4 1) + i

I
—_—
—.

Matlab = CreateObject("matlab.application")
MatLab.PutFullMatrix("X", "global", XReal, XImag)
result = Matlab.Execute("whos global")

MsgBox (result)

PutFule x|
Mame Size Bytes Class
k4 253 96 double array (global conplex)

Grand tatal is 6 elements using 96 bykes

See Also GetFullMatrix | PutWorkspaceData | Execute

How To + “MATLAB COM Automation Server Support”
+ “Exchanging Data with the Server”

2-3133

PutWorkspaceData

Purpose

Syntax

Description

Examples

2-3134

Data in Automation server workspace

MATLAB Client
h.PutWorkspaceData('varname', 'workspace', data)
PutWorkspaceData(h, 'varname', 'workspace', data)

IDL Method Signature

PutWorkspaceData([in] BSTR varname, [in] BSTR
workspace, [in] VARIANT data)

Microsoft Visual Basic Client

PutWorkspaceData(varname As String, workspace
As String, data As Object)

h.PutWorkspaceData('varname', 'workspace', data) stores data
in the workspace of the server attached to handle h and assigns it to
varname. The values for workspace are base or global.

PutWorkspaceData(h, 'varname', 'workspace', data) is an
alternate syntax.

Use PutWorkspaceData to pass numeric and character array data
respectively to the server. Do not use PutWorkspaceData on sparse
arrays, structures, or function handles. Use the Execute method for
these data types.

The GetWorkspaceData and PutWorkspaceData functions pass numeric
data as a variant data type. These functions are especially useful for
VBScript clients as VBScript does not support the safearray data type
used by GetFullMatrix and PutFullMatrix.

Create an array in a MATLAB client and put it in the base workspace of
the MATLAB Automation server:

h = actxserver('matlab.application');
for i = 0:6

data(i+1) =1 * 15;
end

PutWorkspaceData

h.PutWorkspaceData('A', 'base', data)

Create an array in a Visual Basic client and put it in the base workspace
of the MATLAB Automation server:

1 Create the Visual Basic application. Use the MsgBox command to
control flow between MATLAB and the application:

Dim Matlab As Object
Dim data(6) As Double
Dim i As Integer
MatLab = CreateObject("matlab.application")
For i = 0 To 6
data(i) =1 * 15
Next i
MatLab.PutWorkspaceData("A", "base", data)
MsgBox("In MATLAB, type" & vbCrLf & "A")

2 Open the MATLAB window and type A. MATLAB displays:

A =
0 15 30 45 60 75 90

3 Click Ok to close and terminate MATLAB.
See Also GetWorkspaceData | PutFullMatrix | PutCharArray | Execute

How To + “Executing Commands in the MATLAB Server”
+ “Exchanging Data with the Server”

2-3135

pwd

Purpose

Syntax

Description

Alternatives

See Also

How To

2-3136

Identify current folder

pwd
currentFolder = pwd

pwd displays the MATLAB current folder.

currentFolder = pwd returns the current folder as a string to
currentFolder.

¢ Use the Current Folder field in the MATLAB desktop toolbar.

® Use address bar in the Current Folder browser.
cd | dir

+ “Tools for Managing Files”

qmr

Purpose

Syntax

Description

Quasi-minimal residual method

X = gqmr(A,b)

agmr(A,b,tol)

agmr(A,b,tol,maxit)

agmr(A,b,tol,maxit,M)

agmr (A,b,tol,maxit,M1,M2)
agmr(A,b,tol,maxit,M1,M2,x0)

[x,flag] = gmr(A,b,...)

[x,flag,relres] = gmr(A,b,...)
[x,flag,relres,iter] = gmr(A,b,...)
[x,flag,relres,iter,resvec] = qmr(A,b,...)

X = qgmr(A,b) attempts to solve the system of linear equations A*x=b
for x. The n-by-n coefficient matrix A must be square and should be
large and sparse. The column vector b must have length n. A can be
a function handle afun such that afun(x, 'notransp') returns A*x
and afun(x, 'transp') returns A' *x. See “Function Handles” in the
MATLAB Programming documentation for more information.

“Parameterizing Functions”, in the MATLAB Mathematics
documentation, explains how to provide additional parameters to the
function afun, as well as the preconditioner function mfun described
below, if necessary.

If gmr converges, a message to that effect is displayed. If gmr fails to
converge after the maximum number of iterations or halts for any
reason, a warning message is printed displaying the relative residual
norm(b-A*x)/norm(b) and the iteration number at which the method
stopped or failed.

gmr(A,b,tol) specifies the tolerance of the method. If tol is [], then
gmr uses the default, 1e-6.

gmr(A,b,tol,maxit) specifies the maximum number of iterations. If
maxit is [], then gmr uses the default, min(n,20).

gmr(A,b,tol,maxit,M) and gqmr(A,b,tol,maxit,M1,M2) use
preconditioners M or M = M1*M2 and effectively solve the system

2-3137

qmr

Examples

2-3138

inv(M)*A*x = inv(M)*b for x. If Mis [] then gmr applies no
preconditioner. M can be a function handle mfun such that
mfun(x, 'notransp') returns M\x and mfun(x, 'transp') returns M'\x.

gmr(A,b,tol,maxit,M1,M2,x0) specifies the initial guess. If x0is [],
then gmr uses the default, an all zero vector.

[x,flag] = gmr(A,b,...) also returns a convergence flag.
Flag Convergence
0 gmr converged to the desired tolerance tol within maxit
iterations.
1 gmr iterated maxit times but did not converge.
2 Preconditioner M was ill-conditioned.
3 The method stagnated. (Two consecutive iterates were
the same.)
4 One of the scalar quantities calculated during gmr became
too small or too large to continue computing.

Whenever flag is not 0, the solution x returned is that with minimal
norm residual computed over all the iterations. No messages are
displayed if the flag output is specified.

[x,flag,relres] = qgmr(A,b,...) also returns the relative residual
norm(b-A*x)/norm(b). If flagis 0, relres <= tol.

[x,flag,relres,iter] = gmr(A,b,...) also returns the iteration
number at which x was computed, where 0 <= iter <= maxit.

[x,flag,relres,iter,resvec] = gmr(A,b,...) also returns a vector
of the residual norms at each iteration, including norm(b-A*x0).

Example 1

n = 100;
on = ones(n,1);

qmr

A spdiags([-2*on 4*on -on],-1:1,n,n);
b sum(A,2);

tol = 1e-8; maxit = 15;

M1 = spdiags([on/(-2) on],-1:0,n,n);

M2 = spdiags([4*on -on],0:1,n,n);

x = gmr(A,b,tol,maxit,M1,M2);

displays the message

gqmr converged at iteration 9 to a solution...
with relative residual
5.6e-009

Example 2

This example replaces the matrix A in Example 1 with a handle to a
matrix-vector product function afun. The example is contained in an
M-file run_gmr that

e Calls gmr with the function handle @afun as its first argument.

® Contains afun as a nested function, so that all variables in run_gmr
are available to afun.

The following shows the code for run_qgmr:

function x1 = run_qgmr

n = 100;

on = ones(n,1);

A = spdiags([-2*on 4*on -on],-1:1,n,n);
b = sum(A,2);

tol = 1e-8;

maxit = 15;

M1 = spdiags([on/(-2) on],-1:0,n,n);
M2 = spdiags([4*on -on],0:1,n,n);
x1 = gmr(@afun,b,tol,maxit,M1,M2);

function y = afun(x,transp_flag)
if strcmp(transp_flag, 'transp') %y = A'*x

2-3139

qmr

y =4 7% x;
y(1:n-1) = y(1:n-1) - 2 * x(2:n);
y(2:n) = y(2:n) - x(1:n-1);

elseif strcmp(transp_flag, 'notransp') % y = A*x
y =4 7% x;
y(2:n) = y(2:n) - 2 * x(1:n-1);
y(1:n-1) = y(1:n-1) - x(2:n);

end

end
end

When you enter
X1=run_qgmr;
MATLAB software displays the message

gqmr converged at iteration 9 to a solution with relative residual
5.6e-009

Example 3

load west0479;

A west0479;

b sum(A,2);
[x,flag] = qmr(A,b)

flag is 1 because gmr does not converge to the default tolerance 1e-6
within the default 20 iterations.

[L1,U1] = luinc(A,1e-5);
[x1,flag1] = gmr(A,b,1e-6,20,L1,U1)

flag1 is 2 because the upper triangular U1 has a zero on its diagonal,
and gmr fails in the first iteration when it tries to solve a system such as
Ui*y = r for y using backslash.

[L2,U2] = luinc(A,1e-6);
[x2,flag2,relres2,iter2,resvec2] = qmr(A,b,1e-15,10,L2,U2)

2-3140

qmr

flag2 is 0 because gmr converges to the tolerance of 1.6571e-016 (the
value of relres?2) at the eighth iteration (the value of iter2) when
preconditioned by the incomplete LU factorization with a drop tolerance
of 1e-6. resvec2(1) = norm(b) and resvec2(9) = norm(b-A*x2).
You can follow the progress of gmr by plotting the relative residuals at
each iteration starting from the initial estimate (iterate number 0).

semilogy(0:iter2,resvec2/norm(b),'-0")
xlabel('iteration number')
ylabel('relative residual')

relative residual

iteration number

See Also bicg, bicgstab, cgs, gmres, 1sqr, luinc, minres, pcg, symmlq,
function_handle (@), mldivide (\)

2-3141

qmr

References [1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods, SIAM,

Philadelphia, 1994.

[2] Freund, Roland W. and Néel M. Nachtigal, “QMR: A quasi-minimal
residual method for non-Hermitian linear systems,” SIAM Journal:

Numer. Math. 60, 1991, pp. 315-339.

2-3142

qr

Purpose

Syntax

Description

Orthogonal-triangular decomposition

[Q,R] = ar(A)
[Q,R] = ar(A,0)
[Q,R,E] = ar(A)
[Q,R,E] = qr(A,0)

X = qr(A)
X = qr(A,0)
R = ar(A)

[C,R] = ar(A,B)
[C,R,E] = ar(A,B)
[C,R] = ar(A,B,0)
[C,R,E] = ar(A,B,0)

[Q,R] = gr(A), where A is m-by-n, produces an m-by-n upper triangular
matrix R and an m-by-m unitary matrix Q so that A = Q*R.

[Q,R] = gr(A,0) produces the economy-size decomposition. If m > n,
only the first n columns of Q and the first n rows of R are computed. If
m<=n, this is the same as [Q,R] = qr(A).

If A is full:

[Q,R,E] = gqr(A) produces unitary Q, upper triangular R and a
permutation matrix E so that A*E = Q*R. The column permutation E
1s chosen so that abs(diag(R)) is decreasing.

[Q,R,E] = gr(A,0) produces an economy-size decomposition in which
E is a permutation vector, so that A(:,E) = Q*R.

X = qr(A) and X = gr(A,0) return a matrix X such that triu(X) is the
upper triangular factor R.

If A is sparse:

R = gr(A) computes a Q-less QR decomposition and returns the upper
triangular factor R. Note that R = CHOL(A'*A). Since Q is often nearly
full, this is preferred to [Q,R] = QR(A).

R = gr(A,0) produces economy-size R. If m>n, R has only n rows. If
m<=n, this is the same as R = qr(A).

2-3143

qr

Examples

See Also

2-3144

[Q,R,E] = gr(A) produces unitary Q, upper triangular R and a
permutation matrix E so that A*E = Q*R. The column permutation E is
chosen to reduce fill-in in R.

[Q,R,E] = gr(A,0) produces an economy-size decomposition in which
E is a permutation vector, so that A(:,E) = Q*R.

[C,R] = gr(A,B), where B has as many rows as A, returns C = Q' *B.
The least-squares solution to A*X = Bis X = R\C.

[C,R,E] = gr(A,B), also returns a fill-reducing ordering. The
least-squares solution to A*X = Bis X = E*(R\C).

[C,R] = gr(A,B,0) produces economy-size results. If m>n, C and R have
only n rows. If m<=n, this is the same as [C,R] = qr(A,B).

[C,R,E] = gr(A,B,0) additionally produces a fill-reducing
permutation vector E. In this case, the least-squares solution to A*X =
Bis X(E,:) = R\C.

Find the least squares approximate solution to A*x = b with the Q-less
QR decomposition and one step of iterative refinement:

if issparse(A), R = qr(A);
else R = triu(qgqr(A)); end
x = R\(R'"\(A"*b));

r==>bn - A*x;

e = R\(R'"\(A'"*r));

X =X + e;

lu | 1d1

qgrdelete

Purpose

Syntax

Description

Examples

Remove column or row from QR factorization

[@1,R1] = grdelete(Q,R,])
[@1,R1] = grdelete(Q,R,j,"'col")
[@1,R1] = grdelete(Q,R,j, 'row')

[Q1,R1] = grdelete(Q,R,j) returns the QR factorization of the
matrix A1, where A1 is A with the column A(:,j) removed and [Q,R] =
gr(A) is the QR factorization of A.

[Q1,R1] = grdelete(Q,R,j,'col') is the same as qrdelete(Q,R,j).

[Q1,R1] = grdelete(Q,R,j, 'row') returns the QR factorization of
the matrix A1, where A1 is A with the row A(j,:) removed and [Q,R] =
gr(A) is the QR factorization of A.

A = magic(5);
[Q,R] = ar(A);
i =3

[@1,R1] = grdelete(Q,R,j, 'row');

Q1 =
0.5274 -0.5197 -
0.7135 0.6911
0.3102 -0.1982
0.3413 -0.4616

.6697 -0.0578
.0158 0.1142
.4675 -0.8037
.5768 0.5811

o O oo

R1 =
32.2335 26.0908 19.9482 21.4063 23.3297

0 -19.7045 -10.9891 0.4318 -1.4873

0 0 22.7444 5.8357 -3.1977

0 0 0 -14.5784 3.7796

returns a valid QR factorization, although possibly different from

A2 = A;
A2(j,:) = [1;
[Q2,R2] = qgr(A2)

2-3145

qgrdelete

Q2 =
-0.5274 0.5197 0.6697 -0.0578
-0.7135 -0.6911 -0.0158 0.1142
-0.3102 0.1982 -0.4675 -0.8037
-0.3413 0.4616 -0.5768 0.5811
R2 =

-32.2335 -26.0908 -19.9482 -21.4063 -23.3297
0 19.7045 10.9891 -0.4318 1.4873

0 0 -22.7444 -5.8357 3.1977
0 0 0 -14.5784 3.7796
Algorithm The gqrdelete function uses a series of Givens rotations to zero out the

appropriate elements of the factorization.

See Also planerot, qr, grinsert

2-3146

qgrinsert

Purpose

Syntax

Description

Examples

Insert column or row into QR factorization
[Q1,R1] = grinsert(Q,R,j,Xx)

Q,R,j,x
[Q1,R1] grinsert(Q,R,j,x,'col")
[@1,R1] = grinsert(Q,R,j,x, 'row")

H H H

[Q1,R1] = grinsert(Q,R,j,x) returns the QR factorization of the
matrix A1, where A1 is A = Q*R with the column x inserted before
A(:,j). If Ahas n columns and j = n+1, then x is inserted after the
last column of A.

[Q1,R1] = grinsert(Q,R,j,x,'col') is the same as
qrinsert(Q,R,j,x).

[Q1,R1] = grinsert(Q,R,j,x, 'row') returns the QR factorization
of the matrix A1, where A1 is A = Q*R with an extra row, X, inserted
before A(j,:).

A = magic(5);
[Q,R] = qr(A);
j=3;

X = 1:5;

[Q1,R1] = qrinsert(Q,R,j,x, 'row')

Q1 =
0.5231 0.5039 -0.6750 0.1205 0.0411 0.0225
0.7078 -0.6966 0.0190 -0.0788 0.0833 -0.0150
0.0308 0.0592 0.0656 0.1169 0.1527 -0.9769
0.1231 0.1363 0.3542 0.6222 0.6398 0.2104
0.3077 0.1902 0.4100 0.4161 -0.7264 -0.0150
0.3385 0.4500 0.4961 -0.6366 0.1761 0.0225

R1 =

32.4962 26.6801 21.4795 23.8182 26.0031
0 19.9292 12.4403 2.1340 4.3271
0 0 24.4514 11.8132 3.9931
0 0 0 20.2382 10.3392

2-3147

grinsert

0 0 0 0 16.1948
0 0 0 0 0

returns a valid QR factorization, although possibly different from

A2 = [A(1:j-1,:); x5 A(j:end,:)];
[@2,R2] = qgr(A2)

Q2 =
-0.5231 0.5039 0.6750 -0.1205 0.0411 0.0225
-0.7078 -0.6966 -0.0190 0.0788 0.0833 -0.0150
-0.0308 0.0592 -0.0656 -0.1169 0.1527 -0.9769
-0.1231 0.1363 -0.3542 -0.6222 0.6398 0.2104
-0.3077 0.1902 -0.4100 -0.4161 -0.7264 -0.0150
-0.3385 0.4500 -0.4961 0.6366 0.1761 0.0225

R2 =

-32.4962 -26.6801 -21.4795 -23.8182 -26.0031

0 19.9292 12.4403 2.1340 4.3271

0 0 -24.4514 -11.8132 -3.9931

0 0 0 -20.2382 -10.3392

0 0 0 0 16.1948

0 0 0 0 0
Algorithm The grinsert function inserts the values of x into the jth column (row)

of R. It then uses a series of Givens rotations to zero out the nonzero
elements of R on and below the diagonal in the jth column (row).

See Also planerot, qr, qrdelete

2-3148

qrupdate

Description
Syntax

Description

Remarks

Examples

Rank 1 update to QR factorization

[Q1,R1] grupdate(Q,R,u,Vv)

[Q1,R1] grupdate(Q,R,u,v) when [Q,R] = gr(A) is the original
QR factorization of A, returns the QR factorization of A + u*v', where u
and v are column vectors of appropriate lengths.

grupdate works only for full matrices.

The matrix

mu sqrt(eps)

mu

—_

.4901e-08

A = [ones(1,4); mu*eye(4)];

1s a well-known example in least squares that indicates the dangers of
forming A' *A. Instead, we work with the QR factorization — orthonormal
Q and upper triangular R.

[Q,R] = ar(A);
As we expect, R is upper triangular.
R =

-1.0000 -1.0000 -1.0000 -1.0000
0 0.0000 0.0000 0.0000

0 0 0.0000 0.0000
0 0 0 0.0000
0 0 0 0

2-3149

qrupdate

In this case, the upper triangular entries of R, excluding the first row,
are on the order of sqrt(eps).

Consider the update vectors

u=7_[-10000]"; v=o0nes(4,1);

Instead of computing the rather trivial QR factorization of this rank
one update to A from scratch with

[QT,RT] = qr(A + u*v')
QT =
0 0 0 0 1
-1 0 0 0 0
0 -1 0 0 0
0 0 -1 0 0
0 0 0 -1 0
RT =
1.0e-007 *
-0.1490 0 0 0
0 -0.1490 0 0
0 0 -0.1490 0
0 0 0 -0.1490
0 0 0 0

we may use qrupdate.
[@1,R1] = grupdate(Q,R,u,vVv)
Q1 =

-0.0000 -0.0000 -0.0000 -0.0000 1.0000
1.0000 -0.0000 -0.0000 -0.0000 0.0000

2-3150

qrupdate

Algorithm

References

See Also

0.0000 1.0000 -0.0000 -0.0000 0.0000
0.0000 0.0000 1.0000 -0.0000 0.0000
-0.0000 -0.0000 -0.0000 1.0000 0.0000

R1 =
1.0e-007 *
0.1490 0.0000 0.0000 0.0000
0 0.1490 0.0000 0.0000
0 0 0.1490 0.0000
0 0 0 0.1490
0 0 0 0

Note that both factorizations are correct, even though they are different.

grupdate uses the algorithm in section 12.5.1 of the third edition of
Matrix Computations by Golub and van Loan. qrupdate is useful since,
if we take N = max(m,n), then computing the new QR factorization

from scratch is roughly an O (Na] algorithm, while simply updating the
existing factors in this way is an O {Nz) algorithm.

[1] Golub, Gene H. and Charles Van Loan, Matrix Computations, Third
Edition, Johns Hopkins University Press, Baltimore, 1996

cholupdate, qr

2-3151

quad

Purpose

Syntax

Description

2-3152

Numerically evaluate integral, adaptive Simpson quadrature

quad(fun,a,b)
quad(fun,a,b,tol)
quad(fun,a,b,tol,trace)
q,fcnt] = quad(...)

— 0O O O
I}

Quadrature is a numerical method used to find the area under the
graph of a function, that is, to compute a definite integral.

g = jif(x)dx

g = quad(fun,a,b) tries to approximate the integral of function fun
from a to b to within an error of 1e-6 using recursive adaptive Simpson
quadrature. fun is a function handle. See “Function Handles” in the
MATLAB Programming documentation for more information. Limits a
and b must be finite. The function y = fun(x) should accept a vector
argument x and return a vector result y, the integrand evaluated at
each element of x.

“Parameterizing Functions”, in the MATLAB Mathematics
documentation, explains how to provide additional parameters to the
function fun, if necessary.

g = quad(fun,a,b,tol) uses an absolute error tolerance tol instead
of the default which is 1.0e-6. Larger values of tol result in fewer
function evaluations and faster computation, but less accurate results.
In MATLAB version 5.3 and earlier, the quad function used a less
reliable algorithm and a default relative tolerance of 1.0e-3.

g = quad(fun,a,b,tol,trace) with non-zero trace shows the values
of [fcnt a b-a Q] during the recursion.

[q,fcnt] = quad(...) returns the number of function evaluations.

The function quadl may be more efficient with high accuracies and
smooth integrands.

quad

Example

The list below contains information to help you determine which
quadrature function in MATLAB to use:

The quad function may be most efficient for low accuracies with
nonsmooth integrands.

The quadl function may be more efficient than quad at higher
accuracies with smooth integrands.

The quadgk function may be most efficient for high accuracies and
oscillatory integrands. It supports infinite intervals and can handle
moderate singularities at the endpoints. It also supports contour
integration along piecewise linear paths.

The quadv function vectorizes quad for an array-valued fun.

If the interval is infinite, [a,Inf), then for the integral of fun(x)
to exist, fun(x) must decay as x approaches infinity, and quadgk
requires it to decay rapidly. Special methods should be used for
oscillatory functions on infinite intervals, but quadgk can be used if
fun(x) decays fast enough.

The quadgk function will integrate functions that are singular at
finite endpoints if the singularities are not too strong. For example,
it will integrate functions that behave at an endpoint ¢ like log|x-c|
or |x-c|Pfor p >= -1/2. If the function is singular at points inside
(a,b), write the integral as a sum of integrals over subintervals
with the singular points as endpoints, compute them with quadgk,
and add the results.

To compute the integral

2 1
[o
Ox” _2x _5

write an M-file function myfun that computes the integrand:

function y = myfun(x)
y = 1./(x.73-2*x-5);

2-3153

quad

Algorithm

Diagnostics

See Also

References

2-3154

Then pass @myfun, a function handle to myfun, to quad, along with the
limits of integration, 0 to 2:

Q

quad (@myfun,0,2)
Q =
-0.4605

Alternatively, you can pass the integrand to quad as an anonymous
function handle F:

F
Q

@(x)1./(x."3-2*x-5);
quad(F,0,2);

quad implements a low order method using an adaptive recursive
Simpson’s rule.

quad may issue one of the following warnings:

'"Minimum step size reached' indicates that the recursive interval
subdivision has produced a subinterval whose length is on the order of
roundoff error in the length of the original interval. A nonintegrable
singularity is possible.

'"Maximum function count exceeded' indicates that the integrand
has been evaluated more than 10,000 times. A nonintegrable
singularity is likely.

‘Infinite or Not-a-Number function value encountered'
indicates a floating point overflow or division by zero during the
evaluation of the integrand in the interior of the interval.

quad2d, dblquad, quadgk, quadl, quadv, trapz, triplequad,
function_handle (@), “Anonymous Functions”

[1] Gander, W. and W. Gautschi, “Adaptive Quadrature — Revisited,”
BIT, Vol. 40, 2000, pp. 84-101. This document is also available at
http://www.inf.ethz.ch/personal/gander.

http://www.inf.ethz.ch/personal/gander

quad2d

Purpose

Syntax

Description

Numerically evaluate double integral over planar region

quad2d(fun,a,b,c,d)
[q,errbnd] = quad2d(...)
q quad2d(fun,a,b,c,d,parami,vali,param2,val2,...)

g = quad2d(fun,a,b,c,d) approximates the integral of fun(x,y)

over the planar region a <x<b and c(x) <y <d(x). funis a function
handle, ¢ and d may each be a scalar or a function handle.

All input functions must be vectorized. The function Z=fun(X,Y) must
accept 2-D matrices X and Y of the same size and return a matrix Z of
corresponding values. The functions ymin=c (X) and ymax=d(X) must
accept matrices and return matrices of the same size with corresponding
values.

[g,errbnd] = quad2d(...). errbnd is an approximate upper bound
on the absolute error, |Q - I|, where I denotes the exact value of the
integral.

g = quad2d(fun,a,b,c,d,parami,vall,param2,val2,...) performs
the integration as above with specified values of optional parameters:
AbsTol absolute error tolerance
RelTol relative error tolerance

quad2d attempts to satisfy ERRBND <= max(AbsTol,RelTol*|Q|). This
is absolute error control when |Q| is sufficiently small and relative
error control when |Q| is larger. A default tolerance value is used
when a tolerance is not specified. The default value of AbsTol is 1le-5.
The default value of RelTol is 100*eps(class(Q)). This is also the
minimum value of RelTol. Smaller RelTol values are automatically
increased to the default value.

MaxFunEvals Maximum allowed number of evaluations of fun
reached.

2-3155

quad2d

Examples

2-3156

The MaxFunEvals parameter limits the number of vectorized calls to
fun. The default is 2000.

FailurePlot | Generate a plot if MaxFunEvals is reached.

Setting FailurePlot to true generates a graphical representation

of the regions needing further refinement when MaxFunEvals is
reached. No plot is generated if the integration succeeds before
reaching MaxFunEvals. These (generally) 4-sided regions are mapped
to rectangles internally. Clusters of small regions indicate the areas of
difficulty. The default is false.

Singular Problem may have boundary singularities

With Singular set to true, quad2d will employ transformations to
weaken boundary singularities for better performance. The default is
true. Setting Singular to false will turn these transformations off,
which may provide a performance benefit on some smooth problems.

Example 1
Integrate ysin(x)+xcos(y) over 7 <x <27, 0 <y <7x. The true value
of the integral is 2.

Q = quad2d(@(x,y) y.*sin(x)+x.*cos(y),pi,2*pi,0,pi)
Example 2

Integrate [(x+ y)1/2(1 +x+ y)2]_1 over the triangle 0 <x <1 and

0<y<1-x. The integrand is infinite at (0,0). The true value of the
integral is #/4-1/2.

fun = @(x,y) 1./(sqrt(x +vy) .* (1 + x +y)."2)
In Cartesian coordinates:

ymax = @(x) 1 - Xx;

quad2d

Q = quad2d(fun,0,1,0,ymax)

In polar coordinates:

polarfun = @(theta,r) fun(r.*cos(theta),r.*sin(theta)).*r;
rmax = @(theta) 1./(sin(theta) + cos(theta));
Q = quad2d(polarfun,0,pi/2,0,rmax)

Limitations quad2d begins by mapping the region of integration to a rectangle.
Consequently, it may have trouble integrating over a region that does
not have four sides or has a side that cannot be mapped smoothly to a
straight line. If the integration is unsuccessful, some helpful tactics are
leaving Singular set to its default value of true, changing between
Cartesian and polar coordinates, or breaking the region of integration
into pieces and adding the results of integration over the pieces.

For example:

fun = @(x,y)abs(x.”2 + y."2 - 0.25);

c = @(x)-sqrt(1 - x.72);

d = @(x)sqrt(1 - x."2);

quad2d(fun,-1,1,c,d, 'AbsTol',1e-8,...
'FailurePlot',true, 'Singular',false)

Warning: Reached the maximum number of function
evaluations (2000). The result fails the
global error test.

The failure plot shows two areas of difficulty, near the points (-1,0)

and (1,0) and near the circle %2 +y2 =0.25:

2-3157

quad2d

QUALED -~ Areas Neading Refinement

0.6

Od [

0.2

0.2

04

g1
=1 08 06 04 02 V] 02 0.4 0.g 0.8 1

Changing the value of Singular to true will cope with the geometric
singularities at (-1,0) and (1,0). The larger shaded areas may need
refinement but are probably not areas of difficulty.

Q = quad2d(fun,-1,1,c,d, 'AbsTol',1e-8,
'FailurePlot',true, 'Singular',true)

Warning: Reached the maximum number of function
evaluations (2000). The result passes the
global error test.

2-3158

quad2d

QUADED - Areas MNeeding Refinement
08 ; ; e — ; ;

[T] |

LR .

0z —_——

01

0

-1

o
™

325

CUk N

ol T ,

0.8 - - e~ r— . ;
.06 04 03 02 01 0 01 02 03 04 05

From here you can take advantage of symmetry:

Q = 4*quad2d(fun,0,1,0,d, 'Abstol',1e-8,...
'Singular',true, 'FailurePlot',true)

However, the code is still working very hard near the singularity. It
may not be able to provide higher accuracy:

Q = 4*quad2d(fun,0,1,0,d, 'Abstol',1e-10,...
'Singular',true, 'FailurePlot',true)

Warning: Reached the maximum number of function
evaluations (2000). The result passes the
global error test.

2-3159

quad2d

QUAD2D - Areas Meeding Refinement

045

Qdr

0.35

Q3r

025F

02r

oS-

alr

e

i I L

i

Q05 01 Q16 02 025 03 035 04 045 05

I L

At higher accuracy, a change in coordinates may work better.

polarfun = @(theta,r) fun(r.*cos(theta),r.*sin(theta)).*r;
Q = 4*quad2d(polarfun,0,pi/2,0,1, 'AbsTol',1e-10)

It is best to put the singularity on the boundary by splitting the region
of integration into two parts:

Q1 = 4*quad2d(polarfun,0,pi/2,0,0.5, 'AbsTol',5e-11);
Q2 = 4*quad2d(polarfun,0,pi/2,0.5,1,'AbsTol',5e-11);

Q=01 + Q2
References [1] L.F. Shampine “Vectorized Adaptive Quadrature in MATLAB,”
Journal of Computational and Applied Mathematics, 211, 2008,
pp.131-140.
See Also dblquad, quad, quadl, quadv, quadgk, triplequad, function_handle

(@), “Anonymous Functions”

2-3160

quadgk

Purpose

Syntax

Description

Numerically evaluate integral, adaptive Gauss-Kronrod quadrature

g = quadgk(fun,a,b)
[g,errbnd] = quadgk(fun,a,b)
[g,errbnd] = quadgk(fun,a,b,parami,vali,param2,val2,...)

g = quadgk(fun,a,b) attempts to approximate the integral of a
scalar-valued function fun from a to b using high-order global adaptive
quadrature and default error tolerances. The function y = fun(x)
should accept a vector argument x and return a vector result y, where
y is the integrand evaluated at each element of x. fun must be a
function handle. See “Function Handles” in the MATLAB Programming
documentation for more information. Limits a and b can be -Inf or
Inf. If both are finite, they can be complex. If at least one is complex,
the integral is approximated over a straight line path from a to b in
the complex plane.

“Parameterizing Functions”, in the MATLAB Mathematics
documentation, explains how to provide additional parameters to the
function fun, if necessary.

[g,errbnd] = quadgk(fun,a,b) returns an approximate upper bound
on the absolute error, |Q - I|, where I denotes the exact value of the
integral.

[q,errbnd] = quadgk(fun,a,b,parami,vall,param2,val2,...)
performs the integration with specified values of optional parameters.
The available parameters are

2-3161

quadgk

Parameter

Description

‘AbsTol'

Absolute error
tolerance.

The default value of
'"AbsTol' is 1.e-10
(double), 1.e-5
(single).

'RelTol’

Relative error
tolerance.

The default value of
'RelTol' is 1.e-6
(double), 1.e-4
(single).

quadgk attempts

to satisfy

errbnd <= max(AbsTol,RelTol*|Q]).
This is absolute error

control when |Q] is

sufficiently small and

relative error control

when |Q| is larger. For

pure absolute error

control use 'AbsTol'

> 0 and'RelTol'= 0.

For pure relative error

control use 'AbsTol' =

0. Except when using

pure absolute error

control, the minimum

relative tolerance is

'RelTol' >= 100*eps(class(Q)).

‘Waypoints'

2-3162

Vector of integration
waypoints.

If fun(x) has
discontinuities in the
interval of integration,
the locations should be
supplied as a Waypoints
vector. When a, b, and
the waypoints are all
real, only the waypoints
between a and b are
used, and they are

used in sorted order.
Note that waypoints

are not intended for
singularities in fun(x).
Singular points should be
handled by making them
endpoints of separate

quadgk

Parameter Description

integrations and adding
the results.

If a, b, or any entry of
the waypoints vector is
complex, the integration
is performed over a
sequence of straight line
paths in the complex
plane, from a to the first
waypoint, from the first
waypoint to the second,
and so forth, and finally
from the last waypoint to
b.

'‘MaxIntervalCountMaximum number of
intervals allowed.

650.

The default value is

The
‘MaxIntervalCount'
parameter limits the
number of intervals
that quadgk uses at any
one time after the first
iteration. A warning

is issued if quadgk
returns early because
of this limit. Routinely
increasing this value is
not recommended, but
it may be appropriate
when errbnd is small
enough that the desired
accuracy has nearly been
achieved.

The list below contains information to help you determine which

quadrature function in MATLAB to use:

2-3163

quadgk

Examples

2-3164

The quad function may be most efficient for low accuracies with
nonsmooth integrands.

The quadl function may be more efficient than quad at higher
accuracies with smooth integrands.

The quadgk function may be most efficient for high accuracies and
oscillatory integrands. It supports infinite intervals and can handle
moderate singularities at the endpoints. It also supports contour
integration along piecewise linear paths.

The quadv function vectorizes quad for an array-valued fun.

If the interval is infinite, [a, Inf), then for the integral of fun(x)
to exist, fun(x) must decay as x approaches infinity, and quadgk
requires it to decay rapidly. Special methods should be used for
oscillatory functions on infinite intervals, but quadgk can be used if
fun(x) decays fast enough.

The quadgk function will integrate functions that are singular at
finite endpoints if the singularities are not too strong. For example,
it will integrate functions that behave at an endpoint ¢ like log|x-c|
or |x-c|Pfor p >= -1/2. If the function is singular at points inside
(a,b), write the integral as a sum of integrals over subintervals
with the singular points as endpoints, compute them with quadgk,
and add the results.

Integrand with a singularity at an integration end point

Write an function myfun that computes the integrand:

function y = myfun(x)
y = exp(x).*log(x);

Then pass @myfun, a function handle to myfun, to quadgk, along with
the limits of integration, 0 to 1:

Q

quadgk (@myfun,0,1)

Q:

quadgk

-1.3179

Alternatively, you can pass the integrand to quadgk as an anonymous
function handle F:

F
Q

(@(x)exp(x).*log(x));
quadgk (F,0,1);

Oscillatory integrand on a semi-infinite interval

Integrate over a semi-infinite interval with specified tolerances, and
return the approximate error bound:

[g,errbnd] = quadgk(@(x)x."5.*exp(-x).*sin(x),0,inf, 'RelTol',1e-8,"

-15.0000

errbnd =

9.4386e-009

Contour integration around a pole

Use Waypoints to integrate around a pole using a piecewise linear

contour:
Q = quadgk(e(z)1./(2*z - 1),-1-i,-1-1i, 'Waypoints',[1-1,1+i,-1+1i])
Q =
0.0000 + 3.14161
Algorithm quadgk implements adaptive quadrature based on a Gauss-Kronrod

pair (15" and 7t order formulas).

2-3165

quadgk

Diagnostics

References

See Also

2-3166

quadgk may issue one of the following warnings:

'"Minimum step size reached' indicates that interval subdivision
has produced a subinterval whose length is on the order of roundoff
error in the length of the original interval. A nonintegrable singularity
is possible.

‘Reached the 1limit on the maximum number of intervals in
use' indicates that the integration was terminated before meeting the
tolerance requirements and that continuing the integration would
require more than MaxIntervalCount subintervals. The integral may
not exist, or it may be difficult to approximate numerically. Increasing
MaxIntervalCount usually does not help unless the tolerance
requirements were nearly met when the integration was previously
terminated.

‘Infinite or Not-a-Number function value encountered'
indicates a floating point overflow or division by zero during the
evaluation of the integrand in the interior of the interval.

[1] L.F. Shampine “Vectorized Adaptive Quadrature in MATLAB,”
Journal of Computational and Applied Mathematics, 211, 2008,
pp.131-140.

quad2d, dblquad, quad, quadl, quadv, triplequad, function_handle
(@), “Anonymous Functions”

quadi

Purpose

Syntax

Description

Numerically evaluate integral, adaptive Lobatto quadrature

q quadl(fun,a,b)

q quadl(fun,a,b,tol)
quadl(fun,a,b,tol,trace)
[g,fcnt] = quadl(...)

g = quadl(fun,a,b) approximates the integral of function fun from
a to b, to within an error of 10 using recursive adaptive Lobatto
quadrature. fun is a function handle. See “Function Handles” in the
MATLAB Programming documentation for more information. fun
accepts a vector x and returns a vector y, the function fun evaluated at
each element of x. Limits a and b must be finite.

“Parameterizing Functions”, in the MATLAB Mathematics
documentation, explains how to provide additional parameters to the
function fun, if necessary.

g = quadl(fun,a,b,tol) uses an absolute error tolerance of tol
instead of the default, which is 1.0e-6. Larger values of tol result in
fewer function evaluations and faster computation, but less accurate
results.

quadl(fun,a,b,tol,trace) with non-zero trace shows the values of
[fcnt a b-a q] during the recursion.

[q,fcnt] = quadl(...) returns the number of function evaluations.

Use array operators .*, ./ and ." in the definition of fun so that it can
be evaluated with a vector argument.

The function quad may be more efficient with low accuracies or
nonsmooth integrands.

The list below contains information to help you determine which
quadrature function in MATLAB to use:

¢ The quad function may be most efficient for low accuracies with
nonsmooth integrands.

2-3167

quadi

Examples

Algorithm

2-3168

¢ The quadl function may be more efficient than quad at higher
accuracies with smooth integrands.

¢ The quadgk function may be most efficient for high accuracies and
oscillatory integrands. It supports infinite intervals and can handle
moderate singularities at the endpoints. It also supports contour
integration along piecewise linear paths.

® The quadv function vectorizes quad for an array-valued fun.

e [f the interval is infinite, [a,Inf), then for the integral of fun(x)
to exist, fun(x) must decay as x approaches infinity, and quadgk
requires it to decay rapidly. Special methods should be used for
oscillatory functions on infinite intervals, but quadgk can be used if
fun(x) decays fast enough.

® The quadgk function will integrate functions that are singular at
finite endpoints if the singularities are not too strong. For example,
it will integrate functions that behave at an endpoint ¢ like log|x-c|
or |x-c|Pfor p >= -1/2. If the function is singular at points inside
(a,b), write the integral as a sum of integrals over subintervals
with the singular points as endpoints, compute them with quadgk,
and add the results.

Pass M-file function handle @myfun to quadl:
Q = quadl(@myfun,0,2);
where the M-file myfun.m is

function y = myfun(x)
y = 1./(x.73-2*x-5);

Pass anonymous function handle F to quadl:

F
Q

@(x) 1./(x."8-2*x-5);
quadl(F,0,2);

quadl implements a high order method using an adaptive Gauss/Lobatto
quadrature rule.

quadi

Diagnostics

See Also

References

quadl may issue one of the following warnings:

'"Minimum step size reached' indicates that the recursive interval
subdivision has produced a subinterval whose length is on the order of
roundoff error in the length of the original interval. A nonintegrable
singularity is possible.

'"Maximum function count exceeded' indicates that the integrand
has been evaluated more than 10,000 times. A nonintegrable
singularity is likely.

"Infinite or Not-a-Number function value encountered'
indicates a floating point overflow or division by zero during the
evaluation of the integrand in the interior of the interval.

quad2d, dblquad, quad, quadgk, triplequad, function_handle (@),
“Anonymous Functions”

[1] Gander, W. and W. Gautschi, “Adaptive Quadrature — Revisited,”

BIT, Vol. 40, 2000, pp. 84-101. This document is also available at
http://www.inf.ethz.ch/personal/gander.

2-3169

http://www.inf.ethz.ch/personal/gander

quadyv

Purpose

Syntax

Description

2-3170

Vectorized quadrature

quadv (fun,a,b)
quadv(fun,a,b,tol)
quadv(fun,a,b,tol,trace)
Q,fcnt] = quadv(...)

— 0 0O
I

Q = quadv(fun,a,b) approximates the integral of the complex
array-valued function fun from a to b to within an error of 1.e-6 using
recursive adaptive Simpson quadrature. fun is a function handle. See
“Function Handles” in the MATLAB Programming documentation for
more information. The function Y = fun(x) should accept a scalar
argument x and return an array result Y, whose components are the
integrands evaluated at x. Limits a and b must be finite.

“Parameterizing Functions”, in the MATLAB Mathematics
documentation, explains how to provide addition parameters to the
function fun, if necessary.

Q = quadv(fun,a,b,tol) uses the absolute error tolerance tol for all
the integrals instead of the default, which is 1.e-6.

Note The same tolerance is used for all components, so the results
obtained with quadv are usually not the same as those obtained with
quad on the individual components.

Q = quadv(fun,a,b,tol,trace) with non-zero trace shows the values
of [fcnt a b-a Q(1)] during the recursion.

[Q,fcnt] = quadv(...) returns the number of function evaluations.
The list below contains information to help you determine which

quadrature function in MATLAB to use:

¢ The quad function may be most efficient for low accuracies with
nonsmooth integrands.

quadv

Example

¢ The quadl function may be more efficient than quad at higher
accuracies with smooth integrands.

® The quadgk function may be most efficient for high accuracies and
oscillatory integrands. It supports infinite intervals and can handle
moderate singularities at the endpoints. It also supports contour
integration along piecewise linear paths.

® The quadv function vectorizes quad for an array-valued fun.

e [f the interval is infinite, [a,Inf), then for the integral of fun(x)
to exist, fun(x) must decay as x approaches infinity, and quadgk
requires it to decay rapidly. Special methods should be used for
oscillatory functions on infinite intervals, but quadgk can be used if
fun(x) decays fast enough.

® The quadgk function will integrate functions that are singular at
finite endpoints if the singularities are not too strong. For example,
it will integrate functions that behave at an endpoint ¢ like log|x-c|
or |x-c|Pfor p >= -1/2. If the function is singular at points inside
(a,b), write the integral as a sum of integrals over subintervals
with the singular points as endpoints, compute them with quadgk,
and add the results.

For the parameterized array-valued function myarrayfun, defined by

function Y = myarrayfun(x,n)
Y =1./((1:n)+x);

the following command integrates myarrayfun, for the parameter value
n =10 between a=0and b = 1:

Qv = quadv(@(x)myarrayfun(x,10),0,1);

The resulting array Qv has 10 elements estimating Q(k) =
log((k+1)./(k)), for k = 1:10.

The entries in Qv are slightly different than if you compute the integrals
using quad in a loop:

2-3171

quadyv

for k = 1:10
Qs (k) = quadv(@(x)myscalarfun(x,k),0,1);
end

where myscalarfun is:

function y = myscalarfun(x,k)
y = 1./ (k+x);

See Also quad, quad2d, quadgk, quadl, dblquad, triplequad, function_handle
(@

2-3172

questdig

Purpose

Syntax

Description

Create and open question dialog box

button = questdlg('qgstring')

button = questdlg('qstring', 'title')

button = questdlg('qgstring', 'title',default)

button = questdlg('qgstring', 'title','str1','str2',default)

button = questdlg('gstring','title','str1','str2','str3",
default)

button = questdlg('qstring','title', ..., options)

button = questdlg('qgstring') displays a modal dialog box
presenting the question 'gqstring'. The dialog has three default
buttons, Yes, No, and Cancel. If the user presses one of these three
buttons, button is set to the name of the button pressed. If the user
presses the close button on the dialog without making a choice, button
is set to the empty string. If the user presses the Return key, button is
set to 'Yes'. 'gstring' is a cell array or a string that automatically
wraps to fit within the dialog box.

Note A modal dialog box prevents the user from interacting with other
windows before responding. For more information, see WindowStyle in
the MATLAB Figure Properties.

button = questdlg('gstring','title') displays a question dialog
with 'title' displayed in the dialog’s title bar.

button = questdlg('gstring','title',default) specifies which
push button is the default in the event that the Return key is pressed.
‘default' must be 'Yes', 'No', or 'Cancel’.

button = questdlg('qgstring', 'title','str1', 'str2',default)
creates a question dialog box with two push buttons labeled 'stri'
and 'str2'. default specifies the default button selection and must
be 'stri1' or 'str2'.

2-3173

questdig

Examples

2-3174

button =
questdlg('qgstring', 'title', 'str1','str2','str3',default)
creates a question dialog box with three push buttons labeled 'stri",
'str2', and 'str3'. default specifies the default button selection and
must be 'str1', 'str2', or 'str3’'.

When default is specified, but is not set to one of the button names,
pressing the Enter key displays a warning and the dialog remains open.

button = questdlg('qgstring', 'title’, ., options) replaces
the string default with a structure, options. The structure specifies
which button string is the default answer, and whether to use TeX to
interpret the question string, gstring. Button strings and dialog titles
cannot use TeX interpretation. The options structure must include the
fields Default and Interpreter, both strings. It can include other
fields, but questdlg does not use them. You can set Interpreter to
'none’' or 'tex'. If the Default field does not contain a valid button
name, a command window warning is issued and the dialog box does
not respond to pressing the Enter key.

Example 1

Create a dialog that requests a dessert preference and encode the
resulting choice as an integer.

% Construct a questdlg with three options
choice = questdlg('Please choose a dessert:',
'Dessert Menu',
'"Ice cream','Cake','No thank you', 'No thank you');
% Handle response
switch choice
case 'Ice cream'
disp([choice ' coming right up.'])
dessert = 1;
break
case 'Cake'
disp([choice ' coming right up.'])
dessert = 2;
break

questdig

case 'No thank you'
disp('I''1l1l bring you your check.')
dessert = 0;
end

) Dessert Menu =10 x|

Fleaze choose a dessert;

lce cream Cake

The case statements can contain white space but are case-sensitive.

Example 2

Specify an options structure to use the TeX interpreter to format a
question.

options.Interpreter = 'tex';
% Include the desired Default answer
options.Default = 'Don''t know';

% Create a TeX string for the question

gstring = 'Is \Sigma(\alpha - \beta) < 0?';

choice = questdlg(gstring, 'Boundary Condition',...
'Yes','No','Don''t know',options)

i
ls Zfo - B] < 07

Yes i

2-3175

questdig

See Also dialog, errordlg, helpdlg, inputdlg, 1istdlg, msgbox, warndlg
figure, textwrap, uiwait, uiresume

Predefined Dialog Boxes for related functions

2-3176

quit

Purpose

GUI
Alternatives

Syntax

Description

Remarks

Terminate MATLAB program

As an alternative to the quit function, use the Close box or select File
> Exit MATLAB in the MATLAB desktop.

quit
quit cancel
quit force

quit displays a confirmation dialog box if the confirm upon quitting
preference is selected, and if confirmed or if the confirmation preference
is not selected, terminates MATLAB after running finish.m, if
finish.m exists. The workspace is not automatically saved by quit. To
save the workspace or perform other actions when quitting, create a
finish.m file to perform those actions. For example, you can display a
custom dialog box to confirm quitting using a finish.m file—see the
following examples for details. If an error occurs while finish.m is
running, quit is canceled so that you can correct your finish.m file
without losing your workspace.

quit cancelis for use in finish.m and cancels quitting. It has no effect
anywhere else.

quit force bypasses finish.m and terminates MATLAB. Use this to
override finish.m, for example, if an errant finish.m will not let you
quit.

When using Handle Graphics objects in finish.m, use uiwait, waitfor,
or drawnow so that figures are visible. See the reference pages for these
functions for more information.

If you want MATLAB to display the following

confirmation dialog box after running quit, select

File > Preferences > General > Confirmation Dialogs. Then select
the check box for Confirm before exiting MATLAB, and click OK.

2-3177

quit

«): MATLAB pr:]

& Are you sure you want to exit MATLAEY

[Do not show this protnpt again.

Zancel

i

Examples Two sample finish.m files are included with MATLAB. Use them

to help you create your own finish.m, or rename one of the files to
finish.m to use it.

e finishsav.m—Saves the workspace to a MAT-file when MATLAB
quits.

e finishdlg.m—Displays a dialog allowing you to cancel quitting; it
uses quit cancel and contains the following code:

button = questdlg('Ready to quit?',
"Exit Dialog', 'Yes','No','No');
switch button
case 'Yes',
disp('Exiting MATLAB');
%sSave variables to matlab.mat
save

case 'No',
quit cancel;
end

See Also exit, finish, save, startup

2-3178

Quit (COM)
|

Purpose Terminate MATLAB Automation server
Syntax MATLAB Client

h.Quit

Quit(h)

invoke(h, 'Quit')

IDL Method Signature
void Quit(void)

Microsoft Visual Basic Client

Quit
Description Quit terminates the MATLAB server session attached to handle h.
Remarks Server function names, like Quit, are case sensitive when using the

first syntax shown.

There is no difference in the operation of the three syntaxes shown
above for the MATLAB client.

2-3179

quiver

Purpose

GUI
Alternatives

Syntax

Description

2-3180

Quiver or velocity plot

- o]

e
]
i

| fr]plotity) ~

Workspace Browser, or use the Figure Palette Plot Catalog. Manipulate
graphs in plot edit mode with the Property Editor. For details, see
Plotting Tools — Interactive Plotting in the MATLAB Graphics
documentation and Creating Graphics from the Workspace Browser in
the MATLAB Desktop Tools documentation.

To graph selected variables, use the Plot Selector in the

quiver(x,y,u,v)
quiver(u,v)

quiver(...,scale)
quiver(...,LineSpec)
quiver(...,LineSpec, 'filled"')
quiver(axes_handle,...)

h = quiver(...)

A quiver plot displays velocity vectors as arrows with components (u, V)
at the points (x,y).

For example, the first vector is defined by components u(1),v(1) and is
displayed at the point x(1),y(1).

quiver(x,y,u,v) plots vectors as arrows at the coordinates specified in
each corresponding pair of elements in x and y. The matrices x, y, u,
and v must all be the same size and contain corresponding position and
velocity components. However, x and y can also be vectors, as explained
in the next section. By default, the arrows are scaled to just not overlap,
but you can scale them to be longer or shorter if you want.

Expanding x- and y-Coordinates

MATLAB expands x and y if they are not matrices. This expansion is
equivalent to calling meshgrid to generate matrices from vectors:

quiver

Examples

[Xx,y] = meshgrid(x,y);
quiver(x,y,u,v)

In this case, the following must be true:

length(x) =nand length(y) = m, where [m,n] = size(u) =size(Vv).

The vector x corresponds to the columns of u and v, and vector y
corresponds to the rows of u and v.

quiver(u,v) draws vectors specified by u and v at equally spaced
points in the x-y plane.

quiver(...,scale) automatically scales the arrows to fit within the
grid and then stretches them by the factor scale. scale = 2 doubles
their relative length, and scale = 0.5 halves the length. Use scale = 0
to plot the velocity vectors without automatic scaling. You can also tune
the length of arrows after they have been drawn by choosing the Plot

Edit M tool, selecting the quivergroup object, opening the Property
Editor, and adjusting the Length slider.

quiver(...,LineSpec) specifies line style, marker symbol, and color
using any valid LineSpec. quiver draws the markers at the origin
of the vectors.

quiver(...,LineSpec, 'filled') fills markers specified by LineSpec

quiver(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

h = quiver(...) returns the handle to the quivergroup object.

Showing the Gradient with Quiver Plots
Plot the gradient field of the functionz = xe!™*" ~¥%),

[X,Y] = meshgrid(-2:.2:2);
Z = X.*exp(-X."2 - Y."2);
[DX,DY] = gradient(Z,.2,.2);
contour(X,Y,Z)

hold on

2-3181

quiver

quiver(X,Y,DX,DY)
colormap hsv

hold off
2 T T T T T T
15F s I ‘
. ! r L A v [y
. L] b |] . -
1k - - L k] L ! A -
- ~ - v, L 1 ! - -
- - - - b L) I L . Y
D'E_ - - - - = L} e L
D- _ _ i ~ B @ T
05k = L - . u e T
T L
- - = Ll . i % “ P
—'1 = - o £ s M Y . -
. I3 F L] hl -
1.5 r » 1 o j
_2 1 1 1 1 1 1
-2 -15 -1 05 0 05 1 15
See Also contour, LineSpec, plot, quivers3

“Direction and Velocity Plots” on page 1-99 for related functions
Two-Dimensional Quiver Plots for more examples

Quivergroup Properties for property descriptions

2-3182

quiver3

Purpose

GUI
Alternatives

Syntax

Description

3-D quiver or velocity plot

; P
1 &
1<

| fr]plotity) ~

Workspace Browser, or use the Figure Palette Plot Catalog. Manipulate
graphs in plot edit mode with the Property Editor. For details, see
Plotting Tools — Interactive Plotting in the MATLAB Graphics
documentation and Creating Graphics from the Workspace Browser in
the MATLAB Desktop Tools documentation.

To graph selected variables, use the Plot Selector in the

quiver3(x,y,z,u,v,w)
quiver3(z,u,v,w)
quiver3(...,scale)
quiver3(...,LineSpec)
quiver3(...,LineSpec, 'filled"')
quiver3(axes_handle,...)

h = quiver3(...)

A three-dimensional quiver plot displays vectors with components
(u,v,w) at the points (x,y,z), where u,v,w,x,y, and z all have real
(non-complex) values.

quiver3(x,y,z,u,v,w) plots vectors with components (u,v,w) at the
points (x,y,z). The matrices x,y,z,u,v,w must all be the same size and
contain the corresponding position and vector components.

quiver3d(z,u,v,w) plots the vectors at the equally spaced surface
points specified by matrix z. quiver3 automatically scales the vectors
based on the distance between them to prevent them from overlapping.

quiver3(...,scale) automatically scales the vectors to prevent them
from overlapping, and then multiplies them by scale. scale = 2 doubles
their relative length, and scale = 0.5 halves them. Use scale = 0 to
plot the vectors without the automatic scaling.

2-3183

quiver3

Examples

2-3184

quiver3(...,LineSpec) specifies line type and color using any valid
LineSpec.

quiver3d(...,LineSpec, 'filled') fills markers specified by LineSpec.

quiver3d(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

h = quiver3(...) returns a vector of line handles.

Plot the surface normals of the functionz = xe! ™" ~¥%),

[X,Y] = meshgrid(-2:0.25:2,-1:0.2:1);
Z = X.* exp(-X."2 - Y."2);

[U,V,W] = surfnorm(X,Y,Z)
quiver3(X,Y,Z,U,V,W,0.5);
hold on

surf(X,Y,Z);

colormap hsv

view(-35,45)

axis ([-2 2 -1 1 -.6 .6])
hold off

3

quiver3

-1 o

See Also axis, contour, LineSpec, plot, plot3, quiver, surfnorm, view
“Direction and Velocity Plots” on page 1-99 for related functions

Three-Dimensional Quiver Plots for more examples

2-3185

Quivergroup Properties

Purpose

Modifying
Properties

Quivergroup
Property
Descriptions

2-3186

Define quivergroup properties

You can set and query graphics object properties using the set and get
commands or the Property Editor (propertyeditor).

Note that you cannot define default properties for areaseries objects.

See Plot Objects for more information on quivergroup objects.

This section provides a description of properties. Curly braces { } enclose
default values.

Annotation

hg.Annotation object Read Only

Control the display of quivergroup objects in legends. The
Annotation property enables you to specify whether this
quivergroup object is represented in a figure legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Once you have obtained the hg.LegendEntry object, you can
set its IconDisplayStyle property to control whether the
quivergroup object is displayed in a figure legend:

IconDispIayStyIé Purpose

Value

on Include the quivergroup object in a legend as
one entry, but not its children objects

off Do not include the quivergroup or its
children in a legend (default)

children Include only the children of the quivergroup
as separate entries in the legend

Quivergroup Properties

Setting the IconDisplayStyle Property

These commands set the IconDisplayStyle of a graphics object
with handle hobj to children, which causes each child object
to have an entry in the legend:

hAnnotation = get(hobj, 'Annotation');
hLegendEntry = get(hAnnotation, 'LegendInformation');
set(hLegendEntry, 'IconDisplayStyle', 'children')

Using the IconDisplayStyle Property

See “Controlling Legends” for more information and examples.

AutoScale
{on} | off

Autoscale arrow length. Based on average spacing in the

x and y directions, AutoScale scales the arrow length to

fit within the grid-defined coordinate data and keeps the
arrows from overlapping. After autoscaling, quiver applies the
AutoScaleFactor to the arrow length.

AutoScaleFactor
scalar (default = 0.9)

User-specified scale factor. When AutoScale is on, the quiver
function applies this user-specified autoscale factor to the arrow
length. A value of 2 doubles the length of the arrows; 0.5 halves
the length.

BeingDeleted
on | {off} Read Only

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in

the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called

2-3187

Quivergroup Properties

2-3188

(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions
that act on a number of different objects. These functions might
not need to perform actions on objects if the objects are going to
be deleted, and therefore, can check the object’s BeingDeleted
property before acting.

BusyAction

cancel | {queue}

Callback routine interruption. The BusyAction property enables
you to control how MATLAB handles events that potentially
interrupt executing callbacks. If there is a callback function
executing, callbacks invoked subsequently always attempt to
interrupt it.

If the Interruptible property of the object whose callback is
executing is set to on (the default), then interruption occurs

at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the
object owning the executing callback) determines how MATLAB
handles the event. The choices are

e cancel — Discard the event that attempted to execute a second
callback routine.

® queue — Queue the event that attempted to execute a second
callback routine until the current callback finishes.

ButtonDownFcn

string or function handle

Button press callback function. A callback that executes whenever
you press a mouse button while the pointer is over this object, but
not over another graphics object. See the HitTestArea property
for information about selecting objects of this type.

Quivergroup Properties

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

This property can be
® A string that is a valid MATLAB expression
® The name of a MATLAB file

e A function handle

Set this property to a function handle that references the callback.
The expressions execute in the MATLAB workspace.

See “Function Handle Callbacks” for information on how to use
function handles to define the callbacks.

Children
array of graphics object handles

Children of the quivergroup object. An array containing the
handles of all line objects parented to this object (whether visible
or not).

If a child object’s HandleVisibility property is callback or off,
its handle does not show up in this object’s Children property.
If you want the handle in the Children property, set the root
ShowHiddenHandles property to on. For example:

set (0, 'ShowHiddenHandles', 'on')

Clipping
{on} | off

Clipping mode. MATLAB clips graphs to the axes plot box by
default. If you set Clipping to off, portions of graphs can be
displayed outside the axes plot box. This can occur if you create a
plot object, set hold to on, freeze axis scaling (axis manual), and
then create a larger plot object.

2-3189

Quivergroup Properties

2-3190

Color

Creat

ColorSpec

Color of the object. A three-element RGB vector or one of the
MATLAB predefined names, specifying the object’s color.

See the ColorSpec reference page for more information on
specifying color.

eFcn
string or function handle

Callback routine executed during object creation. This property
defines a callback that executes when MATLAB creates an object.
You must specify the callback during the creation of the object.
For example,

graphicfcn(y, 'CreateFcn',@CallbackFcn)

where @CallbackFcn is a function handle that references the
callback function and graphicfcn is the plotting function which
creates this object.

MATLAB executes this routine after setting all other object
properties. Setting this property on an existing object has no
effect.

The handle of the object whose CreateFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

DeleteFcn

string or function handle

Quivergroup Properties

Callback executed during object deletion. A callback that executes
when this object is deleted (e.g., this might happen when you issue
a delete command on the object, its parent axes, or the figure
containing it). MATLAB executes the callback before destroying
the object’s properties so the callback routine can query these
values.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
can be queried using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

See the BeingDeleted property for related information.

DisplayName
string (default is empty string)

String used by legend for this quivergroup object. The legend
function uses the string defined by the DisplayName property to
label this quivergroup object in the legend.

e If you specify string arguments with the legend function,
DisplayName is set to this quivergroup object’s corresponding
string and that string is used for the legend.

e If DisplayName is empty, legend creates a string of the form,
['data' n], where n 1s the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

¢ Ifyou edit the string directly in an existing legend, DisplayName
is set to the edited string.

¢ If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

2-3191

Quivergroup Properties

2-3192

¢ To add programmatically a legend that uses the DisplayName
string, call 1legend with the toggle or show option.

See “Controlling Legends” for more examples.

EraseMode
{normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses
to draw and erase objects and their children. Alternative erase
modes are useful for creating animated sequences, where control
of the way individual objects are redrawn is necessary to improve
performance and obtain the desired effect.

* normal — Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all
objects are rendered correctly. This mode produces the most
accurate picture, but is the slowest. The other modes are faster,
but do not perform a complete redraw and are therefore less
accurate.

®* none — Do not erase objects when they are moved or destroyed.
While the objects are still visible on the screen after erasing
with EraseMode none, you cannot print these objects because
MATLAB stores no information about their former locations.

e xor — Draw and erase the object by performing an exclusive
OR (XOR) with each pixel index of the screen behind it. Erasing
the object does not damage the color of the objects behind it.
However, the color of the erased object depends on the color of
the screen behind it and it is correctly colored only when it is
over the axes background color (or the figure background color
if the axes Color property is set to none). That is, it isn’t erased
correctly if there are objects behind it.

® packground — Erase the graphics objects by redrawing them
in the axes background color, (or the figure background color
if the axes Color property is set to none). This damages other

Quivergroup Properties

graphics objects that are behind the erased object, but the
erased object is always properly colored.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB can mathematically combine
layers of colors (e.g., performing an XOR on a pixel color with that
of the pixel behind it) and ignore three-dimensional sorting to
obtain greater rendering speed. However, these techniques are
not applied to the printed output.

Set the axes background color with the axes Color property. Set
the figure background color with the figure Color property.

You can use the MATLAB getframe command or other screen
capture applications to create an image of a figure containing
nonnormal mode objects.

HandleVisibility
{on} | callback | off

Conirol access to object’s handle by command-line users and GUIs.
This property determines when an object’s handle is visible in

its parent’s list of children. HandleVisibility is useful for
preventing command-line users from accidentally accessing
objects that you need to protect for some reason.

® on — Handles are always visible when HandleVisibility is on.

® callback — Setting HandleVisibility to callback causes
handles to be visible from within callback routines or functions
invoked by callback routines, but not from within functions
invoked from the command line. This provides a means to
protect GUIs from command-line users, while allowing callback
routines to have access to object handles.

2-3193

Quivergroup Properties

2-3194

e off — Setting HandleVisibility to off makes handles
invisible at all times. This might be necessary when a callback
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string) and so temporarily
hides its own handles during the execution of that function.

Functions Affected by Handle Visibility

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, cl1f, and close.

Properties Affected by Handle Visibility

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

Overriding Handle Visibility

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties). See also findall.

Handle Validity
Handles that are hidden are still valid. If you know an object’s

handle, you can set and get its properties and pass it to any
function that operates on handles.

Quivergroup Properties

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

HitTest
{on} | off

Selectable by mouse click. HitTest determines whether this object
can become the current object (as returned by the gco command
and the figure CurrentObject property) as a result of a mouse
click on the objects that compose the area graph. If HitTest

is of f, clicking this object selects the object below it (which 1s
usually the axes containing it).

HitTestArea
on | {off}

Select the object by clicking lines or area of extent. This property
enables you to select plot objects in two ways:

e Select by clicking lines or markers (default).

e Select by clicking anywhere in the extent of the plot.

When HitTestArea is of f, you must click the object’s lines or
markers (excluding the baseline, if any) to select the object. When
HitTestArea is on, you can select this object by clicking anywhere
within the extent of the plot (i.e., anywhere within a rectangle
that encloses it).

Interruptible
{on} | off

Callback routine interruption mode. The Interruptible property
controls whether an object’s callback can be interrupted by
callbacks invoked subsequently.

2-3195

Quivergroup Properties

Only callbacks defined for the ButtonDownFcn property are
affected by the Interruptible property. MATLAB checks for
events that can interrupt a callback only when it encounters a
drawnow, figure, getframe, or pause command in the routine.
See the BusyAction property for related information.

Setting Interruptible to on allows any graphics object’s callback
to interrupt callback routines originating from a bar property.
Note that MATLAB does not save the state of variables or the
display (e.g., the handle returned by the gca or gcf command)
when an interruption occurs.

LineStyle
{-} | -1 : | -- | none

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

Specifier

String Line Style

- Solid line (default)

= Dashed line
Dotted line

-. Dash-dot line

none No line

You can use LineStyle none when you want to place a marker
at each point but do not want the points connected with a line
(see the Marker property).

LineWidth
scalar

2-3196

Quivergroup Properties

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = '/, inch). The default LineWidth is 0.5

points.

Marker

character (see table)

Marker symbol. The Marker property specifies the type of markers
that are displayed at plot vertices. You can set values for the
Marker property independently from the LineStyle property.
Supported markers include those shown in the following table.

Marker Specifier Description
+ Plus sign
0 Circle
* Asterisk
Point
X Cross
s Square
d Diamond
” Upward-pointing triangle
v Downward-pointing triangle
> Right-pointing triangle
< Left-pointing triangle
p Five-pointed star (pentagram)
h Six-pointed star (hexagram)
none No marker (default)
MarkerEdgeColor

ColorSpec | none | {auto}

2-3197

Quivergroup Properties

2-3198

Marker edge color. The color of the marker or the edge color for
filled markers (circle, square, diamond, pentagram, hexagram,
and the four triangles). ColorSpec defines the color to use. none
specifies no color, which makes nonfilled markers invisible. auto
sets MarkerEdgeColor to the same color as the Color property.

MarkerFaceColor

ColorSpec | {none} | auto

Marker face color. The fill color for markers that are closed shapes
(circle, square, diamond, pentagram, hexagram, and the four
triangles). ColorSpec defines the color to use. none makes the
interior of the marker transparent, allowing the background to
show through. auto sets the fill color to the axes color, or to the
figure color if the axes Color property is set to none (which is the
factory default for axes objects).

MarkerSize

size in points

Marker size. A scalar specifying the size of the marker in points.

The default value for MarkerSize is 6 points (1 point = 1/72 inch).
Note that MATLAB draws the point marker (specified by the '."'

symbol) at one-third the specified size.

MaxHeadSize

scalar (default = 0.2

Maximum size of arrowhead. A value determining the maximum
size of the arrowhead relative to the length of the arrow.

Parent

handle of parent axes, hggroup, or hgtransform

Parent of this object. This property contains the handle of the
object’s parent. The parent is normally the axes, hggroup, or
hgtransform object that contains the object.

Quivergroup Properties

See “Objects That Can Contain Other Objects” for more
information on parenting graphics objects.

Selected

on | {off}

Is object selected? When you set this property to on, MATLAB
displays selection "handles" at the corners and midpoints if the
SelectionHighlight property is also on (the default). You
can, for example, define the ButtonDownFcn callback to set this
property to on, thereby indicating that this particular object

1s selected. This property is also set to on when an object is
manually selected in plot edit mode.

SelectionHighlight

{on} | off

Objects are highlighted when selected. When the Selected
property is on, MATLAB indicates the selected state by
drawing four edge handles and four corner handles. When
SelectionHighlight is off, MATLAB does not draw the handles
except when in plot edit mode and objects are selected manually.

ShowArrowHead

Tag

{on} | off

Display arrowheads on vectors. When this property is on,
MATLAB draws arrowheads on the vectors displayed by quiver.
When you set this property to off, quiver draws the vectors as
lines without arrowheads.

string

User-specified object label. The Tag property provides a means

to identify graphics objects with a user-specified label. This is
particularly useful when you are constructing interactive graphics
programs that would otherwise need to define object handles as

2-3199

Quivergroup Properties

Type

global variables or pass them as arguments between callbacks.
You can define Tag as any string.

For example, you might create an areaseries object and set the
Tag property.

t = area(Y,'Tag', 'areal’)

When you want to access objects of a given type, you can use
findobj to find the object’s handle. The following statement
changes the FaceColor property of the object whose Tag is areai.

set(findobj('Tag', 'areal'), 'FaceColor', 'red')

string (read only)

Type of graphics object. This property contains a string that
identifies the class of the graphics object. For stem objects, Type
is 'hggroup'. This statement finds all the hggroup objects in
the current axes.

t = findobj(gca, 'Type', 'hggroup');

UIContextMenu

handle of a uicontextmenu object

Associate a context menu with this object. Assign this property
the handle of a uicontextmenu object created in the object’s
parent figure. Use the uicontextmenu function to create the
context menu. MATLAB displays the context menu whenever
you right-click over the object.

UserData

array

User-specified data. This property can be any data you want to
associate with this object (including cell arrays and structures).

Quivergroup Properties

The object does not set values for this property, but you can access
it using the set and get functions.

Visible
{on} | off

Visibility of this object and its children. By default, a new object’s
visibility is on. This means all children of the object are visible
unless the child object’s Visible property is set to off. Setting an
object’s Visible property to of f prevents the object from being
displayed. However, the object still exists and you can set and
query its properties.

UData
matrix

One dimension of 2-D or 3-D vector components. UData, VData, and
WData, together specify the components of the vectors displayed
as arrows in the quiver graph. For example, the first vector is
defined by components UData(1),VData(1),WData(1).

UDataSource
string (MATLAB variable)

Link UData to MATLAB variable. Set this property to a MATLAB
variable that, by default, is evaluated in the base workspace to
generate the UData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change UData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

2-3201

Quivergroup Properties

2-3202

Note If you change one data source property to return data of a
different dimension, you might cause the function to generate a
warning and not render the graph until you have changed all data
source properties to appropriate values.

VData

matrix

One dimension of 2-D or 3-D vector components. UData, VData and
WData (for 3-D) together specify the components of the vectors
displayed as arrows in the quiver graph. For example, the first
vector is defined by components UData(1),vData(1),WData(1).

VDataSource

string (MATLAB variable)

Link VData to MATLAB variable. Set this property to a MATLAB
variable that, by default, is evaluated in the base workspace to
generate the VData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change VData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Quivergroup Properties

Note If you change one data source property to return data of a
different dimension, you might cause the function to generate a
warning and not render the graph until you have changed all data
source properties to appropriate values.

WData
matrix

One dimension of 2-D or 3-D vector components. UData, VData and
WData (for 3-D) together specify the components of the vectors
displayed as arrows in the quiver graph. For example, the first
vector is defined by components UData(1),vData(1),WData(1).

WDataSource
string (MATLAB variable)

Link WData to MATLAB variable. Set this property to a MATLAB
variable that, by default, is evaluated in the base workspace to
generate the WData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change WData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

2-3203

Quivergroup Properties

Note If you change one data source property to return data of a
different dimension, you might cause the function to generate a
warning and not render the graph until you have changed all data
source properties to appropriate values.

XData

vector or matrix

X-axis coordinates of arrows. The quiver function draws an
individual arrow at each x-axis location in the XData array.XData
can be either a matrix equal in size to all other data properties
or for 2-D, a vector equal in length to the number of columns in
UData or VData. That is, length(XData) == size(UData,2).

If you do not specify XData (i.e., the input argument X), the quiver
function uses the indices of UData to create the quiver graph. See
the XDataMode property for related information.

XDataMode

{auto} | manual

Use automatic or user-specified x-axis values. If you specify XData
(by setting the XData property or specifying the input argument
X), the quiver function sets this property to manual.

If you set XDataMode to auto after having specified XData, the
quiver function resets the x tick-mark labels to the indices of the
U, V, and W data, overwriting any previous values.

XDataSource

string (MATLAB variable)

Link XData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
XData.

Quivergroup Properties

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change XData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

YData
vector or matrix

Y-axis coordinates of arrows. The quiver function draws an
individual arrow at each y-axis location in the YData array. YData
can be either a matrix equal in size to all other data properties or
for 2-D, a vector equal in length to the number of rows in UData or
VData. That is, length(YData) == size(UData,1).

If you do not specify YData (i.e., the input argument Y), the quiver
function uses the indices of VData to create the quiver graph. See
the YDataMode property for related information.

The input argument y in the quiver function calling syntax
assigns values to YData.

YDataMode
{auto} | manual

2-3205

Quivergroup Properties

2-3206

Use automatic or user-specified y-axis values. If you specify YData
(by setting the YData property or specifying the input argument
Y), MATLAB sets this property to manual.

If you set YDataMode to auto after having specified YData,
MATLAB resets the y tick-mark labels to the indices of the U, V,
and W data, overwriting any previous values.

YDataSource

string (MATLAB variable)

Link YData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
YData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change YData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

ZData

vector or matrix

Quivergroup Properties

Z-axis coordinates of arrows. The quiver function draws an
individual arrow at each z-axis location in the ZData array. ZData
must be a matrix equal in size to XData and YData.

The input argument z in the quiver3 function calling syntax
assigns values to ZData.

2-3207

qz

Purpose QZ factorization for generalized eigenvalues
SYI‘“'GX [AA,BB,Q,Z] = qz(A,B)
[AA,BB,Q,Z,V,W] = qz(A,B)
qz(A,B,flag)
Description The gz function gives access to intermediate results in the computation

of generalized eigenvalues.

[AA,BB,Q,Z] = qz(A,B) for square matrices A and B, produces upper
quasitriangular matrices AA and BB, and unitary matrices Q and Z such
that Q*A*Z = AA, and Q*B*Z = BB. For complex matrices, AA and BB
are triangular.

[AA,BB,Q,Z,V,W] = qz(A,B) also produces matrices V and W whose
columns are generalized eigenvectors.

gz(A,B,flag) for real matrices A and B, produces one of two

decompositions depending on the value of flag:

‘complex' Produces a possibly complex decomposition
with a triangular AA. For compatibility with
earlier versions, 'complex' is the default.

'real’ Produces a real decomposition with a
quasitriangular AA, containing 1-by-1 and
2-by-2 blocks on its diagonal.

If AA is triangular, the diagonal elements of AA and BB, o = diag(AA)
and B =diag(BB), are the generalized eigenvalues that satisfy

A*V*p=B*V#qg
B*W'*A=a*W'*B

The eigenvalues produced by

) = eig(A, B)

2-3208

qz

See Also

are the ratios of the as and Bs.
A=a.lp

If AA 1s not triangular, it is necessary to further reduce the 2-by-2 blocks
to obtain the eigenvalues of the full system.

eig

2-3209

rand

Purpose

Syntax

Description

2-3210

Uniformly distributed pseudorandom numbers

r = rand(n)
rand(m,n)
rand([m,n])
rand(m,n,p,...)
rand([m,n,p,...])
rand
rand(size(A))
r=rand(...,
r rand (...,

‘double’)
‘single')

r = rand(n) returns an n-by-n matrix containing pseudorandom values
drawn from the standard uniform distribution on the open interval (0,1).
rand(m,n) or rand([m,n]) returns an m-by-n matrix. rand(m,n,p,...)
or rand([m,n,p,...]) returns an m-by-n-by-p-by-... array. rand
returns a scalar. rand(size(A)) returns an array the same size as A.

r =rand(..., 'double')orr = rand(...,
array of uniform values of the specified class.

'single') returns an

Note Note: The size inputs m, n, p, ... should be nonnegative integers.

Negative integers are treated as 0.

The sequence of numbers produced by rand is determined by the
internal state of the uniform pseudorandom number generator that
underlies rand, randi, and randn. The default random number stream
properties can be set using @RandStream methods. See @RandStream for
details about controlling the default stream.

Resetting the default stream to the same fixed state allows computations
to be repeated. Setting the stream to different states leads to unique
computations, however, it does not improve any statistical properties.
Since the random number generator is initialized to the same state
every time MATLAB software starts up, rand, randn, and randi will

rand

Examples

See Also

generate the same sequence of numbers in each session until the state
1s changed.

Note In versions of MATLAB prior to 7.7, you controlled the internal
state of the random number stream used by rand by calling rand
directly with the 'seed', 'state', or 'twister' keywords. That syntax
1s still supported for backwards compatibility, but is deprecated. For
version 7.7, use the default stream as described in the @RandStream
reference documentation.

Generate values from the uniform distribution on the interval [a, b].

r=a+ (b-a).*rand(100,1);

Replace the default stream at MATLAB startup, using a stream whose
seed is based on clock, so that rand will return different values in
different MATLAB sessions. It is usually not desirable to do this more
than once per MATLAB session.

RandStream.setDefaultStream ...
(RandStream('mt19937ar', 'seed’',sum(100*clock)));
rand(1,5)

Save the current state of the default stream, generate 5 values, restore
the state, and repeat the sequence.

defaultStream = RandStream.getDefaultStream;

savedState = defaultStream.State;

ul = rand(1,5)

defaultStream.State = savedState;

u2 = rand(1,5) % contains exactly the same values as uil

randi, randn, @RandStream, rand (RandStream), getDefaultStream
(RandStream), sprand, sprandn, randperm

2-3211

rand (RandStream)

Purpose
Class

Syntax

Description

2-3212

Uniformly distributed random numbers
@RandStream
r = rand(s,n)

rand(s,m,n)
rand(s,[m,n])

rand(s,m,n,p,...)
rand(s,[m,n,p,...1)
rand(s)

rand(s,size(A))

r = rand(..., 'double')
r = rand(..., 'single')

r = rand(s,n) returns an n-by-n matrix containing pseudorandom
values drawn from the standard uniform distribution on the

open interval (0,1). The values are drawn from the random
stream s. rand(s,m,n) or rand(s,[m,n]) returns an m-by-n
matrix. rand(s,m,n,p,...) or rand(s,[m,n,p,...]) returns an
m-by-n-by-p-by-... array. rand(s) returns a scalar. rand(s,size(A))
returns an array the same size as A.

r = rand(..., 'double')orr = rand(..., 'single') returns an
array of uniform values of the specified class.

Note The size inputs m, n, p, ... should be nonnegative integers.
Negative integers are treated as 0.

The sequence of numbers produced by rand is determined by the
internal state of the random number stream s. Resetting that stream
to the same fixed state allows computations to be repeated. Setting
the stream to different states leads to unique computations, however,
it does not improve any statistical properties.

rand (RandStream)

See Also rand, @RandStream, randi (RandStream), randn (RandStream),
randperm (RandStream)

2-3213

randi

Purpose

Syntax

Description

2-3214

Uniformly distributed pseudorandom integers

randi(imax)

r = randi(imax,n)

randi(imax,m,n)

randi(imax,[m,n])

randi(imax,m,n,p,...)

randi(imax,[m,n,p,...])

randi(imax,size(A))

r = randi([imin,imax],...)

r = randi(..., classname)

randi(imax) returns a random integer on the intervall:imax. r =
randi(imax,n) returns an n-by-n matrix containing pseudorandom
integer values drawn from the discrete uniform distribution on 1:imax.
randi(imax,m,n) or randi(imax,[m,n]) returns an m-by-n matrix.
randi(imax,m,n,p,...) or randi(imax,[m,n,p,...]) returns an
m-by-n-by-p-by-... array. randi(imax,size(A)) returns an array the
same size as A.

r = randi([imin,imax],...) returns an array containing integer
values drawn from the discrete uniform distribution on imin:imax.

r = randi(..., classname) returns an array of integer values of
class classname. classname does not support 64-bit integers.

Note Note: The size inputs m, n, p, ... should be nonnegative integers.
Negative integers are treated as 0.

The sequence of numbers produced by randi is determined by the
internal state of the uniform pseudorandom number generator that
underlies rand, randi, and randn. randi uses one uniform value from
that default stream to generate each integer value. Control the default
stream using its properties and methods. See @RandStream for details
about the default stream.

randi

Resetting the default stream to the same fixed state allows computations
to be repeated. Setting the stream to different states leads to unique
computations, however, it does not improve any statistical properties.
Since the random number generator is initialized to the same state
every time MATLAB software starts up, rand, randn, and randi will
generate the same sequence of numbers in each session until the state
1s changed.

Examples Generate integer values from the uniform distribution on the set 1:10.

r = randi(10,100,1);

Generate an integer array of integers drawn uniformly from 1:10.

r = randi(10,100,1,'uint32');

Generate integer values drawn uniformly from -10:10.

r = randi([-10 10],100,1);

Replace the default stream at MATLAB startup, using a stream whose
seed is based on clock, so that randi will return different values in
different MATLAB sessions. It is usually not desirable to do this more
than once per MATLAB session.

RandStream.setDefaultStream ...
(RandStream('mt19937ar', 'seed',sum(100*clock)));
randi(100,1,5)

Save the current state of the default stream, generate 5 integer values,
restore the state, and repeat the sequence.

defaultStream = RandStream.getDefaultStream;

savedState = defaultStream.State;

i1 = randi(10,1,5)

defaultStream.State = savedState;

i2 = randi(10,1,5) %contains exactly the same values as it

2-3215

randi

See Also rand, randn, @RandStream, randi (RandStream), getDefaultStream
(RandStream)

2-3216

randi (RandStream)

Purpose
Class

Syntax

Description

Uniformly distributed pseudorandom integers
@RandStream

r = randi(s,imax,n)
randi(s,imax,m,n)
randi(s,imax,[m,n])
randi(s,imax,m,n,p,...)
randi(s,imax,[m,n,p,...])
randi(s,imax)
randi(s,imax,size(A))

r = randi(s,[imin,imax],...)
r = randi(..., classname)

r = randi(s,imax,n) returns an n-by-n matrix containing
pseudorandom integer values drawn from the discrete uniform
distribution on 1:imax. randi draws those values from the

random stream s. randi(s,imax,m,n) or randi(s,imax,[m,n])
returns an m-by-n matrix. randi(s,imax,m,n,p,...) or
randi(s,imax,[m,n,p,...]) returns an m-by-n-by-p-by-... array.
randi(s,imax) returns a scalar. randi(s,imax,size(A)) returns an
array the same size as A.

r = randi(s,[imin,imax],...) returns an array containing integer
values drawn from the discrete uniform distribution on imin:imax.

r = randi(..., classname) returns an array of integer values of
class classname. classname does not support 64-bit integers.

Note The size inputs m, n, p, ... should be nonnegative integers.
Negative integers are treated as 0.

The sequence of numbers produced by randi is determined by the
internal state of the random stream s. randi uses one uniform value
from s to generate each integer value. Resetting s to the same fixed

2-3217

randi (RandStream)

state allows computations to be repeated. Setting the stream to
different states leads to unique computations, however, it does not
Improve any statistical properties.

See Also rand, @RandStream, rand (RandStream), randn (RandStream),
randperm (RandStream)

2-3218

randn

Purpose

Syntax

Description

Normally distributed pseudorandom numbers

r = randn(n)
randn(m,n)
randn([m,n])
randn(m,n,p,...)

randn([m,n,p,...])
randn(size(A))

r = randn(..., 'double')
r = randn(..., 'single')

r = randn(n) returns an n-by-n matrix containing pseudorandom
values drawn from the standard normal distribution. randn(m,n)

or randn([m,n]) returns an m-by-n matrix. randn(m,n,p,...) or
randn([m,n,p,...]) returns an m-by-n-by-p-by-... array. randn
returns a scalar. randn(size(A)) returns an array the same size as A.

r = randn(..., 'double')orr = randn(..., 'single') returns
an array of normal values of the specified class.

Note The size inputs m, n, p, ... should be nonnegative integers.
Negative integers are treated as 0.

The sequence of numbers produced by randn is determined by the
internal state of the uniform pseudorandom number generator that
underlies rand, randi, and randn. randn uses one or more uniform
values from that default stream to generate each normal value. Control
the default stream using its properties and methods. See @RandStream
for details about the default stream.

Resetting the default stream to the same fixed state allows computations
to be repeated. Setting the stream to different states leads to unique
computations, however, it does not improve any statistical properties.
Since the random number generator is initialized to the same state
every time MATLAB software starts up, rand, randn, and randi will

2-3219

randn

Examples

2-3220

generate the same sequence of numbers in each session until the state
1s changed.

Note In versions of MATLAB prior to 7.7, you controlled the internal
state of the random number stream used by randn by calling randn
directly with the 'seed' or 'state' keywords. That syntax is still
supported for backwards compatibility, but is deprecated. For version
7.7, use the default stream as described in the @RandStream reference
documentation.

Generate values from a normal distribution with mean 1 and standard
deviation 2.

r=1+ 2.*randn(100,1);

Generate values from a bivariate normal distribution with specified
mean vector and covariance matrix.

mu = [1 2];
Sigma = [1 .5; .5 2]; R = chol(Sigma);
z = repmat(mu,100,1) + randn(100,2)*R;

Replace the default stream at MATLAB startup, using a stream whose
seed is based on clock, so that randn will return different values in
different MATLAB sessions. It is usually not desirable to do this more
than once per MATLAB session.

RandStream.setDefaultStream ...
(RandStream('mt19937ar', 'seed',sum(100*clock)));
randn(1,5)

Save the current state of the default stream, generate 5 values, restore
the state, and repeat the sequence.

defaultStream = RandStream.getDefaultStream;
savedState = defaultStream.State;

randn

z1 = randn(1,5)
defaultStream.State = savedState;
z2 = randn(1,5) % contains exactly the same values as z1

See Also rand, randi, @RandStream, randn (RandStream), getDefaultStream
(RandStream)

2-3221

randn (RandStream)

Purpose
Class

Syntax

Description

See Also

2-3222

Normally distributed pseudorandom numbers
@RandStream

randn(s,m,n)
randn(s,[m,n])

randn(s,m,n,p,...)

randn(s,[m,n,p,...1)

randn(s)

randn(s,size(A))

r = randn(..., 'double')

r = randn(..., 'single')

r = randn(s,n) returns an n-by-n matrix containing pseudorandom

values drawn from the standard normal distribution. randn

draws those values from the random stream s. randn(s,m,n) or
randn(s,[m,n]) returns an m-by-n matrix. randn(s,m,n,p,...) or
randn(s,[m,n,p,...]) returns an m-by-n-by-p-by-... array. randn(s)
returns a scalar. randn(s,size(A)) returns an array the same size
as A.

r = randn(..., 'double')orr = randn(..., 'single') returns
an array of uniform values of the specified class.

Note The size inputs m, n, p, ... should be nonnegative integers.
Negative integers are treated as 0.

The sequence of numbers produced by randn is determined by the
internal state of the random stream s. randn uses one or more uniform
values from s to generate each normal value. Resetting that stream to
the same fixed state allows computations to be repeated. Setting the
stream to different states leads to unique computations, however, it
does not improve any statistical properties.

randn, @RandStream, rand (RandStream), randi (RandStream)

randperm

Purpose
Syntax
Description

Remarks

Examples

See Also

Random permutation
p = randperm(n)
p = randperm(n) returns a random permutation of the integers 1:n.

The randperm function calls rand and therefore changes the state of the
default random number stream.

randperm(6) might be the vector

[3 2 6 4 1 5]
or it might be some other permutation of 1:6.

permute

2-3223

randperm (RandStream)

Purpose Random permutation

Class @RandStream

Synth randperm(s,n)

Description randperm(s,n) generates a random permutation of the integers

from 1 to n. For example, randperm(s,6) might be [2 4 5 6 1 3].
randperm(s,n) uses random values drawn from the random number
stream s.

See Also permute, @RandStream

2-3224

RandStream

Purpose Random number stream
Constructor RandStream (RandStream)

Description Pseudorandom numbers in MATLAB come from one or more random
number streams. The simplest way to generate arrays of random
numbers is to use rand, randn, or randi. These functions all rely on the
same stream of uniform random numbers, known as the default stream.
You can create other stream objects that act separately from the
default stream, and you can use their rand, randi, or randn methods
to generate arrays of random numbers. You can also create a random
number stream and make it the default stream.

To create a single random number stream, use either the
RandStream constructor or the RandStream.create factory method.
To create multiple independent random number streams, use
RandStream.create.

stream = RandStream.getDefaultStream returns the default random
number stream, that is, the one currently used by the rand, randi,
and randn functions.

prevstream = RandStream.setDefaultStream(stream) returns the
current default stream, and designates the random number stream
stream as the new default to be used by the rand, randi, and randn
functions.

A random number stream s has properties that control its behavior.
Access or assign to a property using p= s.Property or s.Property =
p. The following table lists defined properties:

2-3225

RandStream

Description

Type

(Read-only) Generator algorithm
used by the stream. The list of
possible generators is given by
RandStream.list.

Seed

(Read-only) Seed value used to
create the stream.

NumStreams

(Read-only) Number of streams
in the group in which the current
stream was created.

StreamIndex

(Read-only) Index of the current
stream from among the group
of streams with which it was
created.

State

Internal state of the generator.
You should not depend on the
format of this property. The
value you assign to S.State must
be a value read from S.State
previously. Use reset to return
a stream to a predictable state
without having previously read
from the State property.

Substream

Index of the substream to
which the stream is currently
set. The default is 1. Multiple
substreams are not supported
by all generator types; the
multiplicative lagged Fibonacci
generator (m1fg6331_64) and
combined multiple recursive
generator (mrg32k3a) support
multiple streams.

2-3226

RandStream

Methods

Property

Description

RandnAlg

Algorithm used by randn(s,

.) to generate normal
pseudorandom values. Possible
values are 'Ziggurat', 'Polar’,
or 'Inversion'.

Antithetic

Logical value indicating
whether S generates antithetic
pseudorandom values. For
uniform values, these are the
usual values subtracted from 1.
The default is false.

FullPrecision

Logical value indicating whether
S generates values using its full
precision. Some generators can
create pseudorandom values
faster, but with fewer random
bits, if FullPrecision is false.
The default is true.

Method

Description

RandStream

Create a random number stream

RandStream.create

Create multiple independent
random number streams

get Get the properties of a random
stream object

list List available random number
generator algorithms

set Set random stream property

2-3227

RandStream

See Also

2-3228

Method

Description

RandStream.getDefaultStream

Get the default random number
stream

RandStream.setDefaultStream

Set the default random number
stream

reset Reset a stream to its initial
internal state

rand Pseudorandom numbers from a
uniform distribution

randn Pseudorandom numbers from a
standard normal distribution

randi Pseudorandom integers from a
uniform discrete distribution

randperm Random permutation of a set of

values

rand, randn, randi, rand (RandStream), randn (RandStream), randi

(RandStream)

RandStream (RandStream)

Purpose Random number stream
Class @RandStream
Syntax s = RandStream('gentype')

(7]
1

RandStream('gentype', 'parami’',vall, 'param2',val2)

Description s = RandStream('gentype') creates a random number
stream that uses the uniform pseudorandom number
generator algorithm specified by gentype. The syntax s =
RandStream('gentype', 'parami',valil, 'param2',val2) allows you
to specify optional parameter name/value pairs to control creation of the
stream. Options for gentype are given by RandStream.list.

Parameters are for RandStream are:

Parameter Description

Seed Nonnegative scalar integer with
which to initialize all streams.
Default is 0. Seed must be an

integer less than P

RandnAlg Algorithm used by randn(s,

.) to generate normal
pseudorandom values. Possible
values are 'Ziggurat', 'Polar’',
or 'Inversion'.

Examples Construct a random stream object using the combined multiple
recursive generator and generate 5 uniformly distributed values from
that stream.

stream = RandStream('mrg32k3a');
rand(stream,1,5)

2-3229

RandStream (RandStream)

See Also

2-3230

Construct a random stream object using the multiplicative lagged
Fibonacci generator and generate 5 normally distributed values using
the polar algorithm.

stream = RandStream('mlfg6331_64"', 'RandnAlg', 'Polar');
randn(stream,1,5)

@RandStream, rand (RandStream), randn (RandStream), randi
(RandStream), getDefaultStream (RandStream)

rank

Purpose

Syntax

Description

Remark

Algorithm

See Also

References

Rank of matrix

k = rank(A)

k = rank(A,tol)

The rank function provides an estimate of the number of linearly
independent rows or columns of a full matrix.

k = rank(A) returns the number of singular values of A that are larger
than the default tolerance, max (size(A))*eps(norm(A)).

k = rank(A,tol) returns the number of singular values of A that are
larger than tol.

Use sprank to determine the structural rank of a sparse matrix.

There are a number of ways to compute the rank of a matrix. MATLAB
software uses the method based on the singular value decomposition,
or SVD. The SVD algorithm is the most time consuming, but also the
most reliable.

The rank algorithm is

s = svd(A);
tol = max(size(A))*eps(max(s));
r = sum(s > tol);

sprank

[1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel,

J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,

A. McKenney, and D. Sorensen, LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third
Edition, STAM, Philadelphia, 1999.

2-3231

http://www.netlib.org/lapack/lug/lapack_lug.html

rat, rats

Purpose

Syntax

Description

Examples

2-3232

Rational fraction approximation

[N,D] = rat(X)
[N,D] rat(X,tol)
rat (X)

S = rats(X,strlen)
S = rats(X)

Even though all floating-point numbers are rational numbers, it is
sometimes desirable to approximate them by simple rational numbers,
which are fractions whose numerator and denominator are small
integers. The rat function attempts to do this. Rational approximations
are generated by truncating continued fraction expansions. The rats
function calls rat, and returns strings.

[N,D] = rat(X) returns arrays N and D so that N. /D approximates X to
within the default tolerance, 1.e-6*norm(X(:),1).

[N,D] = rat(X,tol) returns N./D approximating X to within tol.

rat (X), with no output arguments, simply displays the continued
fraction.

S = rats(X,strlen) returns a string containing simple rational
approximations to the elements of X. Asterisks are used for elements
that cannot be printed in the allotted space, but are not negligible
compared to the other elements in X. strlen is the length of each string
element returned by the rats function. The default is strlen = 13,
which allows 6 elements in 78 spaces.

S = rats(X) returns the same results as those printed by MATLAB
with format rat.

Ordinarily, the statement
s=1-1/2+1/3 - 1/4 +1/5 - 1/6 + 1/7
produces

S =

rat, rats

0.7595

However, with

format rat

or with

rats(s)

the printed result is

s =
319/420

This is a simple rational number. Its denominator is 420, the least
common multiple of the denominators of the terms involved in the
original expression. Even though the quantity s is stored internally
as a binary floating-point number, the desired rational form can be
reconstructed.

To see how the rational approximation is generated, the statement
rat(s) produces

1+ 1/(-4 + 1/(-6 + 1/(-3 + 1/(-5))))
And the statement

[n,d] = rat(s)
produces

n =319, d = 420

The mathematical quantity T is certainly not a rational number, but
the MATLAB quantity pi that approximates it is a rational number. pi
is the ratio of a large integer and 252:

14148475504056880/4503599627370496

2-3233

rat, rats

However, this is not a simple rational number. The value printed for pi
with format rat, or with rats(pi), is

355/113

This approximation was known in Euclid’s time. Its decimal
representation 1s

3.14159292035398

and so it agrees with pi to seven significant figures. The statement

rat(pi)

produces

3+ 1/(7 + 1/(16))

This shows how the 355/113 was obtained. The less accurate, but more
familiar approximation 22/7 is obtained from the first two terms of this
continued fraction.

Algorithm The rat (X) function approximates each element of X by a continued
fraction of the form

n 1

—=d1+
)
do+ ...+ —
(3 d,

d
The ds are obtained by repeatedly picking off the integer part and
then taking the reciprocal of the fractional part. The accuracy of the
approximation increases exponentially with the number of terms
and is worst when X = sqrt(2). For x = sqrt(2) , the error with k
terms is about 2.68*(.173) "k, so each additional term increases the
accuracy by less than one decimal digit. It takes 21 terms to get full
floating-point accuracy.

cf2-+

2-3234

rat, rats

See Also format

2-3235

rbbox

Purpose

Syntax

Description

Remarks

2-3236

Create rubberband box for area selection

rbbox

rbbox(initialRect)
rbbox(initialRect,fixedPoint)
rbbox(initialRect,fixedPoint,stepSize)
finalRect = rbbox(...)

rbbox initializes and tracks a rubberband box in the current figure. It
sets the initial rectangular size of the box to 0, anchors the box at the
figure’s CurrentPoint, and begins tracking from this point.

rbbox (initialRect) specifies the initial location and size of the
rubberband box as [x y width height], where x and y define the
lower left corner, and width and height define the size. initialRect
is in the units specified by the current figure’s Units property, and
measured from the lower left corner of the figure window. The corner of
the box closest to the pointer position follows the pointer until rbbox
receives a button-up event.

rbbox (initialRect,fixedPoint) specifies the corner of the box that
remains fixed. All arguments are in the units specified by the current
figure’s Units property, and measured from the lower left corner of
the figure window. fixedPoint is a two-element vector, [x y]. The
tracking point is the corner diametrically opposite the anchored corner
defined by fixedPoint.

rbbox (initialRect,fixedPoint,stepSize) specifies how frequently
the rubberband box is updated. When the tracking point exceeds
stepSize figure units, rbbox redraws the rubberband box. The default
stepsize is 1.

finalRect = rbbox(...) returns a four-element vector, [x y width
height], where x and y are the x and y components of the lower left
corner of the box, and width and height are the dimensions of the box.

rbbox is useful for defining and resizing a rectangular region:

rbbox

® For box definition, initialRect is [x y 0 0], where (x,y) is the
figure’s CurrentPoint.

® For box resizing, initialRect defines the rectangular region that
you resize (e.g., a legend). fixedPoint is the corner diametrically
opposite the tracking point.

rbbox returns immediately if a button is not currently pressed.
Therefore, you use rbbox with waitforbuttonpress so that the mouse
button is down when rbbox is called. rbbox returns when you release
the mouse button.

Examples Assuming the current view is view(2), use the current axes’
CurrentPoint property to determine the extent of the rectangle in
dataspace units:

k = waitforbuttonpress;

point1 = get(gca, 'CurrentPoint');
finalRect = rbbox;

point2 = get(gca, 'CurrentPoint');
point1 point1(1,1:2);

point2 point2(1,1:2);

p1 = min(pointi1,point2); calculate locations
offset = abs(point1-point2); and dimensions

x = [p1(1) p1(1)+offset(1) pi1(1)+offset(1) p1(1) p1(1)];

y = [p1(2) p1(2) p1(2)+offset(2) p1(2)+offset(2) p1(2)];

hold on

axis manual

plot(x,y) % redraw in dataspace units

o°

button down detected
return figure units
button up detected
extract x and y

nn 1
o® o° o°

o°

o°

See Also axis, dragrect, waitforbuttonpress

“View Control” on page 1-109 for related functions

2-3237

../ref/axes_props.html#CurrentPoint

rcond

Purpose
Syntax

Description

Algorithm

See Also

References

2-3238

Matrix reciprocal condition number estimate

o
I}

rcond(A)

c rcond(A) returns an estimate for the reciprocal of the condition

of A in 1-norm using the LAPACK condition estimator. If A is well
conditioned, rcond(A) is near 1.0. If A is badly conditioned, rcond(A) is
near 0.0. Compared to cond, rcond is a more efficient, but less reliable,
method of estimating the condition of a matrix.

For full matrices A, rcond uses the LAPACK routines listed in the
following table to compute the estimate of the reciprocal condition
number.

Real Complex

A double DLANGE, DGETRF, ZLANGE, ZGETREF,
DGECON ZGECON

A single SLANGE, SGETRF, CLANGE, CGETREF,
SGECON CGECON

cond, condest, norm, normest, rank, svd

[1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel,

J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,

A. McKenney, and D. Sorensen, LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third
Edition, STAM, Philadelphia, 1999.

http://www.netlib.org/lapack/lug/lapack_lug.html

mmreader.read

Purpose

Syntax

Description

Input
Arguments

Read video frame data from multimedia reader object

video = read(obj)
video = read(obj, index)

video = read(obj) reads in all video frames from the file associated
with obj.

video = read(obj, index) reads only the specified frames. index
can be a single number or a two-element array representing an index
range of the video stream.

obj
Name of multimedia object created with mmreader.
index

Frames to read, where the first frame number is 1. Use Inf to
represent the last frame of the file.

For example:

o°

video = read(obj, 1);

video = read(obj, [1 10]);
video = read(obj, Inf);
video = read(obj, [50 Inf]);

first frame only
first 10 frames
last frame only
frame 50 thru end

o° o°

o°

MATLAB cannot determine the number of frames in a variable
frame rate file until you read the last frame. If the requested
index extends beyond the end of the file, read returns either a
warning or an error. For more information, see “Reading Variable
Frame Rate Video” in the MATLAB Data Import and Export
documentation.

Default: [1 Inf]

2-3239

mmreader.read

Output video

Arguments Array of uint8 data representing RGB24 video frames. The

dimensions are H-by-W-by-B-by-F, where:

H Image frame height.
Image frame width.
B Number of bands in the image (for example, 3 for
RGB).
F Number of frames read.
Example Read and play back the movie file xylophone.mpg:
xyloObj = mmreader('xylophone.mpg');

nFrames = xyloObj.NumberOfFrames;
vidHeight = xyloObj.Height;
vidWidth = xyloObj.Width;

% Preallocate movie structure.
mov (1:nFrames) = ...

struct('cdata', zeros(vidHeight, vidWidth, 3, 'uint8'),...

‘colormap', []);

% Read one frame at a time.
for k = 1 : nFrames

mov (k) .cdata = read(xyloObj, k);
end

% Size a figure based on the video's width and height.
hf = figure;
set(hf, 'position', [150 150 vidWidth vidHeight])

% Play back the movie once at the video's frame rate.
movie (hf, mov, 1, xyloObj.FrameRate);

2-3240

mmreader.read

See Also movie | mmreader

How To + “Reading Video Files”

2-3241

Tiff.read

Purpose

Syntax

Description

Examples

See Also

Tutorials

2-3242

Read entire image

imageData = tiffobj.read()
[Y,Cb,Cr] = tiffobj.read()
imageData = tiffobj.read() reads the image data from the current

image file directory (IFD) in the TIFF file associated with the Tiff
object, tiffobj.

[Y,Cb,Cr]

tiffobj.read()reads the YCbCr component data from

the current directory in the TIFF file. Depending upon the values of
the YCbCrSubSampling tag, the size of the Cb and Cr channels might
differ from the Y channel.

Open a Tiff object and read data from the TIFF file:

t = Tiff('mytif.tif', 'r');
imageData = t.read();

Tiff.write

+ “Exporting Image Data and Metadata to TIFF Files”
+ “Reading Image Data and Metadata from TIFF Files”

readasync

Purpose

Syntax

Description

Remarks

Read data asynchronously from device

readasync(obj)
readasync(obj,size)

readasync(obj) initiates an asynchronous read operation on the serial
port object, obj.

readasync(obj,size) asynchronously reads, at most, the number of
bytes given by size. If size is greater than the difference between the
InputBufferSize property value and the BytesAvailable property
value, an error is returned.

Before you can read data, you must connect obj to the device with the
fopen function. A connected serial port object has a Status property
value of open. An error is returned if you attempt to perform a read
operation while obj is not connected to the device.

You should use readasync only when you configure the ReadAsyncMode
property to manual. readasync is ignored if used when ReadAsyncMode
is continuous.

The TransferStatus property indicates if an asynchronous read

or write operation is in progress. You can write data while an
asynchronous read is in progress because serial ports have separate
read and write pins. You can stop asynchronous read and write
operations with the stopasync function.

You can monitor the amount of data stored in the input buffer

with the BytesAvailable property. Additionally, you can use the
BytesAvailableFcn property to execute a callback function when the
terminator or the specified amount of data is read.

Rules for Completing an Asynchronous Read Operation

An asynchronous read operation with readasync completes when one
of these conditions is met:

¢ The terminator specified by the Terminator property is read.

2-3243

readasync

Example

2-3244

® The time specified by the Timeout property passes.
® The specified number of bytes is read.

® The input buffer is filled (if size is not specified).

Because readasync checks for the terminator, this function can be
slow. To increase speed, you might want to configure ReadAsyncMode to
continuous and continuously return data to the input buffer as soon
as it is available from the device.

This example creates the serial port object s on a Windows platform.
It connects s to a Tektronix TDS 210 oscilloscope, configures s to read
data asynchronously only if readasync is issued, and configures the
instrument to return the peak-to-peak value of the signal on channel 1.

s = serial('COM1');

fopen(s)

s.ReadAsyncMode = 'manual’;

fprintf (s, 'Measurement:Measi:Source CH1')
fprintf (s, 'Measurement:Meas1:Type Pk2Pk')
fprintf (s, 'Measurement:Meas1:Value?')

Begin reading data asynchronously from the instrument using
readasync. When the read operation is complete, return the data to the
MATLAB workspace using fscanf.

readasync(s)
s.BytesAvailable
ans =

15
out = fscanf(s)
out =
2.0399999619E0
fclose(s)

readasync

See Also Functions

fopen, stopasync

Properties

BytesAvailable, BytesAvailableFcn, ReadAsyncMode, Status,
TransferStatus

2-3245

Tiff.readEncodedStrip

Purpose

Syntax

Description

Examples

References

See Also

Tutorials

2-3246

Read data from specified strip

stripData = tiffobj.readEncodedStrip(stripNumber)
[Y,Cb,Cr] tiffobj.readEncodedStrip(stripNumber)

stripData = tiffobj.readEncodedStrip(stripNumber) reads data
from the strip specified by stripNumber. Strip numbers are one-based
numbers.

[Y,Cb,Cr] = tiffobj.readEncodedStrip(stripNumber) reads
YCbCr component data from the specified strip. The size of the
chrominance components Cb and Cr might differ from the size
of the luminance component Y depending on the value of the
YCbCrSubSampling tag.

readEncodeStrip clips the last strip, if the strip extends past the
ImagelLength boundary.

Open a Tiff object and read a strip of data. Replace myfile.tif with
the name of a TIFF file on your MATLAB path.

t = Tiff('myfile.tif', 'r');

o°

% Check if image is tiled or stipped.
if ~t.isTiled()

data = t.readEncodedStrip(1);
end

This method corresponds to the TIFFReadEncodedStrip function in the
LibTIFF C API. To use this method, you must be familiar with LibTIFF
version 3.7.1, as well as the TIFF specification and technical notes.

View this documentation at LibTIFF - TIFF Library and Utilities.

Tiff.readEncodedTile | Tiff.isTiled

+ “Exporting Image Data and Metadata to TIFF Files”
+ “Reading Image Data and Metadata from TIFF Files”

http://www.remotesensing.org/libtiff/

Tiff.readEncodedTile

Purpose

Syntax

Description

Examples

See Also

Tutorials

Read data from specified tile

tileData = tiffobj.readEncodedTile(tileNumber)
[Y,Cb,Cr] = tiffobj.readEncodedTile(tileNumber)

tileData = tiffobj.readEncodedTile(tileNumber) reads data from
the tile specified by tileNumber. Tile numbers are one-based numbers.

[Y,Cb,Cr] = tiffobj.readEncodedTile(tileNumber) reads YCbCr
component data from the specified tile. The size of the chrominance
components Cb and Cr might differ from the size of the luminance
component Y, depending on the value of the YCbCrSubSampling tag.

readEncodedTile clips tiles on the last row or right-most column of
an image if the tile extends past the ImageLength and ImageLength
boundaries.

Open a Tiff object and read a tile of data. Replace myfile.tif with
the name of a TIFF file on your MATLAB path.

t = Tiff('myfile.tif', 'r');

o°

% Check if image is tiled or stipped.
if t.isTiled()

data = t.readEncodedTile(1);
end

References

This method corresponds to the TIFFReadEncodedTile function in the
LibTIFF C API. To use this method, you must be familiar with LibTIFF
version 3.7.1, as well as the TIFF specification and technical notes.
View this documentation at LibTIFF - TIFF Library and Utilities

Tiff.readEncodedStrip | Tiff.isTiled

+ “Exporting Image Data and Metadata to TIFF Files”

2-3247

http://www.remotesensing.org/libtiff/

Tiff.readEncodedTile

+ “Reading Image Data and Metadata from TIFF Files”

2-3248

real

Purpose
Syntax

Description

Examples

See Also

Real part of complex number

X = real(2)

pad
1

real (2+3*i) is 2.

abs, angle, conj, i, j, imag

real(Z) returns the real part of the elements of the complex array

2-3249

reallog

Purpose Natural logarithm for nonnegative real arrays
Syntax Y = reallog(X)
Description Y = reallog(X) returns the natural logarithm of each element in array

X. Array X must contain only nonnegative real numbers. The size of Y is
the same as the size of X.

Examples M = magic(4)
M =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1
reallog (M)
ans =
2.7726 0.6931 1.0986 2.5649
1.6094 2.3979 2.3026 2.0794
2.1972 1.9459 1.7918 2.4849
1.3863 2.6391 2.7081 0
See Also log, realpow, realsqgrt

2-3250

realmax

Purpose
Syntax

Description

Examples

Algorithm

See Also

Largest positive floating-point number

n = realmax

n realmax returns the largest floating-point number representable
on your computer. Anything larger overflows.

realmax('double') is the same as realmax with no arguments.

realmax('single') is the largest single precision floating point
number representable on your computer. Anything larger overflows
to single(Inf).

realmax is one bit less than 21924 or about 1.7977e+308.

The realmax function is equivalent to pow2(2-eps,maxexp), where
maxexp is the largest possible floating-point exponent.

Execute type realmax to see maxexp for various computers.

eps, realmin, intmax

2-3251

realmin

Purpose
Syntax

Description

Examples

Algorithm

See Also

2-3252

Smallest positive normalized floating-point number

n = realmin

n realmin returns the smallest positive normalized floating-point
number on your computer. Anything smaller underflows or is an IEEE
“denormal.”

REALMIN('double') is the same as REALMIN with no arguments.
REALMIN('single') is the smallest positive normalized single precision
floating point number on your computer.

realmin is 2°(-1022) or about 2.2251e-308.

The realmin function is equivalent to pow2(1,minexp) where minexp is
the smallest possible floating-point exponent.

Execute type realmin to see minexp for various computers.

eps, realmax, intmin

realpow

Purpose
Syntax

Description

Examples

See Also

Array power for real-only output

Z = realpow(X,Y)

Z = realpow(X,Y) raises each element of array X to the power of its
corresponding element in array Y. Arrays X and Y must be the same size.
The range of realpow is the set of all real numbers, i.e., all elements of
the output array Z must be real.

X = -2*ones(3,3)

X =
-2 -2 -2
-2 -2 -2
-2 -2 -2

Y = pascal(3)

—_
N =
w —

realpow(X,Y)

ans =
-2 -2 -2
-2 4 -8
-2 -8 64

reallog, realsqrt, .~ (array power operator)

2-3253

realsqrt

Purpose Square root for nonnegative real arrays
Syntax Y = realsqrt(X)
Description Y = realsqrt(X) returns the square root of each element of array X.

Array X must contain only nonnegative real numbers. The size of Y is
the same as the size of X.

Examples M = magic(4)
M =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1
realsqrt (M)
ans =
4.0000 1.4142 1.7321 3.6056
2.2361 3.3166 3.1623 2.8284
3.0000 2.6458 2.4495 3.4641
2.0000 3.7417 3.8730 1.0000
See Also reallog, realpow, sqrt, sqrtm

2-3254

record

Purpose

Syntax

Description

Remarks

Example

Record data and event information to file

record(obj)
record(obj,'switch')

record(obj) toggles the recording state for the serial port object, obj.

record(obj, 'switch') initiates or terminates recording for obj.
switch can be on or off. If switch is on, recording is initiated. If
switch is off, recording is terminated.

Before you can record information to disk, obj must be connected to
the device with the fopen function. A connected serial port object has
a Status property value of open. An error is returned if you attempt
to record information while obj is not connected to the device. Each
serial port object must record information to a separate file. Recording
is automatically terminated when obj is disconnected from the device
with fclose.

The RecordName and RecordMode properties are read-only while obj is
recording, and must be configured before using record.

For a detailed description of the record file format and the properties
associated with recording data and event information to a file, refer to
Debugging: Recording Information to Disk.

This example creates the serial port object s on a Windows platform.
It connects s to the device, configures s to record information to a file,
writes and reads text data, and then disconnects s from the device.

s = serial('COM1');

fopen(s)
s.RecordDetail = 'verbose';
s.RecordName = 'MySerialFile.txt';

record(s, 'on')
fprintf (s, '*IDN?")
out = fscanf(s);
record(s, 'off')

2-3255

record

fclose(s)

See Also Functions

fclose, fopen

Properties

RecordDetail, RecordMode, RecordName, RecordStatus, Status

2-3256

audiorecorder.record

Purpose

Syntax

Description

Example

See Also

How To

Record audio to audiorecorder object

record(recorderobj)
record(recorderObj, length)

record(recorderObj) records audio from an input device, such

as a microphone connected to your system. recorder0Obj is an
audiorecorder object that defines the sample rate, bit depth, and other
properties of the recording.

record(recorderObj, length) records for the number of seconds
specified by Iength.

Record 5 seconds of your speech with a microphone:

myVoice = audiorecorder;

% Define callbacks to show when

% recording starts and completes.
myVoice.StartFcn = 'disp(''Start speaking.'')
myVoice.StopFcn = 'disp(''End of recording.''

'3

)
record(myVoice, 5);

To listen to the recording, call the play method:
play(myVoice);

audiorecorder | getaudiodata | recordblocking

+ “Recording Audio”

+ “Recording or Playing Audio within a Function”

2-3257

audiorecorder.recordblocking

Purpose

Syntax

Description

Examples

See Also

How To

2-3258

Record audio to audiorecorder object, holding control until recording
completes

recordblocking(recorderObj, length)

recordblocking(recorderObj, length) records audio from an

input device, such as a microphone connected to your system, for the
number of seconds specified by 1ength. The recordblocking method
does not return control until recording completes. recorder0Obj is an
audiorecorder object that defines the sample rate, bit depth, and other
properties of the recording.

Record 5 seconds of your speech with a microphone, and play it back:
myVoice = audiorecorder;
disp('Start speaking.');
recordblocking(myVoice, 5);

disp('End of recording. Playing back ...');

play(myVoice);
audiorecorder | getaudiodata | record

+ “Recording Audio”

rectangle

Purpose

Syntax

Properties

Description

Create 2-D rectangle object

rectangle

rectangle('Position',[x,y,w,h])
rectangle('Curvature’,[x,y])
rectangle('PropertyName',propertyvalue,...)
h = rectangle(...)

For a list of properties, see Rectangle Properties.

rectangle draws a rectangle with Position [0,0,1,1] and Curvature
[0,0] (i.e., no curvature).

rectangle('Position',[x,y,w,h]) draws the rectangle from the point
x,y and having a width of w and a height of h. Specify values in axes
data units.

Note that, to display a rectangle in the specified proportions, you need
to set the axes data aspect ratio so that one unit is of equal length along
both the x and y axes. You can do this with the command axis equal or
daspect([1,1,1]).

rectangle('Curvature',[x,y]) specifies the curvature of the rectangle
sides, enabling it to vary from a rectangle to an ellipse. The horizontal
curvature x is the fraction of width of the rectangle that is curved along
the top and bottom edges. The vertical curvature y is the fraction of the
height of the rectangle that is curved along the left and right edges.

The values of x and y can range from 0 (no curvature) to 1 (maximum
curvature). A value of [0,0] creates a rectangle with square sides.
A value of [1,1] creates an ellipse. If you specify only one value

for Curvature, then the same length (in axes data units) is curved
along both horizontal and vertical sides. The amount of curvature is
determined by the shorter dimension.

rectangle('PropertyName',propertyvalue,...) draws the
rectangle using the values for the property name/property value pairs
specified and default values for all other properties. For a description of
the properties, see Rectangle Properties.

2-3259

rectangle

Remarks

Examples

2-3260

h = rectangle(...) returns the handle of the rectangle object created.

Rectangle objects are 2-D and can be drawn in an axes only if the view is
[0 90] (i.e., view(2)). Rectangles are children of axes and are defined
in coordinates of the axes data.

This example sets the data aspect ratio to [1,1,1] so that the rectangle
is displayed in the specified proportions (daspect). Note that the
horizontal and vertical curvature can be different. Also, note the effects
of using a single value for Curvature.

rectangle('Position',[0.59,0.35,3.75,1.37],...
‘Curvature',[0.8,0.4],...
'LineWidth',2, 'LineStyle','--")
daspect([1,1,1])

16
16 - -

14

1211

08
06 »

04 -'"'l-—..___ ____________

Specifying a single value of [0.4] for Curvature produces

rectangle

a-
1.8
1.8F - ~
14 F 1
1211
11
081
0B ¥ *
0.4+ e -

02F

Q 1 1 1 1 1 1 1 |

A Curvature of [1] produces a rectangle with the shortest side
completely round:

o
18}
16| - .
14F .
12f, i

1L
06
06w ’
04 - -

T o mm mm Em Em Em Em o Em Em Em Em Em Em o Em Em E Em Em o o o

az2r

a 1 1 1 | 1 1 1 |

This example creates an ellipse and colors the face red.

rectangle('Position',[1,2,5,10], 'Curvature',[1,1],...
'FaceColor','r")

daspect([1,1,1])

x1im([0,7])

2-3261

rectangle

Setting
Default
Properties

2-3262

ylim([1,13])

121

10F

You can set default rectangle properties on the axes, figure, and root
object levels:

set (0, 'DefaultRectangleProperty' ,PropertyValue...)
set(gcf, 'DefaultRectangleProperty',PropertyvValue...)
set(gca, 'DefaultRectangleProperty' ,PropertyValue...)

where Property is the name of the rectangle property whose default
value you want to set and PropertyValue is the value you are
specifying. Use set and get to access the surface properties.

rectangle

See Also line, patch
Rectangle Properties for property descriptions
“Object Creation” on page 1-104 for related functions

See the annotation function for information about the rectangle
annotation object.

2-3263

Rectangle Properties

Purpose

Creating
Rectangle
Obijects

Modifying
Properties

Rectangle
Property
Descriptions

2-3264

Define rectangle properties

Use rectangle to create rectangle objects.

You can set and query graphics object properties in two ways:

¢ “The Property Editor” is an interactive tool that enables you to see
and change object property values.

® The set and get commands enable you to set and query the values of
properties.

To change the default values of properties, see “Setting Default Property
Values”.

See “Core Graphics Objects” for general information about this type
of object.

This section lists property names along with the type of values each
accepts. Curly braces {} enclose default values.

Annotation
hg.Annotation object Read Only

Control the display of rectangle objects in legends. The Annotation
property enables you to specify whether this rectangle object is
represented in a figure legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Rectangle Properties

Once you have obtained the hg.LegendEntry object, you can set
its IconDisplayStyle property to control whether the rectangle
object 1s displayed in a figure legend:

IconDispIayStyIé Purpose

Value

on Represent this rectangle object in a legend
(default)

off Do not include this rectangle object in a
legend

children Same as on because rectangle objects do not
have children

Setting the IconDisplayStyle property

These commands set the IconDisplayStyle of a graphics object
with handle hobj to off:

hAnnotation = get(hobj, 'Annotation');
hLegendEntry = get(hAnnotation', 'LegendInformation');
set(hLegendEntry, 'IconDisplayStyle', 'off"')

Using the IconDisplayStyle property

See “Controlling Legends” for more information and examples.

BeingDeleted
on | {off} read only

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in

the process of being deleted. The MATLAB software sets the
BeingDeleted property to on when the object’s delete function
callback 1is called (see the DeleteFcn property). It remains set to
on while the delete function executes, after which the object no
longer exists.

2-3265

Rectangle Properties

2-3266

For example, an object’s delete function might call other functions
that act on a number of different objects. These functions may not
need to perform actions on objects that are going to be deleted,
and therefore, can check the object’s BeingDeleted property
before acting.

BusyAction

cancel | {queue}

Callback routine interruption. The BusyAction property enables
you to control how MATLAB handles events that potentially
interrupt executing callback routines. If there is a callback
routine executing, callback routines invoked subsequently always
attempt to interrupt it. If the Interruptible property of the
object whose callback 1s executing is set to on (the default), then
interruption occurs at the next point where the event queue is
processed. If the Interruptible property is off, the BusyAction
property (of the object owning the executing callback) determines
how MATLAB handles the event. The choices are

e cancel — Discard the event that attempted to execute a second
callback routine.

® queue — Queue the event that attempted to execute a second
callback routine until the current callback finishes.

ButtonDownFcn

function handle, cell array containing function handle and
additional arguments, or string (not recommended)

Button press callback function. A callback function that executes
whenever you press a mouse button while the pointer is over the
rectangle object.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

Set this property to a function handle that references the callback.
The function must define at least two input arguments (handle

Rectangle Properties

of object associated with the button down event and an event
structure, which is empty for this property)

function button_down(src,evnt)
% src - the object that is the source of the event
% evnt - empty for this property
sel typ = get(gcbf,'SelectionType')
switch sel_typ
case 'normal'’
disp('User clicked left-mouse button')
set(src, 'Selected', 'on')
case 'extend'
disp('User did a shift-click')
set(src, 'Selected', 'on')
case 'alt'’
disp('User did a control-click')
set(src, 'Selected', 'on')
set(src, 'SelectionHighlight', 'off")
end
end

Suppose h 1s the handle of a rectangle object and that the

button_down function is on your MATLAB path. The following

statement assigns the function above to the ButtonDownFcn:

set (h, 'ButtonDownFcn',@button_down)

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

Children
vector of handles

The empty matrix; rectangle objects have no children.

Clipping
{on} | off

2-3267

Rectangle Properties

2-3268

Clipping mode. MATLAB clips rectangles to the axes plot box

by default. If you set Clipping to off, rectangles are displayed
outside the axes plot box. This can occur if you create a rectangle,
set hold to on, freeze axis scaling (axis set to manual), and then
create a larger rectangle.

CreateFcn

function handle, cell array containing function handle and
additional arguments, or string (not recommended)

Callback function executed during object creation. This property
defines a callback function that executes when MATLAB creates a
rectangle object. You must define this property as a default value
for rectangles or in a call to the rectangle function to create a
new rectangle object. For example, the statement

set (0, 'DefaultRectangleCreateFcn',@rect_create)

defines a default value for the rectangle CreateFcn property on

the root level that sets the axes DataAspectRatio whenever you
create a rectangle object. The callback function must be on your
MATLAB path when you execute the above statement.

function rect_create(src,evnt)
% src - the object that is the source of the event
% evnt - empty for this property
axh = get(src, 'Parent');
set(axh, 'DataAspectRatio',[1,1,1]))
end

MATLAB executes this function after setting all rectangle
properties. Setting this property on an existing rectangle object
has no effect. The function must define at least two input
arguments (handle of object created and an event structure, which
is empty for this property).

The handle of the object whose CreateFcn is being executed is
passed by MATLAB as the first argument to the callback function

Rectangle Properties

and 1s also accessible through the root CallbackObject property,
which you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

Curvature
one- or two-element vector [x,y]

Amount of horizontal and vertical curvature. This property
specifies the curvature of the rectangle sides, which enables the
shape of the rectangle to vary from rectangular to ellipsoidal. The
horizontal curvature x is the fraction of width of the rectangle that
1s curved along the top and bottom edges. The vertical curvature
y 1s the fraction of the height of the rectangle that is curved along
the left and right edges.

The values of x and y can range from 0 (no curvature) to 1
(maximum curvature). A value of [0,0] creates a rectangle with
square sides. A value of [1,1] creates an ellipse. If you specify
only one value for Curvature, then the same length (in axes data
units) is curved along both horizontal and vertical sides. The
amount of curvature is determined by the shorter dimension.

DeleteFcn
function handle, cell array containing function handle and
additional arguments, or string (not recommended)

Delete rectangle callback function. A callback function that
executes when you delete the rectangle object (for example, when
you issue a delete command or clear the axes cla or figure c1f).
For example, the following function displays object property data
before the object is deleted.

function delete_fcn(src,evnt)
% src - the object that is the source of the event
% evnt - empty for this property

obj_tp = get(src, 'Type');

2-3269

Rectangle Properties

2-3270

disp([obj_tp, ' object deleted'])
disp('Its user data is:')
disp(get(src, 'UserData'))

end

MATLAB executes the function before deleting the object’s
properties so these values are available to the callback function.
The function must define at least two input arguments (handle
of object being deleted and an event structure, which is empty
for this property)

The handle of the object whose DeleteFcn is being executed is
passed by MATLAB as the first argument to the callback function
and is also accessible through the root CallbackObject property,
which you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

DisplayName

string (default is empty string)

String used by legend for this rectangle object. The legend
function uses the string defined by the DisplayName property to
label this rectangle object in the legend.

¢ If you specify string arguments with the legend function,
DisplayName is set to this rectangle object’s corresponding
string and that string is used for the legend.

e [f DisplayName is empty, legend creates a string of the form,
['data' n], where n is the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

¢ Ifyou edit the string directly in an existing legend, DisplayName
is set to the edited string.

Rectangle Properties

¢ If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

¢ To add programmatically a legend that uses the DisplayName
string, call 1legend with the toggle or show option.

See “Controlling Legends” for more examples.

EdgeColor
{ColorSpec} | none

Color of the rectangle edges. This property specifies the color of
the rectangle edges as a color or specifies that no edges be drawn.

EraseMode
{normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses
to draw and erase rectangle objects. Alternative erase modes
are useful for creating animated sequences, where control of
the way individual objects are redrawn is necessary to improve
performance and obtain the desired effect.

¢ normal (the default) — Redraw the affected region of the
display, performing the three-dimensional analysis necessary
to ensure that all objects are rendered correctly. This mode
produces the most accurate picture, but is the slowest. The
other modes are faster, but do not perform a complete redraw
and are therefore less accurate.

®* none — Do not erase the rectangle when it is moved or
destroyed. While the object is still visible on the screen after
erasing with EraseMode none, you cannot print it because
MATLAB stores no information about its former location.

e xor — Draw and erase the rectangle by performing an exclusive
OR (XOR) with the color of the screen beneath it. This mode
does not damage the color of the objects beneath the rectangle.

2-3271

Rectangle Properties

2-3272

However, the rectangle’s color depends on the color of whatever
is beneath it on the display.

® background — Erase the rectangle by drawing it in the axes
background Color, or the figure background Color if the axes
Color is set to none. This damages objects that are behind the
erased rectangle, but rectangles are always properly colored.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all
objects 1s normal. This means graphics objects created with
EraseMode set to none, xor, or background can look different on
screen than on paper. On screen, MATLAB can mathematically
combine layers of colors (for example, performing an XOR

of a pixel color with that of the pixel behind it) and ignore
three-dimensional sorting to obtain greater rendering speed.
However, these techniques are not applied to the printed
output.

You can use the MATLAB getframe command or other screen
capture application to create an image of a figure containing
nonnormal mode objects.

FaceColor
ColorSpec | {none}

Color of rectangle face. This property specifies the color of the
rectangle face, which is not colored by default.

HandleVisibility
{on} | callback | off

Contirol access to object’s handle by command-line users and GUISs.
This property determines when an object’s handle is visible in

its parent’s list of children. HandleVisibility is useful for
preventing command-line users from accidentally drawing into or
deleting a figure that contains only user interface devices (such as
a dialog box).

Rectangle Properties

Handles are always visible when HandleVisibility is on.

Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by
callback routines, but not from within functions invoked from
the command line. This provides a means to protect GUIs from
command-line users, while allowing callback routines to have
complete access to object handles.

Setting HandleVisibility to off makes handles invisible at all
times. This may be necessary when a callback routine invokes

a function that might potentially damage the GUI (such as
evaluating a user-typed string), and so temporarily hides its own
handles during the execution of that function.

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, c1f, and close.

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

You can set the Root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties).

Handles that are hidden are still valid. If you know an object’s

handle, you can set and get its properties and pass it to any
function that operates on handles.

2-3273

Rectangle Properties

2-3274

HitTest

{on} | off

Selectable by mouse click. HitTest determines if the rectangle can
become the current object (as returned by the gco command and
the figure CurrentObject property) as a result of a mouse click on
the rectangle. If HitTest is of f, clicking the rectangle selects the
object below it (which may be the axes containing it).

Interruptible

{on} | off

Callback routine interruption mode. The Interruptible property
controls whether a rectangle callback routine can be interrupted
by subsequently invoked callback routines. Only callback routines
defined for the ButtonDownFcn are affected by the Interruptible
property. MATLAB checks for events that can interrupt a callback
routine only when it encounters a drawnow, figure, getframe, or
pause command in the routine.

LineStyle

{-} | -1 : | -- | none

Line style of rectangle edge. This property specifies the line style
of the edges. The available line styles are

Symbol Line Style

= Solid line (default)
o Dashed line
Dotted line

-. Dash-dot line

none No line

LineWidth

scalar

Rectangle Properties

The width of the rectangle edge line. Specify this value in points (1
point = !/, inch). The default LineWidth is 0.5 points.

Parent

handle of axes, hggroup, or hgtransform

Parent of rectangle object. This property contains the handle of
the rectangle object’s parent. The parent of a rectangle object is
the axes, hggroup, or hgtransform object that contains it.

See “Objects That Can Contain Other Objects” for more
information on parenting graphics objects.

Position

four-element vector [x,y,width,height]

Location and size of rectangle. This property specifies the location
and size of the rectangle in the data units of the axes. The point

defined by x, y specifies one corner of the rectangle, and width and
height define the size in units along the x-and y-axes respectively.

Selected

on | off

Is object selected? When this property is on MATLAB displays
selection handles if the SelectionHighlight property is also
on. You can, for example, define the ButtonDownFcn to set this
property, allowing users to select the object with the mouse.

SelectionHighlight

Tag

{on} | off
Objects are highlighted when selected. When the Selected
property is on, MATLAB indicates the selected state by drawing

handles at each vertex. When SelectionHighlight is off,
MATLAB does not draw the handles.

string

2-3275

Rectangle Properties

See Also

2-3276

Type

User-specified object label. The Tag property provides a means

to identify graphics objects with a user-specified label. This is
particularly useful when you are constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callback
routines. You can define Tag as any string.

string (read only)

Class of graphics object. For rectangle objects, Type 1s always
the string 'rectangle’.

UIContextMenu

handle of a uicontextmenu object

Associate a context menu with the rectangle. Assign this property
the handle of a uicontextmenu object created in the same figure
as the rectangle. Use the uicontextmenu function to create the
context menu. MATLAB displays the context menu whenever you
right-click over the rectangle.

UserData

matrix

User-specified data. Any data you want to associate with the
rectangle object. MATLAB does not use this data, but you can
access 1t using the set and get commands.

Visible

{on} | off

Rectangle visibility. By default, all rectangles are visible. When
set to off, the rectangle is not visible, but still exists, and you
can get and set its properties.

rectangle

rectint

Purpose
Syntax

Description

See Also

Rectangle intersection area

area = rectint(A,B)

area rectint (A,B) returns the area of intersection of the rectangles
specified by position vectors A and B.

If A and B each specify one rectangle, the output area is a scalar.

A and B can also be matrices, where each row is a position vector. areais
then a matrix giving the intersection of all rectangles specified by A with
all the rectangles specified by B. That is, if A is n-by-4 and B is m-by-4,
then area is an n-by-m matrix where area(i,j) is the intersection area
of the rectangles specified by the ith row of A and the jth row of B.

Note A position vector is a four-element vector [x,y,width,height],
where the point defined by x and y specifies one corner of the rectangle,
and width and height define the size in units along the x and y axes
respectively.

polyarea

2-3277

recycle

Purpose

Syntax

Description

Remarks

2-3278

Set option to move deleted files to recycle folder

recycle

stat = recycle

previousStat = recycle state
previousStat = recycle('state')

recycle displays the current state, on or off, for recycling files you
remove using the delete function. When the value is on, deleted files
move to a different location. The location varies by platform—see
“Deleting Files and Folders Using Functions”. When the value is off,
the delete function permanently removes the files. For details, see
the Remarks section.

stat = recycle returns the current state for recycling files to the
character array stat.

previousStat = recycle state sets the recycle option for MATLAB
to the specified state, either on or off. The previousStat value is the
recycle state before running the statement.

previousStat = recycle('state') is the function form of the syntax.

The preference for Deleting files sets the state of the recycle function
at startup. When you change the preference, it changes the state of
recycle. When you change the state of recycle, it does not change the
preference. Use recycle to override the behavior of the preference. For
example, regardless of the setting for the Deleting files preference, to
remove thisfile.m permanently, run:

recycle('off')
delete('thisfile.m')

After setting the recycle state to off, all files you delete using the
delete function are deleted permanently until you do one of the

following:

® Run recycle('on')

recycle

e Restart MATLAB. Upon startup, MATLAB sets the state for recycle
to match the Deleting files preference.

Examples Start from a state where file recycling is off. Verify the current recycle
state:

recycle

ans =
off

Turn file recycling on. Delete a file and move it to the recycle bin or
temporary folder:

recycle on;
delete myfile.txt

See Also delete, dir, 1s, rmdir
“Managing Files in MATLAB”

2-3279

reducepatch

Purpose

Syntax

Description

2-3280

Reduce number of patch faces

nfv = reducepatch(p,r)
nfv = reducepatch(fv,r)

nfv = reducepatch(p) or nfv = reducepatch(fv)
reducepatch(..., 'fast')
reducepatch(...,'verbose')

nfv = reducepatch(f,v,r)
[nf,nv] = reducepatch(...)

reducepatch(p,r) reduces the number of faces of the patch identified
by handle p, while attempting to preserve the overall shape of the
original object. The MATLAB software interprets the reduction factor
r in one of two ways depending on its value:

e Ifrislessthan 1, risinterpreted as a fraction of the original number
of faces. For example, if you specify r as 0.2, then the number of faces
is reduced to 20% of the number in the original patch.

e If ris greater than or equal to 1, then r is the target number of faces.
For example, if you specify r as 400, then the number of faces is
reduced until there are 400 faces remaining.

nfv = reducepatch(p,r) returns the reduced set of faces and vertices
but does not set the Faces and Vertices properties of patch p. The
struct nfv contains the faces and vertices after reduction.

nfv = reducepatch(fv,r) performs the reduction on the faces and
vertices in the struct fv.

nfv = reducepatch(p) or nfv = reducepatch(fv) uses a reduction
value of 0.5.

reducepatch(...,'fast') assumes the vertices are unique and does
not compute shared vertices.

reducepatch(...,'verbose') prints progress messages to the
command window as the computation progresses.

reducepatch

Remarks

Examples

nfv = reducepatch(f,v,r) performs the reduction on the faces in f
and the vertices in v.

[nf,nv] = reducepatch(...) returns the faces and vertices in the
arrays nf and nv.

If the patch contains nonshared vertices, MATLAB computes shared
vertices before reducing the number of faces. If the faces of the patch
are not triangles, MATLAB triangulates the faces before reduction. The
faces returned are always defined as triangles.

The number of output triangles may not be exactly the number specified
with the reduction factor argument (r), particularly if the faces of the
original patch are not triangles.

This example illustrates the effect of reducing the number of faces to
only 15% of the original value.

[x,y,z,v] = flow;

p = patch(isosurface(x,y,z,v,-3));
set(p, 'facecolor','w', 'EdgeColor','b");
daspect([1,1,1])

view(3)

figure;

h = axes;

p2 = copyobj(p,h);
reducepatch(p2,0.15)
daspect([1,1,1])

view(3)

2-3281

reducepatch

Before Reduction

3.
2.
1.
0. - P e
anl Tl
LA L
-1 AL
™ P e P
e, A
Pl

2-3282

reducepatch

After Reduction to 15% of Criginal Number of Faces

See Also isosurface, isocaps, isonormals, smooth3, subvolume, reducevolume
“Volume Visualization” on page 1-111 for related functions

Vector Field Displayed with Cone Plots for another example

2-3283

reducevolume

Purpose

Syntax

Description

Examples

2-3284

Reduce number of elements in volume data set

[nx,ny,nz,nv] = reducevolume(X,Y,Z,V,[Rx,Ry,Rz])
[nx,ny,nz,nv] reducevolume(V, [Rx,Ry,Rz])
nv = reducevolume(...)

[nx,ny,nz,nv] = reducevolume(X,Y,Z,V,[Rx,Ry,Rz]) reduces the
number of elements in the volume by retaining every Rx*" element in
the x direction, every Ry™ element in the y direction, and every Rz
element in the z direction. If a scalar R is used to indicate the amount
or reduction instead of a three-element vector, the MATLAB software
assumes the reduction to be [R R R].

The arrays X, Y, and Z define the coordinates for the volume V. The
reduced volume is returned in nv, and the coordinates of the reduced
volume are returned in nx, ny, and nz.

[nx,ny,nz,nv] = reducevolume(V,[Rx,Ry,Rz]) assumes the arrays
X, Y, and Z are defined as [X,Y,Z] = meshgrid(1:n,1:m,1:p), where
[m,n,p] = size(V).

nv = reducevolume(...) returns only the reduced volume.

This example uses a data set that is a collection of MRI slices of a
human skull. This data is processed in a variety of ways:

® The 4-D array is squeezed (squeeze) into three dimensions and
then reduced (reducevolume) so that what remains is every fourth
element in the x and y directions and every element in the z direction.

® The reduced data is smoothed (smooth3).

® The outline of the skull is an isosurface generated as a patch (p1)
whose vertex normals are recalculated to improve the appearance
when lighting is applied (patch, isosurface, isonormals).

® A second patch (p2) with an interpolated face color draws the end
caps (FaceColor) isocaps).

® The view of the object is set (view, axis, daspect).

reducevolume

® A 100-element grayscale colormap provides coloring for the end caps
(colormap).

¢ Adding a light to the right of the camera illuminates the object
(camlight, lighting).

load mri

D = squeeze(D);

[x,y,z,D] = reducevolume(D,[4,4,1]);

D = smooth3(D);

p1 = patch(isosurface(x,y,z,D, 5, 'verbose'),...
'FaceColor', 'red', 'EdgeColor', 'none');

isonormals(x,y,z,D,p1);

p2 = patch(isocaps(x,y,z,D, 5),...
'FaceColor', 'interp', 'EdgeColor', 'none');

view(3); axis tight; daspect([1,1,.4])

colormap(gray(100))

camlight; lighting gouraud

25
20
14
10

120

See Also isosurface, isocaps, isonormals, smooth3, subvolume, reducepatch

2-3285

reducevolume

“Volume Visualization” on page 1-111 for related functions

2-3286

refresh

Purpose Redraw current figure
Syntax refresh
refresh(h)
Description refresh erases and redraws the current figure.

refresh(h) redraws the figure identified by h.

See Also “Figure Windows” on page 1-105 for related functions

2-3287

refreshdata

Purpose

Syntax

Description

Remarks

2-3288

Refresh data in graph when data source is specified

refreshdata

refreshdata(figure_handle)
refreshdata(object_handles)
refreshdata(object_handles, 'workspace')

refreshdata evaluates any data source properties (XDataSource,
YDataSource, or ZDataSource) on all objects in graphs in the current
figure. If the specified data source has changed, the MATLAB software
updates the graph to reflect this change.

Note that the variable assigned to the data source property must be in
the base workspace.

refreshdata(figure_handle) refreshes the data of the objects in the
specified figure.

refreshdata(object _handles) refreshes the data of the objects
specified in object_handles or the children of those objects. Therefore,
object_handles can contain figure, axes, or plot object handles.

refreshdata(object _handles, 'workspace') enables you to specify
whether the data source properties are evaluated in the base workspace
or the workspace of the function in which refreshdata was called.
workspace is a string that can be

® base — Evaluate the data source properties in the base workspace.

e caller — Evaluate the data source properties in the workspace of
the function that called refreshdata.

The Linked Plots feature (see documentation for 1inked) sets up data
sources for graphs and synchronizes them with the workspace variables
they display. When you use this feature, you do not also need to call
refreshdata, as it is essentially automatically triggered every time a
data source changes.

refreshdata

If you are not using the Linked Plots feature, you need to set the
XDataSource, YDataSource, and/or ZDataSource properties of a graph
in order to use refreshdata. You can do that programmatically, as
shown in the examples below, or use the Property Editor, one of the
plotting tools. In the Property Editor, select the graph (e.g., a lineseries
object) and type in (or select from the drop-down choices) the name(s)
of the workspace variable(s) from which you want the plot to refresh,
in the fields labelled X Data Source, Y Data Source, and/or Z Data
Source. The call to refreshdata causes the graph to update.

Examples Plot a sine wave, identify data sources, and then modify its
YDataSource:

x = 0:.1:8;

y = sin(x);

h = plot(x,y)

set(h, 'YDataSource','y")
set(h, 'XDataSource', 'x"')
y = sin(x."3);
refreshdata

Create a surface plot, identify a ZDataSource for it, and change the
data to a different size.

Z = peaks(5);

h = surf(2)

set(h, 'zDataSource','Z")
pause(3)

Z = peaks(25);
refreshdata

See Also The [X,Y,Z]DataSource properties of plot objects.

2-3289

regexp, regexpi

Purpose

Syntax

Description

2-3290

Match regular expression

regexp(parseStr, matchExpr)
[startIndex, endIndex, tokIndex, matchStr, tokenStr,
exprNames, splitStr] = regexp(parseStr, matchExpr)
[outVal1l, outVvals5, ...] regexp(str, expr,
outSel1, outSel5,
)

[vli v2 ...] = regexp(str, expr, ..., options)

Each of the above syntaxes applies to both regexp and regexpi. The
regexp function is case sensitive in matching regular expressions to a
string, and regexpi is case insensitive.

regexp(parseStr, matchExpr) returns a row vector containing the
starting index of each substring of parseStr that matches the regular
expression string matchExpr. If no matches are found, regexp returns
an empty array. The parseStr and matchExpr arguments can also
be cell arrays of strings. See “Regular Expressions” in the MATLAB
Programming Fundamentals documentation for more information.

To specify more than one string to parse or more than one expression
to match, see the guidelines listed below under “Multiple Strings or
Expressions” on page 2-3298.

[startIndex, endIndex, tokIndex, matchStr, tokenStr,
exprNames, splitStr] = regexp(parseStr, matchExpr) returns up
to six values, one for each output variable you specify, and in the default
order (as shown in the table below).

Note The str and expr inputs are required and must be entered as the
first and second arguments, respectively. Any other input arguments
(all are described below) are optional and can be entered following the
two required inputs in any order.

regexp, regexpi

Input
Arguments

[outVall, outval5, ...] = regexp(str, expr, outSelft,
outSel5, ...) returns up to six values, one for each output variable
you specify, and ordered according to the order of the qualifier
arguments, q7, q2, etc.

Tip When using the split option, regexp always returns one more
string than it does with the match option. Also, you can always put the
original input string back together from the substrings obtained from
both split and match. See “Example 4 — Splitting the Input String”
on page 2-3300.

[vli v2 ...] = regexp(str, expr, ..., options) calls regexp
with one or more of the nondefault options listed in the following table.
These options must follow str and expr in the input argument list.

Option Description
mode See the section on Modes under Inputs, below.
‘once’ Return only the first match found.

‘'warnings’ Display any hidden warning messages issued by
MATLAB during the execution of the command. This
option only enables warnings for the one command
being executed. See “Example 11 — Displaying Parsing
Warnings” on page 2-3305.

str
A string MATLAB that searches for a substring that matches
the regular expression. It can be of any length and may contain
any characters.

expr

A combination of text and operators that enable you to specify the
content of the phrase you are looking for in the parse string. Any

2-3291

regexp, regexpi

text in the expression must be an exact match for at least part of
the text in the parse string. Operators, on the other hand, are
symbolic. Each operator symbol stands for a type of character
(e.g., an uppercase letter ([A-Z]), a space character (\s), four
characters of any type (. {4})).

MATLAB parses the input string from left to right, attempting
to match text in the string with the first element of the regular
expression. During this process, MATLAB skips over any text
that does not match. When it finds the first match, it continues
parsing the string, this time attempting to match the second piece
of the expression, and so on. If characters are detected in the
string that do not match the expression, then MATLAB drops the
current match candidate and again starts looking for a match
with the first element of the expression.

outputSelect

2-3292

One to seven keywords with which you can select which output
values regexp is to return and in what order.

Qualifier | Description Default
Order
start Row vector containing the starting index | 1
of each substring of str that matches
expr.
end Row vector containing the ending index | 2
of each substring of str that matches
expr.
tokenExtent@ell array containing the starting and 3

ending indices of each substring of str
that matches a token in expr. (This is a
double array when used with 'once'.)

match Cell array containing the text of each 4
substring of str that matches expr.
(This is a string when used with 'once'.)

regexp, regexpi

mode

Qualifier | Description Default
Order
tokens Cell array of cell arrays of strings 5

containing the text of each token
captured by regexp. (This is a cell array
of strings when used with 'once'.)

names Structure array containing the name and | 6
text of each named token captured by
regexp. If there are no named tokens in
expr, regexp returns a structure array
with no fields.

Field names of the returned structure are
set to the token names, and field values
are the text of those tokens. Named
tokens are generated by the expression
(?<tokenname>).

split Cell array containing those parts of 7
the input string that are delimited by
substrings returned when using the

nnnnn N maod+tnh | N3
TCYTAPY e ToTT OpTIoIr.

You can specify one or more of the following modes with the
regexp, regexpi, and regexprep functions. You can enable or
disable any of these modes using the mode specifier keyword (e.g.,
'lineanchors') or the mode flag (e.g., (?m)). Both are shown

in the tables that follow. Use the keyword to enable or disable
the mode for the entire string being parsed. Use the flag to both
enable and disable the mode for selected pieces of the string.

For more information about modes, see “Modifying Parameters
of the Search” in the MATLAB “Programming Fundamentals”
documentation.

Case-Sensitivity Mode

2-3293

regexp, regexpi

2-3294

Use the Case-Sensitivity mode to control whether or not MATLAB
considers letter case when matching an expression to a string.
“Example 7 — Using the Case-Sensitive Mode” on page 2-3303
illustrates this mode.

Mode

Keyword | Flag Description

matchcase’ | (?-1i) Letter case must match when
matching patterns to a string. (The
default for regexp).

‘ignorecase’| (?1i) Do not consider letter case when
matching patterns to a string. (The
default for regexpi).

Dot Matching Mode

Use the Dot Matching mode to control whether or not MATLAB
includes the newline (\n) character when matching the dot (.)
metacharacter in a regular expression. “Example 8 — Using the
Dot Matching Mode” on page 2-3303 illustrates the Dot Matching
mode.

Mode

Keyword Flag Description

‘dotall’ (?s) Match dot (.’) in the pattern
string with any character. (This
is the default).

‘dotexceptnewlind’?-s) Match dot in the pattern with any
character that is not a newline.

Anchor Type Mode

Use the Anchor Type mode to control whether MATLAB considers
the ~ and $ metacharacters to represent the beginning and end
of a string or the beginning and end of a line. “Example 9 —

regexp, regexpi

Using the Anchor Type Mode” on page 2-3304 illustrates the

Anchor mode.

Mode
Keyword Flag

stringanchors’ (?-m)

’lineanchors’ (7?m)

Description

Match the ~ and $ metacharacters
at the beginning and end of a
string. (This is the default).

Match the ~ and $ metacharacters
at the beginning and end of a line.

Spacing Mode

Use the Spacing mode to control how MATLAB interprets space
characters and comments within the parsing string. Note that
spacing mode applies to the parsing string (the second input
argument that contains the metacharacters (e.g., \w) and not the
string being parsed. “Example 10 — Using the Spacing Mode” on
page 2-3305 illustrates the Spacing mode.

Mode
Keyword Flag

Description

‘literalspacing’(?-x)

Parse space characters and
comments (the # character and any
text to the right of it) in the same
way as any other characters in the
string. (This is the default).

‘freespacing’ | (?x)

Ignore spaces and comments when
parsing the string. (You must use
"\ '"and '\#' to match space and
characters.)

once

Specify the 'once' option to return only the first match found
from the parse. This example finds four matches:

2-3295

regexp, regexpi

warning

Display any hidden warning messages issued by MATLAB during
the execution of the command. This option only enables warnings
for the one command being executed.

Output
Arguments

Return Values for Regular Expressions

Default
Order Description Qualifier
1 Row vector containing the starting index of each substring of | start
str that matches expr.
2 Row vector containing the ending index of each substring of | end
str that matches expr.
3 Cell array containing the starting and ending indices of each | tokenExtents
substring of str that matches a token in expr. (This is a
double array when used with 'once'.)
4 Cell array containing the text of each substring of str that | match
matches expr. (This is a string when used with 'once'.)
5 Cell array of cell arrays of strings containing the text of each | tokens
token captured by regexp. (This is a cell array of strings
when used with 'once'.)

2-3296

regexp, regexpi

Return Values for Regular Expressions (Continued)

Default
Order Description Qualifier
6 Structure array containing the name and text of each named | names
token captured by regexp. If there are no named tokens in
expr, regexp returns a structure array with no fields.
Field names of the returned structure are set to the token
names, and field values are the text of those tokens. Named
tokens are generated by the expression (?<tokenname>).
7 Cell array containing those parts of the input string that are | split

delimited by substrings returned when using the regexp
'match' option.

endIndex

Row vector containing the ending index of each substring of str

that matches expr.

tokenExtents

Cell array containing the starting and ending indices of each
substring of str that matches a token in expr. (This is a double

array when used with ’once’.)

matchString

Cell array containing the text of each substring of str that matches

expr. (This is a string when used with ’once’.)

tokenStrings

Cell array of cell arrays of strings containing the text of each
token captured by regexp. (This is a cell array of strings when

used with ’once’.)

tokenNames

Structure array containing the name and text of each named
token captured by regexp. If there are no named tokens in expr,

2-3297

regexp, regexpi

Remarks

Examples

2-3298

regexp returns a structure array with no fields. Field names

of the returned structure are set to the token names, and field
values are the text of those tokens. Named tokens are generated
by the expression (?<tokenName>).

splitString

Cell array containing those parts of the input string that are
delimited by substrings returned when using the regexp ‘'match’
option.

See “Regular Expressions” in the MATLAB Programming Fundamentals
documentation for a listing of all regular expression elements supported
by MATLAB.

Multiple Strings or Expressions

Either the str or expr argument, or both, can be a cell array of strings,
according to the following guidelines:

e If stris a cell array of strings, then each of the regexp outputs is a
cell array having the same dimensions as str.

e [f stris a single string but expr is a cell array of strings, then each
of the regexp outputs is a cell array having the same dimensions
as expr.

e If both str and expr are cell arrays of strings, these two cell arrays
must contain the same number of elements.

Example 1 — Matching a Simple Pattern

Return a row vector of indices that match words that start with c,
end with t, and contain one or more vowels between them. Make the
matches insensitive to letter case (by using regexpi):

str = 'bat cat can car COAT court cut ct CAT-scan';
regexpi(str, 'c[aeiou]+t')
ans =

5 17 28 35

regexp, regexpi

Example 2 — Parsing Multiple Input Strings

Return a cell array of row vectors of indices that match capital letters
and white spaces in the cell array of strings str:

str = {'Madrid, Spain' 'Romeo and Juliet' 'MATLAB is great'};
s1 = regexp(str, '[A-Z]");
s2 = regexp(str, '\s');

Capital letters, ' [A-Z]', were found at these str indices:

s1{:}
ans =
1 9
ans =
1 11
ans =
1 2 3 4 5 6

Space characters, '\s', were found at these str indices:

s2{:}
ans =
8
ans =
6 10
ans =
7 10

Example 3 — Selecting Return Values

Return the text and the starting and ending indices of words containing
the letter x:

str = 'regexp helps you relax';
[m s e] = regexp(str, "\w*x\w*', 'match', 'start', 'end')
m:
‘regexp’ ‘relax’
S:
1 18

2-3299

regexp, regexpi

6 22
Example 4 — Splitting the Input String
Find the substrings delimited by the * character:

s1 = ['Use REGEXP to split ~“this string into '
'several ~individual pieces'];

s2

regexp(s1, '\~', 'split');

s2(:)
ans =

'Use REGEXP to split '
'"this string into several '

'individual pieces'

The split option returns those parts of the input string that are not
returned when using the 'match' option. Note that when you match the
beginning or ending characters in a string (as is done in this example),
the first (or last) return value is always an empty string:

str = 'She sells sea shells by the seashore.';

[matchstr splitstr] = regexp(str, '[Ss]h.', 'match',

'split')
matchstr =
'She' ‘she’ ‘sho'
splitstr =
t ' sells sea ' '11s by the sea' ‘re.’

For any string that has been split, you can reassemble the pieces into
the initial string using the command

j = [splitstr; [matchstr {''}]11; [j{:}]

ans =
She sells sea shells by the seashore.

2-3300

regexp, regexpi

Example 5 — Using Tokens

Search a string for opening and closing HTML tags. Use the expression
<(\w+) to find the opening tag (e.g., '<tagname') and to create a token
for it. Use the expression </\1> to find another occurrence of the same
token, but formatted as a closing tag (e.g., '</tagname>"):

str = ['if <code>A</code> == x², '
'disp(x)"']
str =
if <code>A</code> == x², disp(x)
expr = "<(\wt+).*?>.*?2</\1>";
[tok mat] = regexp(str, expr, 'tokens', 'match');
tok{:}
ans =
'code’
ans =
'sup’
ans =
‘em'
mat{:}
ans =
<code>A</code>
ans =
²
ans =

disp(x)

See “Tokens” in the MATLAB Programming Fundamentals
documentation for information on using tokens.

Example 6 — Using Named Capture

Enter a string containing two names, the first and last names being
in a different order:

2-3301

regexp, regexpi

2-3302

str
str =
John Davis
Rogers, James

sprintf('Jdohn Davis\nRogers, James')

Create an expression that generates first and last name tokens,
assigning the names first and last to the tokens. Call regexp to get
the text and names of each token found:

expr = ...

"(?2<first>\wt)\s+(?<last>\w+) | (?<last>\w+),\s+(?<first>\w+)';

[tokens names] = regexp(str, expr, 'tokens', 'names');

Examine the tokens cell array that was returned. The first and last
name tokens appear in the order in which they were generated: first
name—last name, then last name—first name:

tokens{:}
ans =

‘dohn' 'Davis’
ans =

'Rogers'’ 'dames’

Now examine the names structure that was returned. First and last
names appear in a more usable order:

names(:,1)
ans =
first: 'John'
last: 'Davis’

names(:,2)
ans =
first: 'James'
last: 'Rogers'

regexp, regexpi

Example 7 — Using the Case-Sensitive Mode

Given a string that has both uppercase and lowercase letters,

str = 'A string with UPPERCASE and lowercase text.';

Use the regexp default mode (case-sensitive) to locate only the
lowercase instance of the word case:

regexp(str, 'case', 'match')
ans =
‘case’

Now disable case-sensitive matching to find both instances of case:

regexp(str, 'case', 'ignorecase', 'match')
ans =
'CASE' ‘case’

Match 5 letters that are followed by 'CASE’. Use the (?-1i) flag to turn on
case-sensitivity for the first match and (?1i) to turn it off for the second:

M = regexp(str, {'(?-1i)\w{5}(?=CASE)",
"(?1)\w{5}(?=CASE) '}, 'match');

M{:}
ans =
'"UPPER'
ans =
"UPPER' "lower'

Example 8 — Using the Dot Matching Mode

Parse the following string that contains a newline (\n) character:

str = sprintf('abc\ndef"')
str =

abc

def

2-3303

regexp, regexpi

When you use the default mode, dotall, MATLAB includes the newline
in the characters matched:

regexp(str, '.', 'match')
ans =
‘a' ‘b ‘c' [1x1 char] 'd’ ‘e! !

When you use the dotexceptnewline mode, MATLAB skips the
newline character:

regexp(str, '.', 'match', 'dotexceptnewline')
ans =
Ial Ibl ICI Idl Iel Ifl

Example 9 — Using the Anchor Type Mode

Given the following two-line string,

str = sprintf('%s\n%s', 'Here is the first line',
'followed by the second line')
str =
Here is the first line
followed by the second line

In stringanchors mode, MATLAB interprets the $ metacharacter as
an end-of-string specifier, and thus finds the last two words of the
entire string:

regexp(str, "\w+t\W\w+$', 'match', 'stringanchors')
ans =
'second line'

While in 1ineanchors mode, MATLAB interprets $ as an end-of-line
specifier, and finds the last two words of each line:

regexp(str, "\w+t\W\w+$', 'match', 'lineanchors')

ans =
'first line' 'second line'

2-3304

regexp, regexpi

Example 10 — Using the Spacing Mode

Create a file called regexp_str.txt containing the following text.

(?x) # turn on freespacing.
This pattern matches a string with a repeated letter.
\w* # First, match any number of preceding word characters.

(# Mark a token.
Match a character of any type.
) # Finish capturing said token.

\1 # Backreference to match what token #1 matched.

\w* # Finally, match the remainder of the word.

Because the first line enables freespacing mode, MATLAB ignores all
spaces and comments that appear in the file. Here is the string to parse:

str = ['Looking for words with letters that '
‘appear twice in succession.'];

Use the pattern expression read from the file to find those words that
have consecutive matching letters:

patt = fileread('regexp_str.txt');
regexp(str, patt, 'match')
ans =
'Looking' 'letters’ "appear’ ‘succession'

Example 11 — Displaying Parsing Warnings

To help debug problems in parsing a string with regexp, regexpi, or
regexprep, use the ‘'warnings’ option to view all warning messages:

regexp('$.', '[a-]','warnings"')
Warning: Unbound range.
[a-]
I

2-3305

regexp, regexpi

See Also “Regular Expressions”, regexprep, regexptranslate, strfind, strcmp,
strcmpi, strncmp, strncmpi

2-3306

regexprep

Purpose

Syntax

Description

Replace string using regular expression

s = regexprep('str', 'expr', 'repstr')
s = regexprep('str', 'expr', 'repstr', options)
s = regexprep('str', 'expr', 'repstr') replaces all occurrences

of the regular expression expr in string str with the string repstr. The
new string is returned in s. If no matches are found, return string s is
the same as input string str. You can use character representations
(e.g., "\t' for tab, or '\n' for newline) in replacement string

repstr. See “Regular Expressions” in the MATLAB Programming
Fundamentals documentation for more information.

If stris a cell array of strings, then the regexprep return value s is
always a cell array of strings having the same dimensions as str.

To specify more than one expression to match or more than one
replacement string, see the guidelines listed below under “Multiple
Expressions or Replacement Strings” on page 2-3308.

You can capture parts of the input string as tokens and then reuse them
in the replacement string. Specify the parts of the string to capture
using the (...) operator. Specify the tokens to use in the replacement
string using the operators $1, $2, $N to reference the first, second, and
Nth tokens captured. (See “Tokens” and the example “Using Tokens in
a Replacement String” in the MATLAB Programming Fundamentals
documentation for information on using tokens.)

s = regexprep('str', 'expr', 'repstr', options) By default,
regexprep replaces all matches and is case sensitive. You can use one
or more of the following options with regexprep.

Option Description

mode See mode descriptions on the regexp reference page.
N Replace only the Nth occurrence of expr in str.
‘once’ Replace only the first occurrence of expr in str.

2-3307

regexprep

Remarks

2-3308

Option Description

’ignorecase’ Ignore case when matching and when replacing.

‘preservecase’ | Ignore case when matching (as with 'ignorecase'),
but override the case of replace characters with
the case of corresponding characters in str when
replacing.

‘'warnings’ Display any hidden warning messages issued by
MATLAB during the execution of the command.
This option only enables warnings for the one
command being executed.

See “Regular Expressions” in the MATLAB Programming Fundamentals
documentation for a listing of all regular expression metacharacters
supported by MATLAB.

Multiple Expressions or Replacement Strings

In the case of multiple expressions and/or replacement strings,
regexprep attempts to make all matches and replacements. The first
match is against the initial input string. Successive matches are against
the string resulting from the previous replacement.

The expr and repstr inputs follow these rules:

e If expr is a cell array of strings and repstr is a single string,
regexprep uses the same replacement string on each expression
in expr.

o [If expr is a single string and repstr is a cell array of N strings,
regexprep attempts to make N matches and replacements.

® If both expr and repstr are cell arrays of strings, then expr and
repstr must contain the same number of elements, and regexprep
pairs each repstr element with its matching element in expr.

regexprep

Examples

Example 1 — Making a Case-Sensitive Replacement

Perform a case-sensitive replacement on words starting with m and
ending with y:

str = 'My flowers may bloom in May';
pat = 'm(\w*)y';
regexprep(str, pat, 'April')
ans =
My flowers April bloom in May

Replace all words starting with m and ending with y, regardless of case,
but maintain the original case in the replacement strings:

regexprep(str, pat, 'April', 'preservecase')
ans =
April flowers april bloom in April

Example 2 — Using Tokens In the Replacement String

Replace all variations of the words 'walk up' using the letters following
walk as a token. In the replacement string

str = 'I walk up, they walked up, we are walking up.';
pat = 'walk(\w*) up';
regexprep(str, pat, 'ascend$l')
ans =
I ascend, they ascended, we are ascending.

Example 3 — Operating on Multiple Strings

This example operates on a cell array of strings. It searches

for consecutive matching letters (e.g., '00') and uses a common
replacement value (' --"') for all matches. The function returns a cell
array of strings having the same dimensions as the input cell array:

str = { A
'Whose woods these are I think I know.' ;
'His house is in the village though;' ;
'He will not see me stopping here' ;
'To watch his woods fill up with snow.'};

2-3309

regexprep

a = regexprep(str, '(.)\1', '--', ‘'ignorecase')

'Whose w--ds these are I think I know.'
'His house is in the vi--age though;'
'He wi-- not s-- me sto--ing here'

'To watch his w--ds fi-- up with snow.'

See Also

“Regular Expressions”, regexp, regexpi, regexptranslate, strfind
strcmp, strcmpi, strncmp, strncmpi

2-3310

regexptranslate

Purpose Translate string into regular expression
Syntax s2 = regexptranslate(type, s1)
Descripl‘ion s2 = regexptranslate(type, s1) translates string s1 into a regular

expression string s2 that you can then use as input into one of the
MATLAB regular expression functions such as regexp. The type
input can be either one of the following strings that define the type of
translation to be performed. See “Regular Expressions” in the MATLAB
Programming Fundamentals documentation for more information.

Type Description

LA L, T

'escape’ Translate all special characters (e.g.,’$’,’.”, ’?’, ’[) in
string s1 so that they are treated as literal characters
when used in the regexp and regexprep functions. The
translation inserts an escape character ('\’) before each
special character in s1. Return the new string in s2.

‘wildcard' | Translate all wildcard and ’.’ characters in string s1 so
that they are treated as literal wildcards and periods
when used in the regexp and regexprep functions. The
translation replaces all instances of ’*’ with ’. *’, all
instances of ’?” with ’.’, and all instances of ’.” with ’\ ..
Return the new string in s2.

Examples Example 1 — Using the ‘escape’ Option

Because regexp interprets the sequence ’\n’ as a newline character, it
cannot locate the two consecutive characters '\’ and ’n’ in this string:

str ‘The sequence \n generates a new line';
pat = '\n';

regexp(str, pat)

ans =

[

2-3311

regexptranslate

2-3312

To have regexp interpret the expression expr as the characters "\’ and
n’, first translate the expression using regexptranslate:

pat2
pat2
\\n

regexptranslate('escape', pat)

regexp(str, pat2)
ans =
14

Example 2 — Using ‘escape’ In a Replacement String

Replace the word 'walk’ with ’ascend’ in this string, treating the
characters '$1’ as a token designator:

str = 'I walk up, they walked up, we are walking up.';
pat 'walk (\w*) up';

regexprep(str, pat, 'ascend$1')
ans =
I ascend, they ascended, we are ascending.

Make another replacement on the same string, this time treating the
’$1’ as literal characters:

regexprep(str, pat, regexptranslate('escape', 'ascend$l'))
ans =
I ascend$1, they ascend$1, we are ascend$il.

Example 3 — Using the ‘wildcard’ Option

Given the following string of filenames, pick out just the MAT-files. Use
regexptranslate to interpret the '*’ wildcard as ’\w+’ instead of as
a regular expression quantifier:

files = ['testi.mat, myfile.mat, newfile.txt,

‘jan30.mat, table3.xls'];
regexp(str, regexptranslate('wildcard', '*.mat'), 'match')
ans =

regexptranslate

"testi.mat' 'myfile.mat' 'jan30.mat'

To see the translation, you can type

regexptranslate('wildcard', '*.mat"')
ans =
\w+\.mat

See Also “Regular Expressions”, regexp, regexpi, regexprep

2-3313

registerevent

Purpose

Syntax

Description

Examples

2-3314

Associate event handler for COM object event at run time

h.registerevent(eventhandler)
registerevent(h, eventhandler)

h.registerevent(eventhandler) registers event handler routines
with their corresponding events. The eventhandler argument can be
either a string that specifies the name of the event handler function,
or a function handle that maps to that function. Strings used in the
eventhandler argument are not case sensitive.

registerevent(h, eventhandler) is an alternate syntax.

COM functions are available on Microsoft Windows systems only.

Show events in the MATLAB sample control:

f figure ('position', [100 200 200 200]);
h actxcontrol ('mwsamp.mwsampctrl.2', [0 0 200 200], f);
h.events

MATLAB displays all events associated with the instance of the control
(output is formatted):

Click = void Click()

Db1lClick = void DblClick()

MouseDown = void MouseDown(int16 Button, int16 Shift,
Variant x, Variant y)

Event Args = void Event_Args(inti16 typeshort,
int32 typelong, double typedouble, string typestring,
bool typebool)

Register all events with the same event handler routine, sampev:

h.registerevent('sampev');
h.eventlisteners

registerevent

See Also

How To

MATLAB displays:

ans =
'Click’ ‘sampev’
'DblClick" 'sampev'’
"MouseDown' 'sampev'’
'Event_Args' 'sampev’

Register individual events:

%sUnregister existing events

h.unregisterallevents;

%Register specific events

h.registerevent({'click' 'myclick';
"dblclick' 'my2click'});

h.eventlisteners

MATLAB displays:
ans =

‘click’ 'myclick'
'dblclick’ 'my2click’

Register events using a function handle (@sampev) instead of the
function name:

h = actxcontrol('mwsamp.mwsampctrl.2', [0 O 200 200]);
registerevent(h, @sampev);

events (COM) | eventlisteners | unregisterevent
unregisterallevents | isevent

+ “Writing Event Handlers”

2-3315

rehash

Purpose

Syntax

Description

2-3316

Refresh function and file system path caches

rehash

rehash path

rehash toolbox
rehash pathreset
rehash toolboxreset
rehash toolboxcache

rehash with no arguments updates the MATLAB list of known

files and classes for directories on the search path that are not in
matlabroot/toolbox. It compares the timestamps for loaded functions
against their timestamps on disk. It clears loaded functions if the files
on disk are newer. All of this normally happens each time MATLAB
displays the Command Window prompt. Use rehash with no arguments
only when you run a program file that updates another program file,
and the calling file needs to reuse the updated version of the second file
before the calling file has finished running.

rehash path performs the same updates as rehash, but uses a different
technique for detecting the files and directories that require updates.
Run rehash path only if you receive a warning during MATLAB
startup notifying you that MATLAB could not tell if a directory has
changed, and you encounter problems with MATLAB not using the
most current versions of your program files.

rehash toolbox performs the same updates as rehash path, except it
updates the list of known files and classes for all directories on the
search path, including those in matlabroot/toolbox. Run rehash
toolbox when you change, add, or remove files in matlabroot/toolbox
during a session. Typically, you should not make changes to files and
directories in matlabroot/toolbox.

rehash pathreset performs the same updates as rehash path, and also
ensures the known files and classes list follows precedence rules for
shadowed functions.

rehash

rehash toolboxreset performs the same updates as rehash toolbox,
and also ensures the known files and classes list follows precedence
rules for shadowed functions.

rehash toolboxcache performs the same updates as rehash toolbox,
and also updates the cache file. This is the equivalent of clicking the
Update Toolbox Path Cache button in the General Preferences
dialog box.

See Also addpath, clear, matlabroot, path, rmpath

“Toolbox Path Caching in the MATLAB Program” and “Using
the MATLAB Search Path” in the MATLAB Desktop Tools and
Development Environment documentation

2-3317

release

Purpose Release COM interface
Syntax h.release
release(h)
Description h.release releases the interface and all resources used by the interface.

You must release the handle when you are done with the interface. A
released interface is no longer valid. MATLAB generates an error if you
try to use an object that represents that interface.

release(h) is an alternate syntax.

Releasing the interface does not delete the control itself (see the delete
function), since other interfaces on that object might still be active.

COM functions are available on Microsoft Windows systems only.

Examples 1 Create an instance of a Microsoft Calendar control. Get a TitleFont
interface and use it to change the appearance of the calendar title
font:

f = figure('position',[300 300 500 500]);
cal = actxcontrol('mscal.calendar', [0 O 500 500], f);

TFont = cal.TitleFont;
TFont.Name ‘Viva BoldExtraExtended';
TFont.Bold = 0;

2 After working with the title font, release the TitleFont interface:

TFont.release;

3 Delete the cal object and the figure window:

cal.delete;
delete(f);
clear T;

See Also delete (COM) | actxcontrol | actxserver

2-3318

release

How To * Releasing Interfaces

2-3319

relationaloperators (handle)

Purpose

Syntax

Description

2-3320

Equality and sorting of handle objects

TF
TF
TF
TF
TF
TF

TF
TF
TF
TF
TF
TF

= eq(H1,H2)
= ne(H1,H2)
= 1t (H1,H2)
= le(H1,H2)
= gt(H1,H2)
= ge(H1,H2)
= eq(H1,H2)
= ne(H1,H2)
= 1t (H1,H2)
= le(H1,H2)
= gt (H1,H2)
= ge(H1,H2)

For each pair of input arrays (H1 and H2), a logical array of the
same size is returned in which each element is an element-wise
equality or comparison test result. These methods perform scalar
expansion in the same way as the MATLAB built-in functions. See
relationaloperators for more information.

You can make the following assumptions about the result of a handle
comparison:

The same two handles always compare as equal and the repeated
comparison of any two handles always yields the same result in the
same MATLAB session.

Different handles are always not-equal.

The order of handle values is purely arbitrary and has no connection
to the state of the handle objects being compared.

If the input arrays belong to different classes (including the case
where one input array belongs to a non-handle class such as double)
then the comparison is always false.

relationaloperators (handle)

e If a comparison is made between a handle object and an object of a
dominant class, the method of the dominant class is invoked. You
should generally test only like objects because a dominant class
might not define one of these methods.

® An error occurs if the input arrays are not the same size and neither
is scalar.

See Also handle, meta.class

2-3321

rem

Purpose
Syntax

Description

Remarks

See Also

2-3322

Remainder after division

X
I}

rem(X,Y)

R rem(X,Y) if Y ~= 0, returns X - n.*Y wheren = fix(X./Y).IfY
is not an integer and the quotient X. /Y is within roundoff error of an
integer, then n is that integer. The inputs X and Y must be real arrays
of the same size, or real scalars.

The following are true by convention:

®* rem(X,0) is NaN
®* rem(X,X) for X~=01s 0

® rem(X,Y) for X~=Y and Y~=0 has the same sign as X.

mod (X,Y) for X~=Y and Y~=0 has the same sign as Y.

rem(X,Y) and mod(X,Y) are equal if X and Y have the same sign, but
differ by Y if X and Y have different signs.

The rem function returns a result that is between 0 and sign(X) *abs(Y).
If Y 1s zero, rem returns NaN.

mod

remove (Map)

Purpose Remove key-value pairs from containers.Map

Syntax remove (M, keys)

Description remove (M, keys) erases all specified keys, and the values associated
with them, from Map object M.keys can be a scalar key or a cell array
of keys.

Using remove changes the count of the elements in the map.

Read more about Map Containers in the MATLAB Programming
Fundamentals documentation.

Examples Create a Map object containing the names of several US states and the
capital city of each:

US_Capitals = containers.Map(

{'Arizona', 'Nebraska', 'Nevada', 'New York',
'Georgia', 'Alaska', 'Vermont', 'Oregon'},

{'Phoenix"', 'Lincoln', 'Carson City', 'Albany’,
'Atlanta', 'Juneau’', 'Montpelier', 'Salem'});

After checking how many keys there are in the US_Capitals map,
remove the key-value pair with key name Oregon from it:

US_Capitals.Count

ans =
8

remove (US_Capitals, 'Oregon');
US_Capitals.Count

ans =
7

Remove three more key-value pairs from the map:

2-3323

remove (Map)

remove (US_Capitals, {'Nebraska', 'Nevada', 'New York'});
US_Capitals.Count
ans =
4
See Also containers.Map, keys(Map), values(Map), size(Map),

length(Map)isKey(Map),handle

2-3324

removets

Purpose Remove timeseries objects from tscollection object
Syntax tsc = removets(tsc,Name)
Description tsc = removets(tsc,Name) removes one or more timeseries objects

with the name specified in Name from the tscollection object tsc. Name
can either be a string or a cell array of strings.

Examples The following example shows how to remove a time series from a
tscollection.

1 Create two timeseries objects, ts1 and ts2.

ts1=timeseries([1.1 2.9 3.7 4.0 3.0],1:5, 'name', 'acceleration');
ts2=timeseries([3.2 4.2 6.2 8.5 1.1],1:5,'name', 'speed');

2 Create a tscollection object tsc, which includes ts1 and ts2.

tsc=tscollection({ts1 ts2});

3 To view the members of tsc, type the following at the MATLAB
prompt:

tsc

The response is

Time Series Collection Object: unnamed
Time vector characteristics

Start time 1 seconds
End time 5 seconds

Member Time Series Objects:

2-3325

removets

acceleration
speed

The members of tsc are listed by name at the bottom: acceleration
and speed. These are the Name properties of ts1 and ts2, respectively.

4 Remove ts2 from tsc.

tsc=removets(tsc, 'speed');

5 To view the current members of tsc, type the following at the
MATLAB prompt:

tsc

The response is

Time Series Collection Object: unnamed
Time vector characteristics

Start time 1 seconds
End time 5 seconds

Member Time Series Objects:
acceleration

The remaining member of tsc is acceleration. The timeseries speed
has been removed.

See Also addts, tscollection

2-3326

rename

Purpose Rename file on FTP server
Syntax rename(f, 'oldname', 'newname')
Description rename (f, 'oldname', 'newname') changes the name of the file oldname

to newname in the current directory of the FTP server f, where f was
created using ftp.

Examples Connect to server testsite, view the contents, and change the name
of testfile.m to showresults.m.

test=ftp('ftp.testsite.com');

dir(test)
. .. testfile.m
rename(test, 'testfile.m', 'showresults.m')
dir(test)
showresults.m
See Also dir (ftp), delete (ftp), ftp, mget, mput

2-3327

repmat

Purpose

Syntax

Description

Remarks

Examples

2-3328

Replicate and tile array

v}
I}

repmat(A,m,n)
= repmat(A,[m n])
B = repmat(A,[m n p...])

o)
|

B = repmat(A,m,n) creates a large matrix B consisting of an m-by-n
tiling of copies of A. The size of Bis [size(A,1)*m, (size(A,2)*n]. The
statement repmat (A, n) creates an n-by-n tiling.

B

repmat (A, [m n]) accomplishes the same result as repmat(A,m,n).

B repmat(A,[m n p...]) produces a multidimensional array B
composed of copies of A. The size of Bis [size(A,1)*m, size(A,2)*n,
size(A,3)*p, ...].

repmat (A,m,n), when Ais a scalar, produces an m-by-n matrix filled with
A’s value and having A’s class. For certain values, you can achieve the
same results using other functions, as shown by the following examples:
® repmat(NaN,m,n) returns the same result as NaN(m,n).

® repmat(single(inf),m,n) is the same as inf(m,n, 'single"').

® repmat(int8(0),m,n) is the same as zeros(m,n, 'int8"').

e repmat(uint32(1),m,n) is the same as ones(m,n, 'uint32"').

® repmat(eps,m,n) is the same as eps(ones(m,n)).

In this example, repmat replicates 12 copies of the second-order identity
matrix, resulting in a “checkerboard” pattern.

B = repmat(eye(2),3,4)

B =
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0

See Also

0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

The statement N = repmat(NaN,[2 3]) creates a 2-by-3 matrix of NaNs.

reshape, bsxfun, NaN, Inf, ones, zeros

2-3329

resample (timeseries)

Purpose

Syntax

Description

Examples

2-3330

Select or interpolate timeseries data using new time vector

ts = resample(ts,Time)
ts = resample(ts,Time,interp_method)
ts = resample(ts,Time,interp_method,code)

ts = resample(ts,Time) resamples the timeseries object ts using
the new Time vector. When ts uses date strings and Time is numeric,
Time is treated as specified relative to the ts.TimeInfo.StartDate
property and in the same units that ts uses. The resample operation
uses the default interpolation method, which you can view by using
the getinterpmethod(ts) syntax.

ts = resample(ts,Time,interp_method) resamples the timeseries
object ts using the interpolation method given by the string
interp_method. Valid interpolation methods include 'linear' and
'zoh' (zero-order hold).

ts = resample(ts,Time,interp_method,code) resamples the
timeseries object ts using the interpolation method given by the string
interp_method. The integer code is a user-defined Quality code for
resampling, applied to all samples.

The following example shows how to resample a timeseries object.
1 Create a timeseries object.
ts=timeseries([1.1 2.9 3.7 4.0 3.0],1:5, 'Name', 'speed');
2 Transpose ts to make the data columnwise.
ts=transpose(ts)
The display in the MATLAB Command Window is
Time Series Object: speed

Time vector characteristics

resample (timeseries)

Length 5
Start time 1 seconds
End time 5 seconds

Data characteristics

Interpolation method 1linear

Size [6 1]
Data type double
Time Data Quality
1 1.1
2 2.9
3 3.7
4 4
5 3

Note that the interpolation method is set to 1inear, by default.

3 Resample ts using its default interpolation method.

res_ts=resample(ts,[1 1.5 3.5 4.5 4.9])

The resampled time series displays as follows:

Time Series Object: speed

Time vector characteristics

Length 5
Start time 1 seconds
End time 4.900000e+000 seconds

2-3331

resample (timeseries)

Data characteristics

Interpolation method 1linear

Size [5 1]
Data type double
Time Data Quality
1 1.1
1.5 2
3.5 3.85
4.5 3.5
4.9 3.1
See Also getinterpmethod, setinterpmethod, synchronize, timeseries

2-3332

resample (tscollection)

Purpose

Syntax

Description

Examples

Select or interpolate data in tscollection using new time vector

tsc = resample(tsc,Time)

tsc = resample(tsc,Time,interp_method)

tsc = resample(tsc,Time,interp_method,code)

tsc = resample(tsc,Time) resamples the tscollection object

tsc on the new Time vector. When tsc uses date strings and Time

is numeric, Time is treated as numerical specified relative to the
tsc.TimeInfo.StartDate property and in the same units that tsc uses.
The resample method uses the default interpolation method for each
time series member.

tsc = resample(tsc,Time,interp_method) resamples the
tscollection object tsc using the interpolation method given by the
string interp_method. Valid interpolation methods include 'linear'
and 'zoh' (zero-order hold).

tsc = resample(tsc,Time,interp_method,code) resamples the
tscollection object tsc using the interpolation method given by the
string interp_method. The integer code is a user-defined quality code
for resampling, applied to all samples.

The following example shows how to resample a tscollection that
consists of two timeseries members.

1 Create two timeseries objects.

ts1=timeseries([1.1 2.9 3.7 4.0 3.0],1:5, 'name', 'acceleration');
ts2=timeseries([3.2 4.2 6.2 8.5 1.1],1:5,'name', 'speed');

2 Create a tscollection tsc.

tsc=tscollection({ts1 ts2});

The time vector of the collection tsc is [1:5], which is the same as
for ts1 and ts2 (individually).

2-3333

resample (tscollection)

3 Get the interpolation method for acceleration by typing

tsc.acceleration

MATLAB responds with

Time Series Object: acceleration

Time vector characteristics

Length 5
Start time 1 seconds
End time 5 seconds

Data characteristics
Interpolation method linear
Size [1 1 5]
Data type double

4 Set the interpolation method for speed to zero-order hold by typing

setinterpmethod(tsc.speed, 'zoh')

MATLAB responds with

Time Series Object: acceleration

Time vector characteristics

Length 5
Start time 1 seconds
End time 5 seconds

2-3334

resample (tscollection)

Data characteristics
Interpolation method zoh

Size [1 1 5]
Data type double

5 Resample the time-series collection tsc by individually resampling

each time-series member of the collection and using its interpolation
method.

res_tsc=resample(tsc,[1 1.5 3.5 4.5 4.9])

See Also getinterpmethod, setinterpmethod, tscollection

2-3335

reset

Purpose
Syntax

Description

Examples

See Also

2-3336

Reset graphics object properties to their defaults
reset(h)

reset(h) resets all properties having factory defaults on the object
identified by h. To see the list of factory defaults, use the statement

get(0, 'factory')

If his a figure, the MATLAB software does not reset Position, Units,
WindowStyle, or PaperUnits. If h is an axes, MATLAB does not reset
Position and Units.

reset(gca) resets the properties of the current axes.

reset(gcf) resets the properties of the current figure.

cla, clf, gca, gcf, hold

“Object Manipulation” on page 1-110 for related functions

reset (RandStream)

Purpose
Class

Syntax

Description

Examples

Reset random stream
@RandStream

reset(s)
reset(s,seed)

reset(s) resets the generator for the random stream s to its initial
internal state. This is similar to clearing s and recreating it using
RandStream('type',...), except reset does not set the stream’s
RandnAlg, Antithetic, and FullPrecision properties to their original
values.

reset(s,seed) resets the generator for the random stream s to the
initial internal state corresponding to the seed seed. Resetting a
stream’s seed can invalidate independence with other streams.

Note Resetting a stream should be used primarily for reproducing
results.

1 Create a random stream object.

s=RandStream('mt19937ar')

2 Make it the default stream.

RandStream.setDefaultStream(s)

3 Reset the stream object you just created and generate 5 uniform
random values using the rand method.

rand(s,1,5)
ans =

0.3631 0.4048 0.1490 0.9438 0.1247

2-3337

reset (RandStream)

4 Reset the stream.

reset(s)

5 Generate the same 5 random values from the default stream.
rand(s,1,5)
ans =

0.3631 0.4048 0.1490 0.9438 0.1247

See Also @RandStream

2-3338

reshape

Purpose

Syntax

Description

Examples

Reshape array

= reshape(A,m,n)

= reshape(A,m,n,p,...)
reshape(A,[mnp ...])
= reshape(A,...,[],...)
= reshape(A,siz)

[vsBlosBve B i ov)
I

B = reshape(A,m,n) returns the m-by-n matrix B whose elements are
taken column-wise from A. An error results if A does not have m*n
elements.

B = reshape(A,m,n,p,...) orB = reshape(A,[m n p ...]) returns
an n-dimensional array with the same elements as A but reshaped
to have the size m-by-n-by-p-by-. ... The product of the specified

dimensions, m*n*p*..., must be the same as prod(size(A)).

B = reshape(A,...,[],...) calculates the length of the dimension
represented by the placeholder [], such that the product of the
dimensions equals prod(size(A)). The value of prod(size(A)) must
be evenly divisible by the product of the specified dimensions. You can
use only one occurrence of [].

B = reshape(A,siz) returns an n-dimensional array with the

same elements as A, but reshaped to siz, a vector representing the
dimensions of the reshaped array. The quantity prod(siz) must be the
same as prod(size(A)).

Reshape a 3-by-4 matrix into a 2-by-6 matrix.

A =
1 4 7 10
2 5 8 11
3 6 9 12

B = reshape(A,2,6)

B =

2-3339

reshape

1 3 5 7 9 11
2 4 6 8 10 12

B = reshape(A,2,[1])
B =
1 3 5 7 9 11
2 4 6 8 10 12
See Also shiftdim, squeeze, circshift, permute, repmat

The colon operator :

2-3340

residue

Purpose

Syntax

Description

Definition

Convert between partial fraction expansion and polynomial coefficients

[ryp,k] = residue(b,a)
[by,a] = residue(r,p,k)

The residue function converts a quotient of polynomials to pole-residue
representation, and back again.

[r,p,k] = residue(b,a) finds the residues, poles, and direct term of
a partial fraction expansion of the ratio of two polynomials, b({s)and
at(g), of the form

1+i.'J35’”_2+ .. +h

b(s) blsm+b23m_ m+1

a(s)

CI]_SH+CI2-S'” +CI3-E'” +...+CIH+1

where 'bj and CIJ' are the jth elements of the input vectors b and a.

[b,a] = residue(r,p,k) converts the partial fraction expansion back
to the polynomials with coefficients in b and a.

If there are no multiple roots, then

r r r
b(s) _ 1 9 L In

= + + .. + k(s
a(s) s—py s—pg §—-p, (=)

The number of poles n is

n = length(a)-1 = length(r) = length(p)

The direct term coefficient vector is empty if length(b) < length(a);
otherwise

length(k) = length(b)-length(a)+1

Ifp(j) = ... = p(j+m-1) is a pole of multiplicity m, then the
expansion includes terms of the form

2-3341

residue

Arguments

Algorithm

Limitations

Examples

2-3342

L LS S Ti+m-1
g—p . Y s _p.ym
Pj (s—pj) (s—-p;)
b,a Vectors that specify the coefficients of the polynomials in
descending powers of §
r Column vector of residues
p Column vector of poles

Row vector of direct terms

It first obtains the poles with roots. Next, if the fraction is nonproper,
the direct term k is found using deconv, which performs polynomial
long division. Finally, the residues are determined by evaluating the
polynomial with individual roots removed. For repeated roots, resi2
computes the residues at the repeated root locations.

Numerically, the partial fraction expansion of a ratio of polynomials
represents an ill-posed problem. If the denominator polynomial, a(s),
is near a polynomial with multiple roots, then small changes in the
data, including roundoff errors, can make arbitrarily large changes in
the resulting poles and residues. Problem formulations making use of
state-space or zero-pole representations are preferable.

If the ratio of two polynomials is expressed as

b(s) 55 +8s°—2s+7

als) 431 85+3
then

b=[58-27]

a=1]-408 3]

residue

and you can calculate the partial fraction expansion as

[r, p, k] = residue(b,a)

-1.4167
-0.6653
1.3320

1.5737
-1.1644
-0.4093

-1.2500

Now, convert the partial fraction expansion back to polynomial
coefficients.

[b,a] = residue(r,p,k)

b =
-1.2500 -0.7500 0.5000 -1.7500
1.0000 -0.0000 -2.0000 -0.7500

The result can be expressed as

b(s) —1.25s°_0.755"+ 0.50s —1.75

3
a(s) $°2.00s - 0.75
Note that the result is normalized for the leading coefficient in the
denominator.
See Also deconv, poly, roots

2-3343

residue

References [1] Oppenheim, A.V. and R.W. Schafer, Digital Signal Processing,
Prentice-Hall, 1975, p. 56.

2-3344

restoredefaultpath

Purpose

GUI
Alternatives

Syntax

Description

See Also

Restore default search path

As an alternative to the restoredefaultpath function, use the Set
Path dialog box.

restoredefaultpath
restoredefaultpath; matlabrc

restoredefaultpath sets the search path to include only folders for
installed products from The MathWorks. Use restoredefaultpath
when you are having problems with the search path.

restoredefaultpath; matlabrc sets the search path to include only
folders for installed products from The MathWorks and corrects search
path problems encountered during startup.

MATLAB does not support issuing restoredefaultpath from a UNC
path name. Doing so might result in MATLAB being unable to find
files on the search path. If you do issue restoredefaultpath from a
UNC path name, restore the expected behavior by changing the current
folder to an absolute path, and then reissuing restoredefaultpath.

addpath, genpath, matlabrc, rmpath, savepath
Topics in the User Guide:

¢ “Recovering from Problems with the Search Path”

e “Using the MATLAB Search Path”

2-3345

rethrow

Purpose

Syntax

Description

Remarks

2-3346

Reissue error

Note As of version 7.5, MATLAB supports error handling that is
based on the MException class. Calling rethrow with a structure
argument, as described on this page, is now replaced by calling rethrow
with an MException object, as described on the reference page for
rethrow(MException). rethrow called with a structure input will be
removed in a future version.

rethrow(errorStruct)

rethrow(errorStruct) reissues the error specified by errorStruct.
The currently running function terminates and control returns to the
keyboard (or to any enclosing catch block). The errorStruct argument
must be a MATLAB structure containing at least the message and
identifier fields:

Fieldname Description

message Text of the error message

identifier Message identifier of the error message

stack Information about the error from the program stack

See "Message Identifiers" in the MATLAB documentation for more
information on the syntax and usage of message identifiers.

The errorStruct input can contain the field stack, identical in format
to the output of the dbstack command. If the stack field is present, the
stack of the rethrown error will be set to that value. Otherwise, the
stack will be set to the line at which the rethrow occurs.

rethrow

Examples rethrow is usually used in conjunction with try-catch statements to
reissue an error from a catch block after performing catch-related
operations. For example,

try
do_something
catch
do_cleanup
rethrow(previous_error)
end

See Also rethrow(MException), throw(MException),
throwAsCaller (MException), try, catch, error, assert, dbstop

2-3347

rethrow (MException)

Purpose
Syntax

Description

2-3348

Reissue existing exception
rethrow(exception)

rethrow(exception) forces an exception (i.e., error report) to be
reissued by MATLAB after the error reporting process has been
temporarily suspended to diagnose or remedy the problem. MATLAB
typically responds to errors by terminating the currently running
program. Errors occurring within a try block, however, bypass this
mechanism and transfer control of the program to error handling code
in the catch block instead. This enables you to write your own error
handling procedures for parts of your program that require them.

The exception input is a scalar object of the MException class that
contains information about the cause and location of the error.

The code segment below shows the format of a typical try-catch
statement.

try try block
program-code |
program-code |

: Vv
catch exception catch block

error-handling code |

: |

rethrow(exception) \Y

end

An error detected within the try block causes MATLAB to enter the
corresponding catch block. The error record constructed by MATLAB
in the process of reporting this error passes to the catch command
in the statement

catch exception

Error handling code within the catch block uses the information in the
error record to address the problem in some predefined manner. The

rethrow (MException)

Remarks

catch block shown here ends with a rethrow statement which throws
the exception returned in the catch statement, and then terminates
the function:

rethrow(exception)

The most significant difference between rethrow and other MATLAB
functions that throw exceptions is in how rethrow handles a piece of
the exception record called the stack. The stack keeps a record of where
the error occurred and what functions were called in the process. It is
a struct array composed of the following fields, where each element of
the array represents an exception:

Fields of the Exception | Description

Stack

line Line number from which the exception
was thrown.

name Name of the function being executed at
the time.

file Name of the file containing that function.

Functions such as error, assert, or throw, create the stack with the
location from which they were executed. Calling rethrow, however,
preserves information from the original exception. In doing so, rethrow
enables you to retrace the path taken to the source of the error.

There are four ways to throw an exception in MATLAB (see the list
below). Use the first of these when testing the outcome of some action
for failure and reporting the failure to MATLAB. Use one of the
remaining three techniques to throw an existing exception.

1 Test the result of some action taken by your program. If the result is
found to be incorrect or unexpected, compose an appropriate message
and message identifier, and pass these to MATLAB using the error
function.

2-3349

rethrow (MException)

Examples

2-3350

2 Reissue the original exception by throwing the initial error record
unmodified. Use the MException rethrow method to do this.

3 Collect additional information on the cause of the error, store it in a
new or modified error record, and issue a new exception based on that
record. Use the MException addCause and throw methods to do this.

4 Make it appear that the error originated in the caller of the currently
running function. Use the MException throwAsCaller method to
do this.

rethrow can only issue a previously caught exception. Calling rethrow
on an exception that was not previously thrown is an error.

This example shows the difference between using throw and rethrow
at the end of a catch block. The combineArrays function vertically
concatenates arrays A and B. When the two arrays have rows of unequal
length, the function throws an error.

The first time you run the function, comment out the rethrow command
at the end of the catch block so that the function calls throw instead:

function C = combineArrays(A, B)
try

catAlongDimi (A, B); % Line 3
catch exception

throw(exception) % Line 5

% rethrow(exception) % Line 6
end
function catAlongDimi(V1, V2)

C = cat(1, V1, V2); % Line 10

When MATLAB throws the exception, it reports an error on line 5 which
is the line that calls throw. In some cases, that might be what you want
but, in this case, it does not show the true source of the error.

A = 4:3:19; B = 3:4:19;

rethrow (MException)

combineArrays (A, B)

** ERROR: Incompatible array sizes 6 and 5 **
??? Error using ==> combineArrays at 7

CAT arguments dimensions are not consistent.

Make the following changes to combineArrays.m so that you use
rethrow instead:

% throw(exception) % Line 7
rethrow(exception) % Line 8

Run the function again. This time, line 12 is the first line reported
which is where the MATLAB concatenation function cat was called and
the exception originated. The next error reported is on line 3 which is
where the call to catAlongDim1 was called:

** ERROR: Incompatible array sizes 6 and 5 **
??? Error using ==> cat
CAT arguments dimensions are not consistent.

Error in ==> combineArrays>catAlongDim1 at 12
C = cat(1, Vi1, V2);

Error in ==> combineArrays at 3
catAlongDimi (A, B);

See Also try, catch, error, assert, MException, throw(MException),
throwAsCaller (MException), addCause (MException),
getReport(MException), last(MException)

2-3351

return

Purpose Return to invoking function
Syntax return
Descripl‘ion return causes a normal return to the invoking function or to the

keyboard. It also terminates keyboard mode.

Examples This determinant function uses return to handle the special case of an
empty matrix:

function d = det(A)
%DET det(A) is the determinant of A.
if isempty(A)
d =1;
return
else

end

See Also break, continue, disp, end, error, for, if, keyboard, switch, while

2-3352

Tiff.rewriteDirectory

Purpose
Syntax

Description

Examples

See Also

Tutorials

Write modified metadata to existing IFD
tiffobj.rewriteDirectory()

tiffobj.rewriteDirectory() writes modified metadata (tag) data to
an existing directory. Use this tag when you want to change the value
of a tag in an existing image file directory.

Open a Tiff object for modification and modify the value of a tag.
Replace myfile.tif with the name of a TIFF file on your MATLAB
path.

t = Tiff('myfile.tif', 'r');
% Modify the value of a tag.
t.setTag('Software', 'MATLAB');
t.rewriteDirectory();
References

This method corresponds to the TIFFRewriteDirectory function in the
LibTIFF C API. To use this method, you must be familiar with LibTIFF
version 3.7.1, as well as the TIFF specification and technical notes.

View this documentation at LibTIFF - TIFF Library and Utilities

Tiff.writeDirectory

+ “Exporting Image Data and Metadata to TIFF Files”
+ “Reading Image Data and Metadata from TIFF Files”

2-3353

http://www.remotesensing.org/libtiff/

rgb2hsv

Purpose

Syntax

Description

See Also

2-3354

Convert RGB colormap to HSV colormap

cmap = rgb2hsv (M)
hsv_image = rgb2hsv(rgb_image)

cmap = rgb2hsv (M) converts an RGB colormap M to an HSV colormap
cmap. Both colormaps are m-by-3 matrices. The elements of both
colormaps are in the range 0 to 1.

The columns of the input matrix M represent intensities of red, green,
and blue, respectively. The columns of the output matrix cmap represent
hue, saturation, and value, respectively.

hsv_image = rgb2hsv(rgb_image) converts the RGB image to the
equivalent HSV image. RGB is an m-by-n-by-3 image array whose three
planes contain the red, green, and blue components for the image. HSV
is returned as an m-by-n-by-3 image array whose three planes contain
the hue, saturation, and value components for the image.

brighten, colormap, hsv2rgb, rgbplot

“Color Operations” on page 1-108 for related functions

rgb2ind

Purpose

Syntax

Description

Convert RGB image to indexed image

[X,map] = rgb2ind(RGB, n)

X = rgb2ind(RGB, map)

[X,map] = rgb2ind(RGB, tol)

[...] = rgb2ind(..., dither_option)

rgb2ind converts RGB images to indexed images using one of these
methods:

¢ Uniform quantization

® Minimum variance quantization

® Colormap approximation

For all these methods, rgb2ind also dithers the image unless you
specify 'nodither' for dither_option

[X,map] = rgb2ind(RGB, n) converts the RGB image to an indexed
image X using minimum variance quantization. map contains at most n
colors. n must be less than or equal to 65,536.

X = rgb2ind(RGB, map) converts the RGB image to an indexed image
X with colormap map by matching colors in RGB with the nearest color in
the colormap map. size(map,1) must be less than or equal to 65,536.

[X,map] = rgb2ind(RGB, tol) converts the RGB image to an
indexed image X using uniform quantization. map contains at most
(floor(1/tol)+1)"3 colors. tol must be between 0.0 and 1.0.

[...] = rgb2ind(..., dither_option) enables or disables
dithering. dither_option is a string that can have one of these values.

2-3355

rgb2ind

Class
Support

Remarks

2-3356

‘dither' (default) dithers, if necessary, to achieve
better color resolution at the
expense of spatial resolution.

'nodither' maps each color in the original
image to the closest color in
the new map. No dithering is
performed.

Note The values in the resultant image X are indexes into the colormap
map and cannot be used in mathematical processing, such as filtering
operations.

The input image can be of class uint8, uint16, single, or double. If
the length of map is less than or equal to 256, the output image is of
class uint8. Otherwise, the output image is of class uint16.

If you specify tol, rgb2ind uses uniform quantization to convert the
image. This method involves cutting the RGB color cube into smaller
cubes of length tol. For example, if you specify a tol of 0.1, the edges of
the cubes are one-tenth the length of the RGB cube. The total number
of small cubes is:

n = (floor(1/tol)+1)"3

Each cube represents a single color in the output image. Therefore, the
maximum length of the colormap is n. rgb2ind removes any colors that
don’t appear in the input image, so the actual colormap can be much
smaller than n.

If you specify n, rgh2ind uses minimum variance quantization. This
method involves cutting the RGB color cube into smaller boxes (not
necessarily cubes) of different sizes, depending on how the colors are
distributed in the image. If the input image actually uses fewer colors
than the number you specify, the output colormap is also smaller.

rgb2ind
|

If you specify map, rgb2ind uses colormap mapping, which involves
finding the colors in map that best match the colors in the RGB image.

Examples RGB = imread('peppers.png');
[X,map] = rgb2ind(RGB,128);
figure, imshow(X,map)

See Also cmunique, dither, imapprox, ind2rgb

2-3357

rgbplot

Purpose Plot colormap
1
0s
0
20 40 GO 80
Syntax rgbplot (cmap)
Description rgbplot(cmap) plots the three columns of cmap, where cmap is an

m-by-3 colormap matrix. rgbplot draws the first column in red, the
second in green, and the third in blue.

Examples Plot the RGB values of the copper colormap.

rgbplot(copper)

2-3358

70

See Also colormap

“Color Operations” on page 1-108 for related functions

2-3359

ribbon

Purpose

GUI
Alternatives

Syntax

Description

2-3360

Ribbon plot

To graph selected variables, use the Plot Selector

| fr]plotity) ~

Workspace Browser, or use the Figure Palette Plot Catalog. Manipulate
graphs in plot edit mode with the Property Editor. For details, see
Plotting Tools — Interactive Plotting in the MATLAB Graphics
documentation and Creating Graphics from the Workspace Browser in
the MATLAB Desktop Tools documentation.

in the

ribbon(Y)

ribbon(X,Y)
ribbon(X,Y,width)
ribbon(axes_handle,...)
h = ribbon(...)

ribbon(Y) plots the columns of Y as undulating three-dimensional
ribbons of uniform width using X = 1:size(Y,1). Ribbons advance
along the x-axis centered on tick marks at unit intervals, three-quarters
of a unit in width. Ribbons are assigned colors from the current
colormap in sequence from minimum X to maximum X (the axes
colororder property, used by plot and plot3, does not apply to ribbon
or other surface plots).

ribbon(X,Y) plots X versus the columns of Y as three-dimensional
strips. X and Y are vectors of the same size or matrices of the same
size. Additionally, X can be a row or a column vector, and Y a matrix
with length(X) rows. ribbon(X,Y) is the same as plot(X,Y) except
that the columns of Y are plotted as separated ribbons in 3-D. The y and
z-axes of ribbon(X,Y) correspond to the x and y-axes of plot(X,Y).

ribbon(X,Y,width) specifies the width of the ribbons. The default is

0.75. If width = 1, the ribbons touch, leaving no space between them
when viewed down the z-axis. If width > 1, ribbons overlap and can

intersect.

ribbon

Examples

ribbon(axes_handle,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

h = ribbon(...) returns a vector of handles to surface graphics
objects. ribbon returns one handle per strip.

Create a ribbon plot of the peaks function.

[x,y] = meshgrid(-3:.5:3,-3:.1:3);
z = peaks(X,Y);

ribbon(y, z)

xlabel('X")

ylabel('Y")

zlabel('Z")

colormap hsv

10 e

2-3361

ribbon

See Also plot, plot3, surface, waterfall

“Polygons and Surfaces” on page 1-100 for related functions

2-3362

rmappdata

Purpose
Syntax

Description

Remarks

See Also

Remove application-defined data
rmappdata(h,name)

rmappdata(h,name) removes the application-defined data name from
the object specified by handle h.

Application data is data that is meaningful to or defined by your
application which you attach to a figure or any GUI component (other
than ActiveX controls) through its AppData property. Only Handle
Graphics MATLAB objects use this property.

getappdata, isappdata, setappdata

2-3363

rmdir

Purpose

Graphical
Interface

Syntax

Description

Remarks

Examples

2-3364

Remove folder

As an alternative to the rmdir function, use the delete feature in the
Current Folder browser.

rmdir('folderName')
rmdir('folderName','s")
[status, message, messageid] = rmdir('folderName','s")

rmdir ('folderName') removes the folder folderName from the current
folder, where folderName is empty. If folderName is not in the current
folder, specify the relative path or the full path for folderName.

rmdir('folderName','s') removes the folder folderName and its
contents from the current folder. With the ’s’ option, rmdir attempts
to removes all subfolders and files in folderName regardless of their
write permissions. The result for read-only files follows the practices of
the operating system.

[status, message, messageid] = rmdir('folderName','s')
removes the folder folderName and its contents from the current folder,
returning the status, a message, and the MATLAB message ID. Here,
status is 1 for success and is 0 for error. message, messageid, and
the s input argument are optional.

When attempting to remove multiple folders, either by including a
wildcard in the folder name or by specifying the 's' flag in rmdir,
MATLAB produces an error if it is unable to remove all folders as
expected. The error message lists the folder and files that MATLAB
could not remove.

Remove Empty Folder

Remove myfiles from the current folder, where myfiles is empty:

rmdir('myfiles')

rmdir

If the current folder is matlab/work, and myfiles is in
d:/matlab/work/project/, use the relative path to remove myfiles:

rmdir('project/myfiles')

If the current folder is matlab/work, and myfiles is in
d:/matlab/work/project/, use the full path to remove myfiles:

rmdir('d:/matlab/work/project/myfiles")
Remove Folder and All Contents

Remove myfiles, its subfolders, and all files in the folders, assuming
myfiles is in the current folder:

rmdir('myfiles','s")
Remove Folder and Return Results

Remove myfiles from the current folder, where myfiles is not empty,
and return the results:

[stat, mess, id]=rmdir('myfiles')

MATLAB returns:

stat

mess
The directory is not empty.
id =

MATLAB:RMDIR:0SError

Remove myfiles and its contents using the s option, which is required
for non-empty folders, and return the results:

[stat, mess]=rmdir('myfiles','s")

2-3365

rmdir

MATLAB returns:

stat

mess

See Also catch, cd, copyfile, delete, dir, fileattrib, filebrowser,
MException, mkdir, movefile, try

“Managing Files in MATLAB”

2-3366

rmdir (fip)
|

Purpose Remove directory on FTP server
Syntax rmdir (f, 'dirname"')
Description rmdir (f, 'dirname') removes the directory dirname from the current

directory of the FTP server f, where f was created using ftp.

Examples Connect to server testsite, view the contents of testdir, and remove
the directory newdir from the directory testdir.

test=ftp('ftp.testsite.com');
cd(test, 'testdir');

dir(test)
. . newdir
dir(test, 'newdir')
rmdir(test, 'newdir');
dir(test, 'testdir')
See Also cd (ftp), delete (ftp),dir (ftp), ftp, mkdir (ftp)

2-3367

rmfield

Purpose

Syntax

Description

See Also

2-3368

Remove fields from structure

s = rmfield(s, 'fieldname')
s = rmfield(s, fields)
s = rmfield(s, 'fieldname') removes the specified field from the

structure array s.

s = rmfield(s, fields) removes more than one field at a time.
fields is a character array of field names or cell array of strings.

fieldnames, setfield, getfield, isfield, orderfields, dynamic
field names

rmpath

Purpose

GUI
Alternatives

Syntax

Description

Examples

See Also

Remove folders from search path

As an alternative to the rmpath function, use the Set Path dialog box.

rmpath('folderName"')
rmpath folderName

rmpath('folderName') removes the specified folder from the search
path . Use the full path for folderName.

rmpath folderName is the command form of the syntax.

Remove /usr/local/matlab/mytools from the search path:

rmpath /usr/local/matlab/mytools

addpath, cd, dir, genpath, matlabroot, path, pathsep, pathtool,
rehash, restoredefaultpath, savepath, userpath, what

“Using the MATLAB Search Path”

2-3369

rmpref

Purpose

Syntax

Description

Examples

See Also

2-3370

Remove preference

rmpref ('group', 'pref')
rmpref ('group',{'preftl','pref2',..."'prefn'})
rmpref('group')

rmpref ('group', 'pref') removes the preference specified by group
and pref. It is an error to remove a preference that does not exist.

rmpref ('group',{'preftl', 'pref2',...'prefn'}) removes each
preference specified in the cell array of preference names. It is an error
if any of the preferences do not exist.

rmpref ('group') removes all the preferences for the specified group.
It is an error to remove a group that does not exist.

addpref('mytoolbox', 'version','1.0")
rmpref ('mytoolbox"')

addpref, getpref, ispref, setpref, uigetpref, uisetpref

root object

Purpose

Description

See Also

Object
Hierarchy

Root

The root 1s a graphics object that corresponds to the computer screen.
There is only one root object and it has no parent. The children of the
root object are figures.

The root object exists when you start MATLAB; you never have to
create it and you cannot destroy it. Use set and get to access the root
properties.

diary, echo, figure, format, gcf, get, set

Root Properties for descriptions of all root object properties

Figure

Axes Uiobjects

2-3371

Root Properties

Purpose Root properties
Moclifying You can set and query graphics object properties in two ways:
Properties

® Property Editor is an interactive tool that enables you to see and
change object property values.

® The set and get commands enable you to set and query the values of
properties.

To change the default values of properties, see “Setting Default Property

Values”.
Root This section lists property names along with the type of values each
Properﬁes accepts. Curly braces { } enclose default values.

BusyAction

cancel | {queue}

Not used by the root object.
ButtonDownFcn

string

Not used by the root object.

CallbackObject
handle (read only)

Handle of current callback’s object. This property contains the
handle of the object whose callback routine is currently executing.
If no callback routines are executing, this property contains the
empty matrix []. See also the gco command.

Children
vector of handles

Handles of child objects. A vector containing the handles of
all nonhidden figure objects (see HandleVisibility for more

2-3372

Root Properties

information). You can change the order of the handles and thereby
change the stacking order of the figures on the display.

Clipping
{on} | off
Clipping has no effect on the root object.

CommandWindowSize
[columns rows]

Current size of command window. This property contains the
size of the MATLAB command window in a two-element vector.
The first element is the number of columns wide and the second
element is the number of rows tall.

CreateFcn
The root does not use this property.

CurrentFigure
figure handle

Handle of the current figure window, which i1s the one most
recently created, clicked in, or made current with the statement:

figure(h)
which restacks the figure to the top of the screen, or:
set (0, 'CurrentFigure',h)

which does not restack the figures. In these statements, h is the
handle of an existing figure. If there are no figure objects:

get (0, 'CurrentFigure')

returns the empty matrix. Note, however, that gcf always returns
a figure handle, and creates one if there are no figure objects.

DeleteFcn
string

2-3373

Root Properties

2-3374

This property is not used, because you cannot delete the root
object.

Diary
on | {off}

Diary file mode. When this property is on, MATLAB maintains
a file (whose name is specified by the DiaryFile property) that
saves a copy of all keyboard input and most of the resulting
output. See also the diary command.

DiaryFile
string

Diary filename. The name of the diary file. The default name is
diary.

Echo
on | {off}

Script echoing mode. When Echo 1s on, MATLAB displays each
line of a script file as it executes. See also the echo command.

ErrorMessage
string

Text of last error message. This property contains the last error
message issued by MATLAB.

FixedWidthFontName
font name

Fixed-width font to use for axes, text, and uicontrols whose
FontName is set to FixedWidth. MATLAB uses the font name
specified for this property as the value for axes, text, and
uicontrol FontName properties when their FontName property is
set to FixedWidth. Specifying the font name with this property
eliminates the need to hardcode font names in MATLAB
applications and thereby enables these applications to run

Root Properties

without modification in locales where non-ASCII character sets
are required. In these cases, MATLAB attempts to set the value
of FixedWidthFontName to the correct value for a given locale.

MATLAB application developers should not change this property,
but should create axes, text, and uicontrols with FontName
properties set to FixedWidth when they want to use a fixed-width
font for these objects.

MATLAB end users can set this property if they do not want to
use the preselected value. In locales where Latin-based characters
are used, Courier 1s the default.

Format
short | {shortE} | long | longE | bank |
hex | + | rat

Output format mode. This property sets the format used to display
numbers. See also the format command.

® short — Fixed-point format with 5 digits

¢ shortE — Floating-point format with 5 digits

® shortG — Fixed- or floating-point format displaying as many
significant figures as possible with 5 digits

® long — Scaled fixed-point format with 15 digits
® longE — Floating-point format with 15 digits

® 1ongG — Fixed- or floating-point format displaying as many
significant figures as possible with 15 digits

¢ pank — Fixed-format of dollars and cents
®* hex — Hexadecimal format
e + — Displays + and — symbols

* rat — Approximation by ratio of small integers

2-3375

Root Properties

2-3376

FormatSpacing
compact | {loose}
Output format spacing (see also format command).
® compact — Suppress extra line feeds for more compact display.
® loose — Display extra line feeds for a more readable display.
HandleVisibility
{on} | callback | off
This property is not useful on the root object.
HitTest
{on} | off
This property is not useful on the root object.
Interruptible
{on} | off
This property is not useful on the root object.
Language
string
System environment setting.
MonitorPositions

[x y width height;x y width height]

Width and height of primary and secondary monitors, in pixels.
This property contains the width and height of each monitor
connnected to your computer. The x and y values for the primary
monitor are 0, 0 and the width and height of the monitor are
specified in pixels.

The secondary monitor position is specified as:

X = primary monitor width + 1

Root Properties

y = primary monitor height + 1

Querying the value of the figure MonitorPositions on a
multiheaded system returns the position for each monitor on a
separate line.

v
V:

x y width height % Primary monitor

x y width height % Secondary monitor

get (0, 'MonitorPositions')

The value of the ScreenSize property is inconsistent when using
multiple monitors. If you want specific and consistent values, use
the MonitorPositions property.

Parent
handle

Handle of parent object. This property always contains the empty
matrix, because the root object has no parent.

PointerLocation
[x,y]

Current location of pointer. A vector containing the x- and
y-coordinates of the pointer position, measured from the lower
left corner of the screen. You can move the pointer by changing
the values of this property. The Units property determines the
units of this measurement.

This property always contains the current pointer location, even
if the pointer is not in a MATLAB window. A callback routine
querying the PointerLocation can get a value different from
the location of the pointer when the callback was triggered. This
difference results from delays in callback execution caused by
competition for system resources.

2-3377

Root Properties

On Macintosh platforms, you cannot change the pointer location
using the set command.

PointerWindow
handle (read only)

Handle of window containing the pointer. MATLAB sets this
property to the handle of the figure window containing the
pointer. If the pointer is not in a MATLAB window, the value of
this property is 0. A callback routine querying the PointerWindow
can get the wrong window handle if you move the pointer to
another window before the callback executes. This error results
from delays in callback execution caused by competition for
system resources.

RecursionLimit
integer

Number of nested MATLAB file calls. This property sets a limit to
the number of nested calls to MATLAB files MATLAB will make
before stopping (or potentially running out of memory). By default
the value is set to a large value. Setting this property to a smaller
value (something like 150, for example) should prevent MATLAB
from running out of memory and will instead cause MATLAB to
issue an error when it reaches the limit.

ScreenDepth
bits per pixel

Screen depth. The depth of the display bitmap (i.e., the number of
bits per pixel). The maximum number of simultaneously displayed
colors on the current graphics device is 2 raised to this power.

ScreenDepth supersedes the BlackAndWhite property. To
override automatic hardware checking, set this property to 1. This
value causes MATLAB to assume the display is monochrome.
This is useful if MATLAB is running on color hardware but is

2-3378

Root Properties

being displayed on a monochrome terminal. Such a situation can
cause MATLAB to determine erroneously that the display is color.

ScreenPixelsPerInch
Display resolution

DPI setting for your display. This property contains the setting of
your display resolution specified in your system preferences.

ScreenSize
four-element rectangle vector (read only)

Screen size. A four-element vector:

[left,bottom,width,height]

that defines the display size. left and bottom are 0 for all Units
except pixels, in which case left and bottom are 1. width and
height are the screen dimensions in units specified by the Units
property.

Determining Screen Size

Note that the screen size in absolute units (for example, inches) is
determined by dividing the number of pixels in width and height
by the screen DPI (see the ScreenPixelPerInch property). This
value is approximate and might not represent the actual size of
the screen.

Note that the ScreenSize property is static. Its values are read
only at MATLAB startup and not updated if system display
settings change. Also, the values returned might not represent
the usable screen size for application developers due to the
presence of other GUIs, such as the Microsoft Windows task bar.

Selected
on | off

This property has no effect on the root level.

2-3379

Root Properties

SelectionHighlight
{on} | off

This property has no effect on the root level.

ShowHiddenHandles
on | {off}

Show or hide handles marked as hidden. When set to on, this
property disables handle hiding and exposes all object handles
regardless of the setting of an object’s HandleVisibility
property. When set to off, all objects so marked remain hidden
within the graphics hierarchy.

Tag

string

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. While it
1s not necessary to identify the root object with a tag (since its
handle is always 0), you can use this property to store any string
value that you can later retrieve using set.

Type
string (read only)

Class of graphics object. For the root object, Type is always
'root’'.

UIContextMenu
handle

This property has no effect on the root level.

Units

{pixels} | normalized | inches | centimeters
| points | characters

2-3380

Root Properties

Unit of measurement. This property specifies the units MATLAB
uses to interpret size and location data. All units are measured
from the lower left corner of the screen. Normalized units map the
lower left corner of the screen to (0,0) and the upper right corner
to (1.0,1.0). inches, centimeters, and points are absolute units
(one point equals 1/72 of an inch). Characters are units defined
by characters from the default system font; the width of one unit
1s the width of the letter x, the height of one character is the
distance between the baselines of two lines of text.

This property affects the PointerLocation and ScreenSize
properties. If you change the value of Units, it is good practice
to return it to its default value after completing your operation,
so as not to affect other functions that assume Units is set to
the default value.

UserData

matrix

User-specified data. This property can be any data you want
to associate with the root object. MATLAB does not use this
property, but you can access it using the set and get functions.

Visible
{on} | off

Object visibility. This property has no effect on the root object.

See Also root object

2-3381

roots

Purpose
Syntax

Description

Remarks

Examples

Algorithm

2-3382

Polynomial roots
r = roots(c)

r = roots(c) returns a column vector whose elements are the roots
of the polynomial c.

Row vector ¢ contains the coefficients of a polynomial, ordered in
descending powers. If ¢ has n+1 components, the polynomial it

n
represents is € 1% Tt CETC,

Note the relationship of this function to p = poly(r), which returns
a row vector whose elements are the coefficients of the polynomial.
For vectors, roots and poly are inverse functions of each other, up to
ordering, scaling, and roundoff error.

The polynomial g 3_ 532 — 7925 —927 is represented in MATLAB
software as

p=1[1-6-72 -27]

The roots of this polynomial are returned in a column vector by

r = roots(p)

12.1229
-5.7345
-0.3884

The algorithm simply involves computing the eigenvalues of the
companion matrix:

A = diag(ones(n-1,1),-1);
A(1,:) = -c(2:n+1)./c(1);
eig(A)

roofts

It is possible to prove that the results produced are the exact
eigenvalues of a matrix within roundoff error of the companion matrix
A, but this does not mean that they are the exact roots of a polynomial
with coefficients within roundoff error of those in c.

See Also fzero, poly, residue

2-3383

rose

Purpose

GUI

Alternatives

Syntax

Description

2-3384

Angle histogram plot

=

| fr]plotity) ~

Workspace Browser, or use the Figure Palette Plot Catalog. Manipulate
graphs in plot edit mode with the Property Editor. For details, see
Plotting Tools — Interactive Plotting in the MATLAB Graphics
documentation and Creating Graphics from the Workspace Browser in
the MATLAB Desktop Tools documentation.

To graph selected variables, use the Plot Selector in the

rose(theta)
rose(theta,x)
rose(theta,nbins)
rose(axes_handle,...)

h = rose(...)
[tout,rout] = rose(...)

rose(theta) creates an angle histogram, which is a polar plot showing
the distribution of values grouped according to their numeric range,
showing the distribution of theta in 20 angle bins or less. The vector
theta, expressed in radians, determines the angle of each bin from the
origin. The length of each bin reflects the number of elements in theta
that fall within a group, which ranges from 0 to the greatest number of
elements deposited in any one bin.

rose(theta,x) uses the vector x to specify the number and the
locations of bins. length(x) is the number of bins and the values of x
specify the center angle of each bin. For example, if x is a five-element
vector, rose distributes the elements of theta in five bins centered

at the specified x values.

rose(theta,nbins) plots nbins equally spaced bins in the range [0,
2*pi]. The default is 20.

rose

rose(axes_handle,...) plotsinto the axes with handle axes_handle
instead of the current axes (gca).

h = rose(...) returns the handles of the line objects used to create
the graph.

[tout,rout] = rose(...) returns the vectors tout and rout so
polar(tout,rout) generates the histogram for the data. This syntax
does not generate a plot.

Example Create a rose plot showing the distribution of 50 random numbers.

theta = 2*pi*rand(1,50);
rose(theta)

2-3385

rose

1E0

270

See Also compass, feather, hist, line, polar
“Histograms” on page 1-100 for related functions

Histograms in Polar Coordinates for another example

2-3386

rosser

Purpose Classic symmetric eigenvalue test problem
Syntax A = rosser
Description A = rosser returns the Rosser matrix. This matrix was a challenge for

many matrix eigenvalue algorithms. But LAPACK’s DSYEV routine used
in MATLAB software has no trouble with it. The matrix is 8-by-8 with
integer elements. It has:

® A double eigenvalue

® Three nearly equal eigenvalues

¢ Dominant eigenvalues of opposite sign

® A zero eigenvalue

A small, nonzero eigenvalue

Examples rosser
ans =

611 196 -192 407 -8 -52 -49 29

196 899 113 -192 -71 -43 -8 -44

-192 113 899 196 61 49 8 52

407 -192 196 611 8 44 59 -23

-8 -71 61 8 411 -599 208 208

-52 -43 49 44 -599 411 208 208

-49 -8 8 59 208 208 99 -9M1

29 -44 52 -23 208 208 -911 99

2-3387

rot90

Purpose Rotate matrix 90 degrees
Syntax B = rot90(A)
B = rot90(A,k)
Description B = rot90(A) rotates matrix A counterclockwise by 90 degrees.

B = rot90(A, k) rotates matrix A counterclockwise by k*90 degrees,
where k is an integer.

Examples The matrix
X =
1 2 3
4 5 6
7 8 9

rotated by 90 degrees is

Y = rot9o(X)
Y =
3 6 9
2 5 8
1 4 7
See Also flipdim, fliplr, flipud

2-3388

rotate

Purpose

Syntax

Description

Remarks

Rotate object in specified direction

rotate(h,direction,alpha)
rotate(...,origin)

The rotate function rotates a graphics object in three-dimensional
space, according to the right-hand rule.

rotate(h,direction,alpha) rotates the graphics object h by alpha
degrees. direction is a two- or three-element vector that describes the
axis of rotation in conjunction with the origin.

rotate(...,origin) specifies the origin of the axis of rotation as a
three-element vector. The default origin is the center of the plot box.

The graphics object you want rotated must be a child of the same axes.
The object’s data is modified by the rotation transformation. This is in
contrast to view and rotate3d, which only modify the viewpoint.

The axis of rotation is defined by an origin and a point P relative to
the origin. P is expressed as the spherical coordinates [theta phi] or
as Cartesian coordinates.

2-3389

rotate

The two-element form for direction specifies the axis direction using
the spherical coordinates [theta phi]. theta is the angle in the x-y
plane counterclockwise from the positive x-axis. phi is the elevation of
the direction vector from the x-y plane.

.
..-"I“H
- -
- L9
T I had
- e
J" | '*-\-.
Z .- .
- I P T
i |
I
I
: I
< I
n I
-
~ I
-
[-
- - I
phI- - [
- -
e “'i_h_ I
b L
f‘_ﬁ "'"*d. .*"'
- -
@;ﬁ_ L.
-
-~
-
-
-~
T X

The three-element form for direction specifies the axis direction using
Cartesian coordinates. The direction vector is the vector from the origin
to X,Y,Z).

Examples Rotate a graphics object 180° about the x-axis.

h = surf(peaks(20));
rotate(h,[1 0 0],180)

Rotate a surface graphics object 45° about its center in the z direction.
h = surf(peaks(20));
zdir = [0 0 1];

center = [10 10 0];
rotate(h,zdir,45,center)

2-3390

rotate

Remarks rotate changes the Xdata, Ydata, and Zdata properties of the
appropriate graphics object.

See Also rotate3d, sph2cart, view

The axes CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle

“Object Manipulation” on page 1-110 for related functions

2-3391

../infotool/hgprop/doc_frame.html
../infotool/hgprop/doc_frame.html
../infotool/hgprop/doc_frame.html
../infotool/hgprop/doc_frame.html

rotate3d

Purpose

GUI
Alternatives

Syntax

Description

2-3392

Rotate 3-D view using mouse

Use the Rotate3D tool @ on the figure toolbar to enable and disable
rotate3D mode on a plot, or select Rotate 3D from the figure’s Tools

menu. For details, see “Rotate 3D — Interactive Rotation of 3-D Views”
in the MATLAB Graphics documentation.

rotate3d on

rotate3d off

rotate3d
rotate3d(figure_handle,...)
rotate3d(axes_handle,...)

h = rotate3d(figure_handle)

rotate3d on enables mouse-base rotation on all axes within the
current figure.
rotate3d off disables interactive axes rotation in the current figure.

rotate3d toggles interactive axes rotation in the current figure.

rotate3d(figure_handle,...) enables rotation within the specified
figure instead of the current figure.

rotate3d(axes_handle,...) enables rotation only in the specified
axes.

h = rotate3d(figure _handle) returns a rotate3d mode object for
figure figure_handle for you to customize the mode’s behavior.

Using Rotate Mode Objects

You access the following properties of rotate mode objects via get and
modify some of them using set.

® FigureHandle <handle>— The associated figure handle, a read-only

property that cannot be set

® Fnable 'on'|'off' — Specifies whether this figure mode is
currently enabled on the figure

rotate3d

® RotateStyle 'orbit'|'box' — Sets the method of rotation

'orbit' rotates the entire axes; 'box' rotates a plot-box outline
of the axes.

Rotate3D Mode Callbacks

You can program the following callbacks for rotate3d mode operations.

® ButtonDownFilter <function_handle> — Function to intercept
ButtonDown events

The application can inhibit the rotate operation under circumstances
the programmer defines, depending on what the callback returns.
The input function handle should reference a function with two
implicit arguments (similar to handle callbacks):

function [res] = myfunction(obj,event_obj)

% 0obj handle to the object that has been clicked on

% event_obj handle to event data object (empty in this release

% res [output] logical flag to determine whether the rotate
operation should take place or the 'ButtonDownFcn'
property of the object should take precedence

® ActionPreCallback <function_handle> — Function to execute
before rotating

Set this callback to listen to when a rotate operation will start. The
input function handle should reference a function with two implicit
arguments (similar to Handle Graphics object callbacks):

function myfunction(obj,event_obj)
% obj handle to the figure that has been clicked on
% event_obj object containing struct of event data

The event data has the following field:

Axes The handle of the axes that is being panned

2-3393

rotate3d

® ActionPostCallback <function_handle> — Function to execute
after rotating

Set this callback to listen to when a rotate operation has finished.
The input function handle should reference a function with two
implicit arguments (similar to Handle Graphics object callbacks):

function myfunction(obj,event_obj)

obj handle to the figure that has been clicked on

% event_obj object containing struct of event data (same as the
event data of the 'ActionPreCallback' callback)

o°

o°

Rotate3D Mode Utility Functions

The following functions in pan mode query and set certain of its
properties.

e flags = isAllowAxesRotate(h,axes) — Function querying
permission to rotate axes

Calling the function isAllowAxesRotate on the rotate3d object, h,
with a vector of axes handles, axes, as input will return a logical
array of the same dimension as the axes handle vector which indicate
whether a rotate operation is permitted on the axes objects.

® setAllowAxesRotate(h,axes,flag) — Function to set permission
to pan axes

Calling the function setAllowAxesRotate on the rotate3d object, h,
with a vector of axes handles, axes, and a logical scalar, flag, will
either allow or disallow a rotate operation on the axes objects.
Examples Example 1
Simple 3-D rotation

surf (peaks);
rotate3d on
% rotate the plot using the mouse pointer.

2-3394

rotate3d

Example 2

Rotate the plot using the "Plot Box" rotate style:

surf (peaks);

h = rotate3d;

set(h, 'RotateStyle', 'box', 'Enable','on');
% Rotate the plot.

Example 3

Create two axes as subplots and then prevent one from rotating:

ax1 = subplot(1,2,1);

surf (peaks);

h = rotate3d;

ax2 = subplot(1,2,2);
surf(membrane) ;
setAllowAxesRotate(h,ax2,false);

[}

% rotate the plots.

Example 4

Create a buttonDown callback for rotate mode objects to trigger.
Copy the following code to a new file, execute it, and observe rotation
behavior:

function demo_mbd

% Allow a line to have its own 'ButtonDownFcn' callback.
hLine = plot(rand(1,10));

set(hLine, 'ButtonDownFcn', 'disp(''This executes'')');
set(hLine, 'Tag', 'DoNotIgnore');

h = rotate3d;

set (h, 'ButtonDownFilter',@mycallback);

set(h, 'Enable','on');

% mouse-click on the line

o®

2-3395

rotate3d

function [flag] = mycallback(obj,event_obj)

% If the tag of the object is 'DoNotIgnore', then return true.
objTag = get(obj,'Tag');

if strcmpi(objTag, 'DoNotIgnore')

flag = true;
else
flag = false;
end
Example 5

Create callbacks for pre- and post-buttonDown events for rotate3D
mode objects to trigger. Copy the following code to a new file, execute
it, and observe rotation behavior:

function demo_mbd2
% Listen to rotate events

surf (peaks);

h = rotate3d;

set(h, 'ActionPreCallback',@myprecallback);
set(h, 'ActionPostCallback',@mypostcallback);
set(h, 'Enable','on');

i)

function myprecallback(obj,evd)
disp('A rotation is about to occur.');

[)
)

function mypostcallback(obj,evd)
newView = round(get(evd.Axes, 'View'));
msgbox (sprintf('The new view is [%d %d].',newView));

Remarks When enabled, rotate3d provides continuous rotation of axes and
the objects it contains through mouse movement. A numeric readout
appears in the lower left corner of the figure during rotation, showing
the current azimuth and elevation of the axes. Releasing the mouse
button removes the animated box and the readout. This differs from
the camorbit function in that while the rotate3d tool modifies the
View property of the axes, the camorbit function fixes the aspect ratio

2-3396

rotate3d

See Also

and modifies the CameraTarget, CameraPosition and CameraUpVector
properties of the axes. See Axes Properties for more information.

You can also enable 3-D rotation from the figure Tools menu or the
figure toolbar.

You can create a rotate3D mode object once and use it to customize the
behavior of different axes, as example 3 illustrates. You can also change
its callback functions on the fly.

Note Do not change figure callbacks within an interactive
mode. While a mode is active (when panning, zooming, etc.), you will
receive a warning if you attempt to change any of the figure’s callbacks
and the operation will not succeed. The one exception to this rule is the
figure WindowButtonMotionFcn callback, which can be changed from
within a mode. Therefore, if you are creating a GUI that updates a
figure’s callbacks, the GUI should some keep track of which interactive
mode is active, if any, before attempting to do this.

When you assign different 3-D rotation behaviors to different subplot
axes via a mode object and then link them using the 1inkaxes function,
the behavior of the axes you manipulate with the mouse will carry over
to the linked axes, regardless of the behavior you previously set for

the other axes.

camorbit, pan, rotate, view, zoom
Object Manipulation for related functions

Axes Properties for related properties

2-3397

../ref/figure_props.html#WindowButtonMotionFcn

round

Purpose Round to nearest integer
Syntax Y = round(X)
Description Y = round(X) rounds the elements of X to the nearest integers. For

complex X, the imaginary and real parts are rounded independently.

Examples a=1[-1.9, -0.2, 3.4, 5.6, 7.0, 2.4+3.6i]

Columns 1 through 4

-1.9000 -0.2000 3.4000 5.6000
Columns 5 through 6
7.0000 2.4000 + 3.6000i1

round(a)

ans =

Columns 1 through 4

-2.0000 0 3.0000 6.0000
Columns 5 through 6
7.0000 2.0000 + 4.0000i

See Also ceil, fix, floor

2-3398

rref

Purpose

Syntax

Description

Examples

Reduced row echelon form

R = rref(A)
[R,jb] = rref(A)
[R,jb] = rref(A,tol)

R = rref(A) produces the reduced row echelon form of A using
Gauss Jordan elimination with partial pivoting. A default tolerance
of (max (size(A))*eps *norm(A,inf)) tests for negligible column
elements.

[R,jb] = rref(A) also returns a vector jb such that:

e r = length(jb) is this algorithm’s idea of the rank of A.
® x(jb) are the pivot variables in a linear system Ax = b.
® A(:,jb) is a basis for the range of A.

® R(1:r,jb) is the r-by-r identity matrix.

[R,jb] = rref(A,tol) uses the given tolerance in the rank tests.

Roundoff errors may cause this algorithm to compute a different value
for the rank than rank, orth and null.

Use rref on a rank-deficient magic square:

A = magic(4), R = rref(A)
A =

16 2 3 13

5 11 10 8

9 7 6 12

4 14 15 1
R =

2-3399

rref

See Also inv, lu, rank

2-3400

rsf2csf

Purpose
Syntax

Description

Examples

Convert real Schur form to complex Schur form
[U,T] = rsf2csf(U,T)

The complex Schur form of a matrix is upper triangular with the
eigenvalues of the matrix on the diagonal. The real Schur form has the
real eigenvalues on the diagonal and the complex eigenvalues in 2-by-2
blocks on the diagonal.

[U,T] = rsf2csf(U,T) converts the real Schur form to the complex
form.

Arguments U and T represent the unitary and Schur forms of a matrix
A, respectively, that satisfy the relationships: A=U*T*U' and U'*U =
eye(size(A)). See schur for details.

Given matrix A,

N = 2
_ =) =
oW =
A2 2w

with the eigenvalues

4.8121 1.9202 + 1.47421 1.9202 + 1.47421 1.3474

Generating the Schur form of A and converting to the complex Schur
form

[u,t] = schur(A);
[U,T] rsf2csf(u,t)

yields a triangular matrix T whose diagonal (underlined here for
readability) consists of the eigenvalues of A.

U=

2-3401

rsf2csf

-0.4916
-0.4980
-0.6751
-0.2337

See Also schur

2-3402

.2756
.1012
.1842
.2635

.9697
.9202

L4411
.21631
.38601
.64811

.07781
.47421

-0.
-0.
.3134

.2133

1046
1867

.5212
.3355
.9202

o O o o

.56991
.20931
.38081
.54481

.00511

.47421

-0.

-0.

- O O

3428

.8001

4260

.2466

.0067
L1117
.8002
.3474

+ 1.6547i
+ 0.23101

run

Purpose
Syntax

Description

See Also

Run script that is not on current path
run scriptname

run scriptname runs the MATLAB script specified by scriptname.

If scriptname contains the full pathname to the script file, then run
changes the current folder to be the one in which the script file resides,
executes the script, and sets the current folder back to what it was. The
script is run within the caller’s workspace.

run is a convenience function that runs scripts that are not currently on
the path. Typically, you just type the name of a script at the MATLAB
prompt to execute it. This works when the script is on your path. Use
the cd or addpath function to make a script executable by entering the
script name alone.

cd, addpath

2-3403

save

Purpose

Syntax

Description

2-3404

Save workspace variables to file

save(filename)
save(filename, variables)

save(filename, '-struct', structName, fieldNames)
save(filename, ..., '-append')

save(filename, ..., format)

save(filename, ..., version)

save filename

save (filename) stores all variables from the current workspace in a
MATLAB formatted binary file (MAT-file) called filename.

save(filename, variables) stores only the specified variables.

save(filename, '-struct', structName, fieldNames) stores the
fields of the specified scalar structure as individual variables in the file.
If you include the optional fieldNames, the save function stores only
the specified fields of the structure. You cannot specify variables and
the '-struct' keyword in the same call to save.

save(filename, ..., '-append') adds new variables to an existing
file. You can specify the '-append' option with additional inputs such
as variables, '-struct', format, or version.

save(filename, ..., format) saves in the specified format: '-mat'
or '-ascii'. You can specify the format option with additional inputs
such as variables, '-struct', '-append', or version.

save(filename, ..., version) saves to MAT-files in the specified
version: '-v4', '-v6', '-v7', or '-v7.3"'. You can specify the
version option with additional inputs such as variables, '-struct',
'-append', or format.

save filename ... is the command form of the syntax, for convenient
saving from the command line. With command syntax, you do not need
to enclose input strings in single quotation marks. Separate inputs
with spaces instead of commas. Do not use command syntax if inputs
such as filename are variables. For more information, see “Command

save

vs. Function Syntax” in the MATLAB Programming Fundamentals

documentation.

Input filename
Arguments

Name of a file. If you do not specify filename, the save function

saves to a file named matlab.mat.

If filename does not include an extension and the value of format
is -mat (the default), MATLAB appends .mat. If filename does
not include a full path, MATLAB saves in the current folder. You
must have permission to write to the file.

Default: 'matlab.mat’

variables

Description of the variables to save. Use one of the following

forms:

vari, var2,

'-regexp', expressions

Default: all variables

Save the listed variables.

Use the '*' wildcard to
match patterns. For example,
save('A*') saves all variables
that start with A.

Save only the variables that
match the specified regular
expressions.

MATLAB treats all inputs

as regular expressions,
except the optional filename.
The filename must appear
immediately after the save
command.

2-3405

save

"-struct'

Keyword to request saving the fields of a scalar structure as
individual variables in the file. The structName input must
appear immediately after the -struct keyword.

structName

Name of a scalar structure. Required when you use the '-struct'
keyword.

fieldNames

Description of the fields of a structure to save as individual
variables in the file. Use the same forms listed for variables. If
you use the '-regexp' keyword, MATLAB treats all inputs as
regular expressions except filename and structName.

'-append'’

Keyword to add data to an existing file. For MAT-files, -append
adds new variables to the file or replaces the saved values of
existing variables with values in the workspace. For ASCII files,
-append adds data to the end of the file.

format

Specifies the format of the file, regardless of any specified
extension. Use one of the following combinations (not case

sensitive):
'-mat' Binary MAT-file format (default).
'-ascii' 8-digit ASCII format.
'-ascii', '-tabs' Tab-delimited 8-digit ASCII format.
‘-ascii', '-double' 16-digit ASCII format.
'-ascii', Tab-delimited 16-digit ASCII format.
'-double', '-tabs'

2-3406

save

For MAT-files, data saved on one machine and loaded on another
machine retains as much accuracy and range as the different
machine floating-point formats allow.

For ASCII file formats, the save function has the following
limitations:
¢ Kach variable must be a two-dimensional double or character

array.

e MATLAB translates characters to their corresponding internal
ASCII codes. For example, 'abc' appears in an ASCII file as:

9.7000000e+001 9.8000000e+001 9.9000000e+001

¢ The output includes only the real component of complex
numbers.

e MATLAB writes data from each variable sequentially to the
file. If you plan to use the load function to read the file, all
variables must have the same number of columns. The load
function creates a single variable from the file.

For more flexibility in creating ASCII files, use dlmwrite or
fprintf.

version
Specifies the version of the file. Applies to MAT-files only.

The following table shows the available MAT-file version options
and the corresponding supported features.

2-3407

save

Option

Can Load in
Versions

Supported Features

'-v7.3"

7.3 or later

Version 7.0 features plus support for
data items greater than or equal to
2 GB on 64-bit systems.

I_V7|

7.0 or later

Version 6 features plus data
compression and Unicode character
encoding. Unicode encoding enables
file sharing between systems that
use different default character
encoding schemes.

|_v6|

5 or later

Version 4 features plus
N-dimensional arrays, cell arrays
and structures, and variable names
greater than 19 characters.

I_V4|

all

Two-dimensional double, character,
and sparse arrays.

If any data items require features that the specified version does
not support, MATLAB does not save those items and issues a

warning. You cannot specify a version later than your version of
MATLAB software.

To view or set the default version for MAT-files, select
File > Preferences > General > MAT-Files.

Examples Save all variables from the workspace in binary MAT-file test.mat.
Remove the variables from the workspace, and retrieve the data with
the load function.

save test.mat

clear

load test.mat

2-3408

save

Create a variable savefile that stores the name of a file, pqfile.mat.
Save two variables to the file.

savefile = 'pqfile.mat';
p = rand(1, 10);

q = ones(10);
save(savefile, 'p', 'q')

Save data to an ASCII file, and view the contents of the file with the
type function:

p = rand(1, 10);

q = ones(10);

save('pgfile.txt', 'p', 'q', '-ASCII')
type pgfile.txt

Alternatively, use command syntax for the save operation:

save pgfile.txt p q -ASCII

Save the fields of structure s1 as individual variables. Check the
contents of the file with the whos function. Clear the workspace and
load the contents of a single field.

sli.a = 12.7;

s1.b = {'abc', [4 5; 6 7]};

s1.c = 'Hello!';

save('newstruct.mat', '-struct', 's1');

disp('Contents of newstruct.mat:')
whos('-file', 'newstruct.mat')

clear('stl')
load('newstruct.mat', 'b")

2-3409

save

Save any variables in the workspace with names that begin with Mon,
Tue, or Wed to mydata.mat:

save('mydata', '-regexp', '“Mon|"Tue|"Wed');

Alternatives To save data from the MATLAB desktop, select File > Save
Workspace As, or use the Workspace browser.

See Also clear | hgsave | fileformats | load | regexp | saveas | whos |
workspace
How To + “Exporting to MAT-Files”

+ “Exporting to Text Data Files”

2-3410

save (COM)

Purpose

Syntax

Description

Remarks

Examples

Serialize control object to file

h.save('filename')
save(h, 'filename')

h.save('filename') saves the COM control object, h, to the file
specified in the string, filename.

save(h, 'filename') is an alternate syntax for the same operation.

Note The COM save function is only supported for controls at this time.

COM functions are available on Microsoft Windows systems only.

Create an mwsamp control and save its original state to the file mwsample:

f = figure('position', [100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2', [0 O 200 200], f);
h.save('mwsample')

Now, alter the figure by changing its label and the radius of the circle:

h.Label = 'Circle';
h.Radius = 50;
h.Redraw;

Using the load function, you can restore the control to its original state:

h.load('mwsample');
h.get

MATLAB displays the original values:
ans =

Label: 'Label!
Radius: 20

2-3411

save (COM)

See Also load (COM), actxcontrol, actxserver, release, delete (COM)

2-3412

save (serial)

Purpose

Syntax

Description

Remarks

Example

Save serial port objects and variables to file

save filename
save filename obj1 obj2...

save filename saves all MATLAB variables to the file filename. If an
extension is not specified for filename, then the .mat extension is used.

save filename obj1 obj2... saves the serial port objects obj1
obj2... to the file filename.

You can use save in the functional form as well as the command form
shown above. When using the functional form, you must specify the
filename and serial port objects as strings. For example. to save the
serial port object s to the file MySerial.mat on a Windows platform

s = serial('COM1");
save('MySerial','s"')

Any data that is associated with the serial port object is not
automatically stored in the file. For example, suppose there is data in
the input buffer for obj. To save that data to a file, you must bring

it into the MATLAB workspace using one of the synchronous read
functions, and then save to the file using a separate variable name. You
can also save data to a text file with the record function.

You return objects and variables to the MATLAB workspace with the
load command. Values for read-only properties are restored to their
default values upon loading. For example, the Status property is
restored to closed. To determine if a property is read-only, examine
its reference pages.

This example illustrates how to use the command and functional form
of save on a Windows platform.

s = serial('COM1');

set (s, 'BaudRate',2400, 'StopBits',1)
save MySeriall s

2-3413

save (serial)

set (s, 'BytesAvailableFcn',@mycallback)
save('MySerial2','s"')

See Also Functions

load, record

Properties
Status

2-3414

saveas

Purpose

GUI
Alternative

Syntax

Description

Save figure or Simulink block diagram using specified format

Use File > Save As on the figure window menu to access the Save

As dialog, in which you can select a graphics format. For details, see
“Exporting in a Specific Graphics Format” in the MATLAB Graphics
documentation. Sizes of files written to image formats by this GUI and
by saveas can differ due to disparate resolution settings.

saveas(h, 'filename.ext')
saveas(h, 'filename', 'format')

saveas(h, 'filename.ext') saves the figure or Simulink block
diagram with the handle h to the file filename.ext. The format of the
file is determined by the extension, ext. Allowable values for ext are
listed in this table.

You can pass the handle of any Handle Graphics object to saveas,
which then saves the parent figure to the object you specified should h
not be a figure handle. This means that saveas cannot save a subplot
without also saving all subplots in its parent figure.

ext Value Format

ai Adobe® Illustrator ‘88

bmp Windows bitmap

emf Enhanced metafile

eps EPS Level 1

fig MATLAB figure (invalid for Simulink block
diagrams)

ipg JPEG image (invalid for Simulink block diagrams)

m MATLAB file (invalid for Simulink block
diagrams)

pbm Portable bitmap

saveas

Remarks

2-3416

ext Value
pcx
pdf
pgm
png
ppm
tif

Format

Paintbrush 24-bit

Portable Document Format
Portable Graymap
Portable Network Graphics
Portable Pixmap

TIFF image, compressed

saveas(h, 'filename', 'format') saves the figure or Simulink block
diagram with the handle h to the file called filename using the specified
format. The filename can have an extension, but the extension is not
used to define the file format. If no extension is specified, the standard
extension corresponding to the specified format is automatically

appended to the filename.

Allowable values for format are the extensions in the table above and

the device drivers and graphic formats supported by print. The drivers
and graphic formats supported by print include additional file formats
not listed in the table above. When using a print device type to specify

format for saveas, do not prefix it with -d.

You can use open to open files saved using saveas with an m or fig
extension. Other saveas and print formats are not supported by open.
Both the Save As and Export Setup dialog boxes that you access
from a figure’s File menu use saveas with the format argument, and

support all device and file types listed above.

saveas

Examples

Note Whenever you specify a format for saving a figure with the
Save As menu item , that file format is used again the next time

you save that figure or a new one. If you do not want to save in the
previously-used format, use Save As and be sure to set the Save as
type drop-down menu to the kind of file you want to write. However,
saving a figure with the saveas function and a format does not change
the Save as type setting in the GUI.

If you want to control the size or resolution of figures saved in image
(bit-mapped) formats, such as BMP or JPG, use the print command and
specify dots-per-inch resolution with the r switch.

Example 1: Specify File Extension

Save the current figure that you annotated using the Plot Editor to a
file named pred_prey using the MATLAB fig format. This allows you
to open the file pred_prey.fig at a later time and continue editing it
with the Plot Editor.

saveas(gcf, 'pred_prey.fig')

Example 2: Specify File Format but No Extension

Save the current figure, using Adobe Illustrator format, to the file 1ogo.
Use the ai extension from the above table to specify the format. The file
created is logo.ai.

saveas(gcf, 'logo', 'ai')

This is the same as using the Adobe Illustrator format from the print
devices table, which is -dill; use doc print or help print to see the
table for print device types. The file created is logo.ai. MATLAB
automatically appends the ai extension for an Illustrator format file
because no extension was specified.

saveas(gcf, 'logo', 'ill')

2-3417

saveas

See Also

2-3418

Example 3: Specify File Format and Extension

Save the current figure to the file star.eps using the Level 2 Color
PostScript format. If you use doc print or help print, you can see from
the table for print device types that the device type for this format is
-dpsc2. The file created is star.eps.

saveas(gcf, 'star.eps', 'psc2')

In another example, save the current Simulink block diagram to the file
trans.tiff using the TIFF format with no compression. From the
table for print device types, you can see that the device type for this
format is -dtiffn. The file created is trans.tiff.

saveas(gcf, 'trans.tiff', 'tiffn')
hgsave, open, print

“Printing” on page 1-102 for related functions

Simulink users, see also save_system

saveobj

Purpose
Syntax

Description

Examples

Modify save process for object

(o
I}

saveobj(a)

b = saveobj(a) is called by the save function if the class of a defines a
saveobj method. save writes the returned value, b, to the MAT-file.

Define a loadobj method to take the appropriate action when loading
the object.

If A is an array of objects, MATLAB invokes saveobj separately for
each object saved.

Call the superclass saveobj method from the subclass implementation
of saveobj with the following syntax:

classdef mySub < super
methods
function sobj = saveobj(obj)
% Call superclass saveobj method
sobj = saveobj@super(obj);

o)

% Perform subclass save operations
end-
end
end
See “Saving and Loading Objects from Class Hierarchies”.

Update object when saved:

function b = saveobj(a)
% If the object does not have an account number,
% call method to add account number to AccountNumber property
if isempty(a.AccountNumber)
a.AccountNumber = getAccountNumber(a);

2-3419

saveobj

end
b = a;
end
See “Example — Maintaining Class Compatibility”.
See Also save | load | loadobj

Tutorials + “Saving and Loading Objects”

2-3420

savepath

Purpose

GUI
Alternatives

Syntax

Description

Examples

See Also

Save current search path

As an alternative to the savepath function, use the Set Path dialog box.

savepath
savepath folderName/pathdef.m
status = savepath...

savepath saves the current MATLAB search path for use in a future
session. savepath saves the search path to the pathdef.m file that
MATLAB located at startup, or to the current folder if a pathdef.m file
exists there. To save the search path programmatically each time you
exit MATLAB, use savepath in a finish.m file.

savepath folderName/pathdef.m saves the current search path to
pathdef.m located in folderName. Use this form of the syntax if you
do not have write access to the current pathdef.m. If you do not
specify folderName, MATLAB saves pathdef.m in the current folder.
folderName can be a relative or absolute path. To use the saved search
path automatically in a future session, make folderName be the startup
folder for MATLAB.

status = savepath... returns 0 when savepath was successful and 1
when savepath failed.

Save the current search path to pathdef.m, located in
I:/my_matlab_files:

savepath I:/my_matlab_files/pathdef.m

addpath, cd, dir, finish, genpath, matlabroot, pathsep, pathtool,
rehash, restoredefaultpath, rmpath, startup, userpath, what

Topics in the User Guide:

® “Running a Script When Quitting the MATLAB Program”.

2-3421

savepath

® “Using the MATLAB Search Path”

2-3422

scatter

Purpose

GUI
Alternatives

Syntax

Description

Scatter plot

| fr]plotity) ~

Workspace Browser, or use the Figure Palette Plot Catalog. Manipulate
graphs in plot edit mode with the Property Editor. For details, see
Plotting Tools — Interactive Plotting in the MATLAB Graphics
documentation and Creating Graphics from the Workspace Browser in
the MATLAB Desktop Tools documentation.

To graph selected variables, use the Plot Selector in the

scatter(X,Y,S,C)
scatter(X,Y)
scatter(X,Y,S)

scatter(...,markertype)
scatter(...,'filled"')

scatter(..., 'PropertyName' ,propertyvalue)
scatter(axes_handle,...)

h = scatter(...)

scatter(X,Y,S,C) displays colored circles at the locations specified by
the vectors X and Y (which must be the same size).

S determines the area of each marker (specified in points~2). S can be a
vector the same length as X and Y or a scalar. If S is a scalar, MATLAB
draws all the markers the same size. If S is empty, the default size

is used.

C determines the color of each marker. When C is a vector the same
length as X and Y, the values in C are linearly mapped to the colors in
the current colormap. When C is a 1-by-3 matrix, it specifies the colors
of the markers as RGB values. If you have 3 points in the scatter plot
and wish to have the colors be indices into the colormap, C should be
a 3-by-1 matrix. C can also be a color string (see ColorSpec for a list
of color string specifiers).

2-3423

scatter

Example

2-3424

scatter(X,Y) draws the markers in the default size and color.

scatter(X,Y,S) draws the markers at the specified sizes (S) with a
single color. This type of graph is also known as a bubble plot.

scatter(...,markertype) uses the marker type specified instead of
'0' (see LineSpec for a list of marker specifiers).

scatter(...,'filled"') fills the markers.

scatter(..., 'PropertyName' ,propertyvalue) creates the scatter
graph, applying the specified property settings. See scattergroup
properties for a description of properties.

scatter(axes_handle,...) plotsinto the axes object with handle
axes_handle instead of the current axes object (gca).

h = scatter(...) returns the handle of the scattergroup object
created.

load seamount
scatter(x,y,5,2z)

scatter

See Also

L] »

N e

-9 35
=483 LI]
4335 '

—43.4 .

-435.45
2108 21048 21 2114 212 213 211.4 2115 2118 217z 213

scatter3, plot3
“Scatter/Bubble Plots” on page 1-101 for related functions

See Scattergroup Properties for property descriptions.

2-3425

scatter3

Purpose

GUI
Alternatives

Syntax

Description

2-3426

3-D scatter plot

| fr]plotity) ~

Workspace Browser, or use the Figure Palette Plot Catalog. Manipulate
graphs in plot edit mode with the Property Editor. For details, see
Plotting Tools — Interactive Plotting in the MATLAB Graphics
documentation and Creating Graphics from the Workspace Browser in
the MATLAB Desktop Tools documentation.

To graph selected variables, use the Plot Selector in the

scatter3(X,Y,Z,S,C)
scatter3(X,Y,Z)
scatter3(X,Y,Z,S)

scatter3(...,markertype)
scatter3(...,'filled")
scatter3(..., 'PropertyName' ,propertyvalue)

h = scatter3(...)

scatter3(X,Y,Z,5,C) displays colored circles at the locations specified
by the vectors X, Y, and Z (which must all be the same size).

S determines the size of each marker (specified in points). S can be
a vector the same length as X, Y, and Z or a scalar. If S is a scalar,
MATLAB draws all the markers the same size.

C determines the color of each marker. When C is a vector the same
length as X and Y, the values in C are linearly mapped to the colors in
the current colormap. When C is a 1-by-3 matrix, it specifies the colors
of the markers as RGB values. If you have 3 points in the scatter plot
and wish to have the colors be indices into the colormap, C should be
a 3-by-1 matrix. C can also be a color string (see ColorSpec for a list
of color string specifiers).

scatter3(X,Y,Z) draws the markers in the default size and color.

scatter3

Examples

scatter3(X,Y,Z,S) draws markers at the specified sizes (S) in a single
color.

scatter3(...,markertype) uses the marker type specified instead of
0’ (see LineSpec for a list of marker specifiers).
scatter3(...,'filled') fills the markers.

scatter3(..., 'PropertyName' ,propertyvalue) creates the scatter

graph, applying the specified property settings. See scattergroup
properties for a description of properties.

h = scatter3(...) returns handles to the scattergroup objects
created by scatter3. See Scattergroup Properties for property
descriptions.

Use plot3 for single color, single marker size 3-D scatter plots.

[X,y,z] = sphere(16);

X = [x(:)*.5 x(:)*.75 x(:)1;

Y = [y(:)*.5 y(:)*.75 y(:)1;

Z = [z(:)*.5 z(:)*.75 z(:)]1;

S = repmat([1 .75 .5]*10,prod(size(x)),1);
C = repmat([1 2 3],prod(size(x)),1);

scatter3(X(:),Y(:),Z2(:),S(:),C(:),'filled"'), view(-60,60)

2-3427

scatter3

See Also scatter, plot3
See Scattergroup Properties for property descriptions

“Scatter/Bubble Plots” on page 1-101 for related functions

2-3428

Scattergroup Properties

Purpose

Modifying
Properties

Scattergroup
Property
Descriptions

Define scattergroup properties

You can set and query graphics object properties using the set and get
commands or the Property Editor (propertyeditor).

Note that you cannot define default property values for scattergroup
objects.

See Plot Objects for information on scattergroup objects.

This section provides a description of properties. Curly braces { } enclose
default values.

Annotation
hg.Annotation object Read Only

Control the display of scattergroup objects in legends. The
Annotation property enables you to specify whether this
scattergroup object is represented in a figure legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Once you have obtained the hg.LegendEntry object, you can

set its IconDisplayStyle property to control whether the
scattergroup object is displayed in a figure legend:

2-3429

Scattergroup Properties

2-3430

IconDispIuyStyIé Purpose

Value

on Include the scattergroup object in a legend
as one entry, but not its children objects

off Do not include the scattergroup or its
children in a legend (default)

children Include only the children of the scattergroup
as separate entries in the legend

Setting the IconDisplayStyle Property

These commands set the IconDisplayStyle of a graphics object
with handle hobj to children, which causes each child object
to have an entry in the legend:

hAnnotation = get(hobj, 'Annotation');

hLegendEntry = get(hAnnotation, 'LegendInformation');
set(hLegendEntry, 'IconDisplayStyle', 'children')

Using the IconDisplayStyle Property

See “Controlling Legends” for more information and examples.

BeingDeleted

on | {off} Read Only

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in

the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions
that act on a number of different objects. These functions might
not need to perform actions on objects if the objects are going to

Scattergroup Properties

be deleted, and therefore, can check the object’s BeingDeleted
property before acting.

BusyAction
cancel | {queue}

Callback routine interruption. The BusyAction property enables
you to control how MATLAB handles events that potentially
interrupt executing callbacks. If there is a callback function
executing, callbacks invoked subsequently always attempt to
interrupt it.

If the Interruptible property of the object whose callback is
executing is set to on (the default), then interruption occurs

at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the
object owning the executing callback) determines how MATLAB
handles the event. The choices are

e cancel — Discard the event that attempted to execute a second
callback routine.

® queue — Queue the event that attempted to execute a second
callback routine until the current callback finishes.

ButtonDownFcn
string or function handle

Button press callback function. A callback that executes whenever
you press a mouse button while the pointer is over this object, but
not over another graphics object. See the HitTestArea property
for information about selecting objects of this type.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

This property can be
® A string that is a valid MATLAB expression

2-3431

Scattergroup Properties

2-3432

® The name of a MATLAB file

e A function handle

Set this property to a function handle that references the callback.
The expressions execute in the MATLAB workspace.

See “Function Handle Callbacks” for information on how to use
function handles to define the callbacks.

CData

vector, m-by-3 matrix, ColorSpec

Color of markers. When CData is a vector the same length as XData
and YData, the values in CData are linearly mapped to the colors
in the current colormap. When CData is a length(XData)-by-3
matrix, it specifies the colors of the markers as RGB values.

CDataSource

string (MATLAB variable)

Link CData to MATLAB variable. Set this property to a MATLAB
variable that, by default, is evaluated in the base workspace to
generate the CData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change CData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Scattergroup Properties

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

Children
array of graphics object handles

Children of the scattergroup object. An array containing the
handle of a patch object parented to the scattergroup object
(whether visible or not).

If a child object’s HandleVisibility property is callback or off,
its handle does not show up in this object’s Children property.
If you want the handle in the Children property, set the root
ShowHiddenHandles property to on. For example:

set (0, 'ShowHiddenHandles', 'on')

Clipping
{on} | off

Clipping mode. MATLAB clips graphs to the axes plot box by
default. If you set Clipping to off, portions of graphs can be
displayed outside the axes plot box. This can occur if you create a
plot object, set hold to on, freeze axis scaling (axis manual), and
then create a larger plot object.

CreateFcn
string or function handle

Callback routine executed during object creation. This property
defines a callback that executes when MATLAB creates an object.
You must specify the callback during the creation of the object.

For example,

2-3433

Scattergroup Properties

2-3434

graphicfcn(y, 'CreateFcn',@CallbackFcn)

where @CallbackFcn is a function handle that references the
callback function and graphicfcn is the plotting function which
creates this object.

MATLAB executes this routine after setting all other object
properties. Setting this property on an existing object has no
effect.

The handle of the object whose CreateFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

DeleteFcn

string or function handle

Callback executed during object deletion. A callback that executes
when this object is deleted (e.g., this might happen when you issue
a delete command on the object, its parent axes, or the figure
containing it). MATLAB executes the callback before destroying
the object’s properties so the callback routine can query these
values.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which

can be queried using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

See the BeingDeleted property for related information.

DisplayName

string (default is empty string)

Scattergroup Properties

String used by legend for this scattergroup object. The legend
function uses the string defined by the DisplayName property to
label this scattergroup object in the legend.

¢ If you specify string arguments with the legend function,
DisplayName is set to this scattergroup object’s corresponding
string and that string is used for the legend.

e If DisplayName is empty, legend creates a string of the form,
['data' n], where n 1s the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

¢ Ifyou edit the string directly in an existing legend, DisplayName
is set to the edited string.

¢ If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

¢ To add programmatically a legend that uses the DisplayName
string, call 1legend with the toggle or show option.

See “Controlling Legends” for more examples.

EraseMode
{normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses
to draw and erase objects and their children. Alternative erase
modes are useful for creating animated sequences, where control
of the way individual objects are redrawn is necessary to improve
performance and obtain the desired effect.

* normal — Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all
objects are rendered correctly. This mode produces the most
accurate picture, but is the slowest. The other modes are faster,
but do not perform a complete redraw and are therefore less
accurate.

2-3435

Scattergroup Properties

2-3436

®* none — Do not erase objects when they are moved or destroyed.
While the objects are still visible on the screen after erasing
with EraseMode none, you cannot print these objects because
MATLAB stores no information about their former locations.

e xor — Draw and erase the object by performing an exclusive
OR (XOR) with each pixel index of the screen behind it. Erasing
the object does not damage the color of the objects behind it.
However, the color of the erased object depends on the color of
the screen behind it and it is correctly colored only when it is
over the axes background color (or the figure background color
if the axes Color property is set to none). That is, it isn’t erased
correctly if there are objects behind it.

® packground — Erase the graphics objects by redrawing them
in the axes background color, (or the figure background color
if the axes Color property is set to none). This damages other
graphics objects that are behind the erased object, but the
erased object is always properly colored.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB can mathematically combine
layers of colors (e.g., performing an XOR on a pixel color with that
of the pixel behind it) and ignore three-dimensional sorting to
obtain greater rendering speed. However, these techniques are
not applied to the printed output.

Set the axes background color with the axes Color property. Set
the figure background color with the figure Color property.

You can use the MATLAB getframe command or other screen
capture applications to create an image of a figure containing
nonnormal mode objects.

Scattergroup Properties

HandleVisibility
{on} | callback | off

Contirol access to object’s handle by command-line users and GUISs.
This property determines when an object’s handle is visible in

its parent’s list of children. HandleVisibility is useful for
preventing command-line users from accidentally accessing
objects that you need to protect for some reason.

® on — Handles are always visible when HandleVisibility is on.

® callback — Setting HandleVisibility to callback causes
handles to be visible from within callback routines or functions
invoked by callback routines, but not from within functions
invoked from the command line. This provides a means to
protect GUIs from command-line users, while allowing callback
routines to have access to object handles.

e off — Setting HandleVisibility to off makes handles
invisible at all times. This might be necessary when a callback
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string) and so temporarily
hides its own handles during the execution of that function.

Functions Affected by Handle Visibility

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, cl1f, and close.

Properties Affected by Handle Visibility
When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,

figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in

2-3437

Scattergroup Properties

2-3438

the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

Overriding Handle Visibility

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties). See also findall.

Handle Validity
Handles that are hidden are still valid. If you know an object’s

handle, you can set and get its properties and pass it to any
function that operates on handles.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

HitTest

{on} | off

Selectable by mouse click. HitTest determines whether this object
can become the current object (as returned by the gco command
and the figure CurrentObject property) as a result of a mouse
click on the objects that compose the area graph. If HitTest

is of f, clicking this object selects the object below it (which 1s
usually the axes containing it).

HitTestArea

on | {off}

Scattergroup Properties

Select the object by clicking lines or area of extent. This property
enables you to select plot objects in two ways:

e Select by clicking lines or markers (default).

e Select by clicking anywhere in the extent of the plot.

When HitTestArea is of f, you must click the object’s lines or
markers (excluding the baseline, if any) to select the object. When
HitTestArea is on, you can select this object by clicking anywhere
within the extent of the plot (i.e., anywhere within a rectangle
that encloses it).

Interruptible
{on} | off

Callback routine interruption mode. The Interruptible property
controls whether an object’s callback can be interrupted by
callbacks invoked subsequently.

Only callbacks defined for the ButtonDownFcn property are
affected by the Interruptible property. MATLAB checks for
events that can interrupt a callback only when it encounters a
drawnow, figure, getframe, or pause command in the routine.
See the BusyAction property for related information.

Setting Interruptible to on allows any graphics object’s callback
to interrupt callback routines originating from a bar property.
Note that MATLAB does not save the state of variables or the
display (e.g., the handle returned by the gca or gcf command)
when an interruption occurs.

LineWidth

scalar

The width of linear objects and edges of filled areas. Specify this
value in points (1 point =/, inch). The default LineWidth is 0.5
points.

2-3439

Scattergroup Properties

Marker
character (see table)

Marker symbol. The Marker property specifies the type of markers
that are displayed at plot vertices. You can set values for the
Marker property independently from the LineStyle property.
Supported markers include those shown in the following table.

Marker Specifier Description

+ Plus sign

o) Circle

* Asterisk
Point

X Cross

s Square

d Diamond

Upward-pointing triangle

v Downward-pointing triangle

> Right-pointing triangle

< Left-pointing triangle

p Five-pointed star (pentagram)

h Six-pointed star (hexagram)

none No marker (default)
MarkerEdgeColor

ColorSpec | none | {auto}
Marker edge color. The color of the marker or the edge color for

filled markers (circle, square, diamond, pentagram, hexagram,
and the four triangles). ColorSpec defines the color to use. none

2-3440

Scattergroup Properties

specifies no color, which makes nonfilled markers invisible. auto
sets MarkerEdgeColor to the same color as the CData property.

MarkerFaceColor
ColorSpec | {none} | auto

Marker face color. The fill color for markers that are closed shapes
(circle, square, diamond, pentagram, hexagram, and the four
triangles). ColorSpec defines the color to use. none makes the
interior of the marker transparent, allowing the background to
show through. auto sets the fill color to the axes color, or to the
figure color if the axes Color property is set to none (which is the
factory default for axes objects).

Parent
handle of parent axes, hggroup, or hgtransform

Parent of this object. This property contains the handle of the
object’s parent. The parent is normally the axes, hggroup, or
hgtransform object that contains the object.

See “Objects That Can Contain Other Objects” for more
information on parenting graphics objects.

Selected
on | {off}

Is object selected? When you set this property to on, MATLAB
displays selection "handles" at the corners and midpoints if the
SelectionHighlight property is also on (the default). You
can, for example, define the ButtonDownFcn callback to set this
property to on, thereby indicating that this particular object

1s selected. This property is also set to on when an object is
manually selected in plot edit mode.

SelectionHighlight
{on} | off

2-3441

Scattergroup Properties

2-3442

Objects are highlighted when selected. When the Selected
property is on, MATLAB indicates the selected state by
drawing four edge handles and four corner handles. When
SelectionHighlight is off, MATLAB does not draw the handles
except when in plot edit mode and objects are selected manually.

SizeData

square points

Size of markers in square points. This property specifies the area
of the marker in the scatter graph in units of points. Since there
are 72 points to one inch, to specify a marker that has an area of
one square inch you would use a value of 72°2.

SizeDataSource

string (MATLAB variable)

Link SizeData to MATLAB variable. Set this property to a
MATLAB variable that, by default, is evaluated in the base
workspace to generate the SizeData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change SizeData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

Scattergroup Properties

Tag

Type

string

User-specified object label. The Tag property provides a means

to identify graphics objects with a user-specified label. This is
particularly useful when you are constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callbacks.
You can define Tag as any string.

For example, you might create an areaseries object and set the
Tag property.

t = area(Y,'Tag', 'areal’)

When you want to access objects of a given type, you can use
findobj to find the object’s handle. The following statement
changes the FaceColor property of the object whose Tag is areai.

set(findobj('Tag', 'areal'), 'FaceColor', ‘'red')

string (read only)

Type of graphics object. This property contains a string that
identifies the class of the graphics object. For stemseries objects,
Type is ’hggroup’. The following statement finds all the hggroup
objects in the current axes.

t = findobj(gca, 'Type', "hggroup');

UIContextMenu

handle of a uicontextmenu object
Associate a context menu with this object. Assign this property

the handle of a uicontextmenu object created in the object’s
parent figure. Use the uicontextmenu function to create the

2-3443

Scattergroup Properties

2-3444

context menu. MATLAB displays the context menu whenever
you right-click over the object.

UserData

array

User-specified data. This property can be any data you want to
associate with this object (including cell arrays and structures).
The object does not set values for this property, but you can access
it using the set and get functions.

Visible

{on} | off

Visibility of this object and its children. By default, a new object’s
visibility is on. This means all children of the object are visible
unless the child object’s Visible property is set to off. Setting an
object’s Visible property to of f prevents the object from being
displayed. However, the object still exists and you can set and
query its properties.

XData

array

X-coordinates of scatter markers. The scatter function draws
individual markers at each x-axis location in the XData array.
The input argument x in the scatter function calling syntax
assigns values to XData.

XDataSource

string (MATLAB variable)

Link XData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
XData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change XData.

Scattergroup Properties

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

YData
scalar, vector, or matrix

Y-coordinates of scatter markers. The scatter function draws
individual markers at each y-axis location in the YData array.

The input argument y in the scatter function calling syntax
assigns values to YData.

YDataSource
string (MATLAB variable)

Link YData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
YData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an

expression does not change YData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the

2-3445

Scattergroup Properties

2-3446

data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

ZData

vector of coordinates

Z-coordinates. A vector defining the z-coordinates for the graph.
XData and YData must be the same length and have the same
number of rows.

ZDataSource

string (MATLAB variable)

Link ZData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
ZData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change ZData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Scattergroup Properties

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

2-3447

schur

Purpose

Syntax

Description

Examples

2-3448

Schur decomposition

T = schur(A)
T = schur(A,flag)
[U,T] = schur(A,...)

The schur command computes the Schur form of a matrix.
T = schur(A) returns the Schur matrix T.

T = schur(A,flag) for real matrix A, returns a Schur matrix T in one
of two forms depending on the value of flag:

‘complex' T is triangular and is complex if A has complex
eigenvalues.
'real’ T has the real eigenvalues on the diagonal and

the complex eigenvalues in 2-by-2 blocks on the
diagonal. 'real’ is the default.

If A is complex, schur returns the complex Schur form in matrix T.
The complex Schur form is upper triangular with the eigenvalues of A
on the diagonal.

The function rsf2csf converts the real Schur form to the complex
Schur form.

[U,T] = schur(A,...) also returns a unitary matrix U so that A =
U*T*U' and U'*U = eye(size(A)).

H is a 3-by-3 eigenvalue test matrix:

H=1[-149 -50 -154
537 180 546
-27 -9 -25]

Its Schur form is

schur(H)

schur

Algorithm

ans =

1.0000 -7.1119 -815.8706

0
0

2.0000 -55.0236

0 3.0000

The eigenvalues, which in this case are 1, 2, and 3, are on the diagonal.
The fact that the off-diagonal elements are so large indicates that this

matrix has poorly conditioned eigenvalues; small changes in the matrix
elements produce relatively large changes in its eigenvalues.

Input of Type Double

If A has type double, schur uses the LAPACK routines listed in the

following table to compute the Schur form of a matrix:

Matrix A

Routine

Real symmetric

DSYTRD, DSTEQR
DSYTRD, DORGTR, DSTEQR (with output U)

Real nonsymmetric

DGEHRD, DHSEQR
DGEHRD, DORGHR, DHSEQR (with output U)

Complex Hermitian

ZHETRD, ZSTEQR
ZHETRD, ZUNGTR, ZSTEQR (with output U)

Non-Hermitian

ZGEHRD, ZHSEQR
ZGEHRD, ZUNGHR, ZHSEQR (with output U)

Input of Type Single
If A has type single, schur uses the LAPACK routines listed in the

following table to compute the Schur form of a matrix:

2-3449

schur

Matrix A Routine

Real symmetric SSYTRD, SSTEQR
SSYTRD, SORGTR, SSTEQR (with output U)

Real nonsymmetric SGEHRD, SHSEQR
SGEHRD, SORGHR, SHSEQR (with output U)

Complex Hermitian | CHETRD, CSTEQR
CHETRD, CUNGTR, CSTEQR (with output U)

Non-Hermitian CGEHRD, CHSEQR
CGEHRD, CUNGHR, CHSEQR (with output U)

See Also eig, hess, qz, rsf2csf

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen, LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack lug.html), Third
Edition, STAM, Philadelphia, 1999.

2-3450

http://www.netlib.org/lapack/lug/lapack_lug.html

script

Purpose

Description

See Also

Sequence of MATLAB statements in file

A script file is an external file that contains a sequence of MATLAB
statements. By typing the filename, you can obtain subsequent
MATLAB input from the file. Script files have a filename extension
of .m.

Scripts are the simplest kind of MATLAB program. They are useful
for automating blocks of MATLAB commands, such as computations
you have to perform repeatedly from the command line. Scripts can
operate on existing data in the workspace, or they can create new data
on which to operate. Although scripts do not return output arguments,
any variables that they create remain in the workspace, so you can
use them in further computations. In addition, scripts can produce
graphical output using commands like plot.

Scripts can contain any series of MATLAB statements. They require no
declarations or begin/end delimiters.

Like any MATLAB program, scripts can contain comments. Any text
following a percent sign (%) on a given line is comment text. Comments
can appear on lines by themselves, or you can append them to the end
of any executable line.

echo, function, type

2-3451

secC

Purpose
Syntax

Description

Examples

2-3452

Secant of argument in radians
Y = sec(X)

The sec function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Y = sec(X) returns an array the same size as X containing the secant
of the elements of X.

Graph the secant over the domains _ /2 « y « 7.2 and
n/2<x<3n/2.

x1 -pi/2+0.01:0.01:pi/2-0.01;
X2 pi/2+0.01:0.01:(3*pi/2)-0.01;
plot(x1,sec(x1),x2,sec(x2)), grid on

150)))) !)

100

=50

r!\\11

IR

[=]

—

T AU PRSPy
A1

.

wn

sec

Definition

Algorithm

See Also

The expression sec(pi/2) does not evaluate as infinite but as
the reciprocal of the floating-point accuracy eps, because pi is a
floating-point approximation to the exact value of 5.

The secant can be defined as

sec uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc. business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

secd, sech, asec, asecd, asech

2-3453

http://www.netlib.org

secd

Purpose
Syntax

Description

See Also

2-3454

Secant of argument in degrees

Y

secd(X)

Y = secd(X) is the secant of the elements of X, expressed in degrees.
For odd integers n, secd(n*90) is infinite, whereas sec(n*pi/2) is
large but finite, reflecting the accuracy of the floating point value of pi.

sec, sech, asec, asecd, asech

sech

Purpose
Syntax

Description

Examples

Hyperbolic secant
Y = sech(X)

The sech function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Y = sech(X) returns an array the same size as X containing the
hyperbolic secant of the elements of X.

Graph the hyperbolic secant over the domain _ 2 < 4 <21,

X = -2*pi:0.01:2*pi;
plot(x,sech(x)), grid on

2-3455

sech

Algorithm

Definition

Algorithm

See Also

2-3456

sech uses this algorithm.

1
sech(z) cosh(2)
The secant can be defined as

1
sech(z) cosh(2)

sec uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc. business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

asec, asech, sec

http://www.netlib.org

selectmoveresize

Purpose Select, move, resize, or copy axes and uicontrol graphics objects

Syntax A = selectmoveresize
set(gca, 'ButtonDownFcn', 'selectmoveresize')

Descripl‘ion selectmoveresize is useful as the callback routine for axes and
uicontrol button down functions. When executed, it selects the object
and allows you to move, resize, and copy it.

A = selectmoveresize returns a structure array containing
® A.Type: a string containing the action type, which can be Select,
Move, Resize, or Copy

® A.Handles: a list of the selected handles, or, for a Copy, an m-by-2
matrix containing the original handles in the first column and the
new handles in the second column

set(gca, 'ButtonDownFcn', 'selectmoveresize') sets the
ButtonDownFcn property of the current axes to selectmoveresize:

See Also The ButtonDownFcn property of axes and uicontrol objects
“Object Manipulation” on page 1-110 for related functions

2-3457

../ref/axes_props.html#ButtonDownFcn
../ref/uicontrol_props.html#ButtonDownFcn

semilogx, semilogy

Purpose

GUI
Alternatives

Syntax

Description

2-3458

Semilogarithmic plots

To graph selected variables, use the Plot Selector in the
Workspace Browser, or use the Figure Palette Plot Catalog. Manipulate
graphs in plot edit mode with the Property Editor. For details, see
Plotting Tools — Interactive Plotting in the MATLAB Graphics
documentation and Creating Graphics from the Workspace Browser in
the MATLAB Desktop Tools documentation.

semilogx(Y)

semilogy(...)

semilogx (X1,Y1,...)
semilogx(X1,Y1,LineSpec,...)

semilogx(..., 'PropertyName',PropertyValue,...)
h = semilogx(...)

h = semilogy(...)

semilogx and semilogy plot data as logarithmic scales for the x- and
y-axis, respectively.

semilogx(Y) creates a plot using a base 10 logarithmic scale for the
x-axis and a linear scale for the y-axis. It plots the columns of Y versus
their index if Y contains real numbers. semilogx(Y) is equivalent to
semilogx(real(Y), imag(Y)) if Y contains complex numbers. semilogx
ignores the imaginary component in all other uses of this function.

semilogy(...) creates a plot using a base 10 logarithmic scale for the
y-axis and a linear scale for the x-axis.

semilogx(X1,Y1,...) plots all Xn versus Yn pairs. If only Xn or Yn

1s a matrix, semilogx plots the vector argument versus the rows or
columns of the matrix, depending on whether the vector’s row or column
dimension matches the matrix.

semilogx, semilogy

Remarks

Examples

semilogx(X1,Y1,LineSpec,...) plots all lines defined by the
Xn,Yn,LineSpec triples. LineSpec determines line style, marker
symbol, and color of the plotted lines.

semilogx(..., 'PropertyName',PropertyValue,...) sets property
values for all 1ineseries graphics objects created by semilogx.

h = semilogx(...) and h = semilogy(...) return a vector of
handles to lineseries graphics objects, one handle per line.

If you do not specify a color when plotting more than one line,
semilogx and semilogy automatically cycle through the colors and
line styles in the order specified by the current axes ColorOrder and
LineStyleOrder properties.

You can mix Xn, Yn pairs with Xn,Yn,LineSpec triples; for example,
semilogx(X1,Y1,X2,Y2,LineSpec,X3,Y3)

If you attempt to add a loglog, semilogx, or semilogy plot to a linear
axis mode graph with hold on, the axis mode will remain as it is and
the new data will plot as linear.

Create a simple semilogy plot.

x =0:.1:10;
semilogy(x,10."x)

2-3459

semilogx, semilogy

See Also

2-3460

'IUE T T T T T T T T

W0 F
10 F
107 F

10t E

102;-

'k

'IU- 1 1 1 1 1 1 1 1

line, LineSpec, loglog, plot
“Basic Plots and Graphs” on page 1-96 for related functions

10

sendmail

Purpose

Syntax

Description

Tips

Send e-mail message to address list

sendmail('recipients', 'subject')
sendmail('recipients','subject', 'message')
sendmail('recipients','subject', 'message', 'attachments"')

sendmail('recipients', 'subject') sends e-mail to recipients with
the specified subject. The recipients input is a string for a single
address, or a cell array of strings for multiple addresses.

sendmail('recipients','subject', 'message') includes the
specified message. If message is a string, sendmail automatically wraps
text at 75 characters. To force a line break in the message text, use 10,
as shown in the Examples. If message is a cell array of strings, each
cell represents a new line of text.

sendmail('recipients', 'subject', 'message', 'attachments')
attaches the files listed in the string or cell array attachments.

® The sendmail function does not support e-mail servers that require
authentication.

e If sendmail cannot determine your e-mail address or outgoing SMTP
mail server from your system registry, specify those settings using
the setpref function. For example:

setpref('Internet', 'SMTP_Server', 'myserver.myhost.com');
setpref('Internet','E_mail', 'myaddress@example.com')

To identify the SMTP server for the call to setpref, check the
preferences for your electronic mail application, or consult your
e-mail system administrator. If you cannot easily determine the
server name, try 'mail', which is a common default, such as:

setpref('Internet', 'SMTP_Server',6 'mail');

e The sendmail function does not support HTML-formatted messages.
However, you can send HTML files as attachments.

2-3461

sendmail

Examples Send a message with two attachments to a hypothetical e-mail address:

sendmail('user@otherdomain.com',...
‘Test subject','Test message',...
{'directory/attachi.html', 'attach2.doc'});

Send a message with forced line breaks (using 10) to a hypothetical
e-mail address:

sendmail ('user@otherdomain.com', 'New subject',
['Linel of message' 10 'Line2 of message' 10 ...
'Line3 of message' 10 'Line4 of message'l]);

The resulting message is:

Linel of message
Line2 of message
Line3 of message
Line4 of message

Alternatives On Windows systems with Microsoft® Outlook®, you can send
e-mail directly through Outlook® by accessing the COM server with
actxserver. For an example, see Solution 1-RTY6d.

See Also getpref | setpref

How To + “Specifying Proxy Server Settings”

2-3462

http://www.mathworks.com/support/solutions/en/data/1-RTY6J/index.html?solution=1-RTY6J

serial

Purpose

Syntax

Description

Remarks

Create serial port object

obj = serial('port')
obj serial('port', 'PropertyName',PropertyValue,...)

obj serial('port') creates a serial port object associated with the
serial port specified by port. If port does not exist, or if it is in use, you
will not be able to connect the serial port object to the device.

Port object name will depend upon the platform that the serial port is
on. instrhwinfo (serial’) provides a list of available serial ports. This
list is an example of serial constructors on different platforms:

Platform Serial Port Constructor
Linux and Linux 64 serial('/dev/ttyS0');
Mac OS X and Mac serial('/dev/tty.KeySerialil');

OS X 64
Solaris 64 serial('/dev/term/a');
Windows 32 and serial('comi');
Windows 64
obj = serial('port','PropertyName',PropertyValue,...) creates

a serial port object with the specified property names and property
values. If an invalid property name or property value is specified, an
error is returned and the serial port object is not created.

When you create a serial port object, these property values are
automatically configured:
® The Type property is given by serial.

® The Name property is given by concatenating Serial with the port
specified in the serial function.

® The Port property is given by the port specified in the serial
function.

2-3463

serial

Example

See Also

2-3464

You can specify the property names and property values using any
format supported by the set function. For example, you can use
property name/property value cell array pairs. Additionally, you can
specify property names without regard to case, and you can make use of
property name completion. For example, the following commands are
all valid on a Windows platform.

s = serial('COM1', 'BaudRate',4800);
s = serial('COM1', 'baudrate’',4800);
s = serial('COM1', 'BAUD',4800);

Refer to Configuring Property Values for a list of serial port object
properties that you can use with serial.

Before you can communicate with the device, it must be connected to
obj with the fopen function. A connected serial port object has a Status
property value of open. An error is returned if you attempt a read or
write operation while the object is not connected to the device. You can
connect only one serial port object to a given serial port.

This example creates the serial port object s1 associated with the serial
port COM1 on a Windows platform.

s1 = serial('COM1"');
The Type, Name, and Port properties are automatically configured.
get(s1,{'Type', 'Name', 'Port'})

ans =
'serial’ 'Serial-COM1' "COM1"'

To specify properties during object creation

s2 = serial('COM2', 'BaudRate',1200, 'DataBits',7);

Functions

fclose, fopen

serial

Properties

Name, Port, Status, Type

2-3465

serialbreak

Purpose

Syntax

Description

Remarks

See Also

2-3466

Send break to device connected to serial port

serialbreak(obj)
serialbreak(obj,time)

serialbreak(obj) sends a break of 10 milliseconds to the device
connected to the serial port object, obj.

serialbreak(obj,time) sends a break to the device with a duration,
in milliseconds, specified by time. Note that the duration of the break
might be inaccurate under some operating systems.

For some devices, the break signal provides a way to clear the hardware
buffer.

Before you can send a break to the device, it must be connected to obj
with the fopen function. A connected serial port object has a Status
property value of open. An error is returned if you attempt to send a
break while obj is not connected to the device.

serialbreak is a synchronous function, and blocks the command line
until execution is complete.

If you issue serialbreak while data is being asynchronously written,
an error is returned. In this case, you must call the stopasync function
or wait for the write operation to complete.

Functions

fopen, stopasync

Properties
Status

set

Purpose

Syntax

Description

Set Handle Graphics object properties

set(H, 'PropertyName' ,PropertyValue,...)

(
set(H,a)
set(H pn,pv,...)
set(H,pn, MxN pv)
a = set(h)

pv = set(h, 'PropertyName"')

Note Do not use the set function on Java objects as it will cause a
memory leak. For more information, see “Accessing Private and Public
Data”

set(H, 'PropertyName' ,PropertyValue,...) sets the named
properties to the specified values on the object(s) identified by H. H can
be a vector of handles, in which case set sets the properties’ values for
all the objects.

set(H,a) sets the named properties to the specified values on the
object(s) identified by H. a is a structure array whose field names are
the object property names and whose field values are the values of the
corresponding properties.

set(H,pn,pv,...) sets the named properties specified in the cell
array pn to the corresponding value in the cell array pv for all objects
identified in H.

set(H,pn,MxN_pv) sets n property values on each of m graphics objects,
where m = length(H) and n is equal to the number of property names
contained in the cell array pn. This allows you to set a given group of
properties to different values on each object.

a = set(h) returns the user-settable properties and possible values for
the object identified by h. a is a structure array whose field names are
the object’s property names and whose field values are the possible
values of the corresponding properties. If you do not specify an output

2-3467

set

Remarks

Examples

2-3468

argument, the MATLAB software displays the information on the
screen. h must be scalar.

pv = set(h, 'PropertyName') returns the possible values for the
named property. If the possible values are strings, set returns each in
a cell of the cell array pv. For other properties, set returns a statement
indicating that PropertyName does not have a fixed set of property
values. If you do not specify an output argument, MATLAB displays the
information on the screen. h must be scalar.

You can use any combination of property name/property value pairs,
structure arrays, and cell arrays in one call to set.

Setting Property Units

Note that if you are setting both the FontSize and the FontUnits
properties in one function call, you must set the FontUnits property
first so that the MATLAB software can correctly interpret the specified
FontSize. The same applies to figure and axes uints — always set the
Units property before setting properties whose values you want to be
interpreted in those units. For example,

f = figure('Units', 'characters’',...
'Position',[30 30 120 35]);

Set the Color property of the current axes to blue.

axes;
set(gca, 'Color','b")

Change all the lines in a plot to black.

plot (peaks)
set(findobj('Type', '1line'), 'Color','k"')

You can define a group of properties in a structure to better organize
your code. For example, these statements define a structure called
active, which contains a set of property definitions used for the

set

uicontrol objects in a particular figure. When this figure becomes the
current figure, MATLAB changes the colors and enables the controls.

active.BackgroundColor = [.7 .7 .7];
active.Enable

active.ForegroundColor

= 'on';

[0 0 0];

if gcf == control_fig_handle
set(findobj(control_fig_handle, 'Type', 'uicontrol'),active)

end

You can use cell arrays to set properties to different values on each
object. For example, these statements define a cell array to set three

properties,

PropName (1)
PropName (2)
PropName (3)

{'BackgroundColor'};
{'Enable'};
{'ForegroundColor'};

These statements define a cell array containing three values for each of
three objects (i.e., a 3-by-3 cell array).

Propval(1,1)
PropVval(1,2)
Propval(1,3)
PropVval(2,1)
PropVval(2,2)
PropVval(2,3)
Propval(3,1)
PropVval(3,2)
Propval(3,3)

= {[.5 .5 .5]};

= {'off'};
= {[.9 .9 .9]};
= {[1 0 0]};

= {’on'};

= {011 11};

= {[.7 .7 .7]};
= {'on'};

= {[0 0 0]};

Now pass the arguments to set,

set(H,PropName,PropVval)

where length(H)

= 3 and each element is the handle to a uicontrol.

2-3469

set

See Also

2-3470

Setting Different Values for the Same Property on Multiple
Objects

Suppose you want to set the value of the Tag property on five line
objects, each to a different value. Note how the value cell array needs to
be transposed to have the proper shape.

h = plot(rand(5));
set(h,{'Tag'},{'linet1', '1line2','1ine3', '1line4"', '1line5'}")

findobj, gca, gcf, gco, gcbo, get
“Graphics Object Identification” on page 1-103 for related functions

audioplayer.set

Purpose

Syntax

Description

Tips

Examples

Set property values for audioplayer object

set(obj, 'PropertyName', Value)
set(obj, cellOfNames, cellOfValues)
set(obj, structOfProperties)
settableProperties = set(obj)

set(obj, 'PropertyName', Value) sets the named property to the
specified value for the object obj.

set(obj, cellOfNames, cellOfValues) sets the properties listed
in the cell array cell10fNames to the corresponding values in the cell
array cellOfValues. Each cell array must contain the same number
of elements.

set(obj, structOfProperties) sets the properties identified by each
field of the structure array structOfProperties to the values of the
associated fields.

settableProperties = set(obj) returns the names of the
properties that you can set in a structure array. The field names of
settableProperties are the property names.

The set function allows combinations of property name/value pairs, cell
array pairs, and structure arrays in the same function call.

View the list of properties that you can set for an audioplayer object:

load handel.mat;
handelObj = audioplayer(y, Fs);
set(handelObj)

Set the Tag and UserData properties of an audioplayer object using a
structure array:

newValues.Tag = 'My Tag';
newValues.UserData = {'My User Data', pi, [1 2 3 4]};

2-3471

audioplayer.set

Alternatives

See Also

2-3472

load handel.mat;
handelObj = audioplayer(y, Fs);
set(handelObj, newValues)

% View the values all properties.
get(handelObj)

To set the value of a single property, you can use dot notation. Reference
each property as though it is a field of a structure array. For example,
set the Tag property for an object called handelObj (as created in the
Examples):

handelObj.Tag = 'This is my tag.';

This command is exactly equivalent to:

set(handelObj, 'Tag', 'This is my tag.');

audioplayer | get

audiorecorder.set

Purpose

Syntax

Description

Tips

Examples

Set property values for audiorecorder object

set(obj, 'PropertyName', Value)
set(obj, cellOfNames, cellOfValues)
set(obj, structOfProperties)
settableProperties = set(obj)

set(obj, 'PropertyName', Value) sets the named property to the
specified value for the object obj.

set(obj, cellOfNames, cellOfValues) sets the properties listed
in the cell array cell10fNames to the corresponding values in the cell
array cellOfValues. Each cell array must contain the same number
of elements.

set(obj, structOfProperties) sets the properties identified by each
field of the structure array structOfProperties to the values of the
associated fields.

settableProperties = set(obj) returns the names of the
properties that you can set in a structure array. The field names of
settableProperties are the property names.

The set function allows combinations of property name/value pairs, cell
array pairs, and structure arrays in the same function call.

View the list of properties that you can set for an audiorecorder object:

recorderObj = audiorecorder;
set(recorderObj)

Set the Tag and UserData properties of an audiorecorder object using
a structure array:

newValues.Tag = 'My Tag';
newValues.UserData = {'My User Data', pi, [1 2 3 4]};

2-3473

audiorecorder.set

recorderObj = audiorecorder;
set(recorderObj, newValues)

% View the values all properties.
get(recorderObj)

Alternatives To set the value of a single property, you can use dot notation. Reference
each property as though it is a field of a structure array. For example,
set the Tag property for an object called recorderObj (as created in
the Examples):

recorderObj.Tag = 'This is my tag.';

This command is exactly equivalent to:

set(recorderObj, 'Tag', 'This is my tag.');

See Also audiorecorder | get

2-3474

set (COM)

