
MATLAB® 7
Function Reference: Volume 3 (P-Z)



How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB Function Reference

© COPYRIGHT 1984–2010 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents


Revision History
December 1996 First printing For MATLAB 5.0 (Release 8)
June 1997 Online only Revised for MATLAB 5.1 (Release 9)
October 1997 Online only Revised for MATLAB 5.2 (Release 10)
January 1999 Online only Revised for MATLAB 5.3 (Release 11)
June 1999 Second printing For MATLAB 5.3 (Release 11)
June 2001 Online only Revised for MATLAB 6.1 (Release 12.1)
July 2002 Online only Revised for 6.5 (Release 13)
June 2004 Online only Revised for 7.0 (Release 14)
September 2006 Online only Revised for 7.3 (Release 2006b)
March 2007 Online only Revised for 7.4 (Release 2007a)
September 2007 Online only Revised for Version 7.5 (Release 2007b)
March 2008 Online only Revised for Version 7.6 (Release 2008a)
October 2008 Online only Revised for Version 7.7 (Release 2008b)
March 2009 Online only Revised for Version 7.8 (Release 2009a)
September 2009 Online only Revised for Version 7.9 (Release 2009b)
March 2010 Online only Revised for Version 7.10 (Release 2010a)





Contents

Function Reference

1
Desktop Tools and Development Environment . . . . . . . 1-3
Startup and Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
Command Window and History . . . . . . . . . . . . . . . . . . . . . . 1-4
Help for Using MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
Workspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6
Managing Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6
Programming Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8
System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10

Data Import and Export . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-12
File Name Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-12
File Opening, Loading, and Saving . . . . . . . . . . . . . . . . . . . 1-13
Memory Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-13
Low-Level File I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14
Text Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14
XML Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-15
Spreadsheets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-15
Scientific Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-16
Audio and Video . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-24
Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-26
Internet Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-26

Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-28
Arrays and Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-29
Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-34
Elementary Math . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-38
Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-43
Interpolation and Computational Geometry . . . . . . . . . . . . 1-43
Cartesian Coordinate System Conversion . . . . . . . . . . . . . . 1-47
Nonlinear Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . 1-47
Specialized Math . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-51
Sparse Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-52
Math Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-55

Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-57

v



Basic Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-57
Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-57
Filtering and Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-58
Interpolation and Regression . . . . . . . . . . . . . . . . . . . . . . . . 1-58
Fourier Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-59
Derivatives and Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-59
Time Series Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-60
Time Series Collections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-63

Programming and Data Types . . . . . . . . . . . . . . . . . . . . . . 1-65
Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-65
Data Type Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-74
Operators and Special Characters . . . . . . . . . . . . . . . . . . . . 1-76
Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-78
Bit-Wise Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-81
Logical Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-82
Relational Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-82
Set Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-83
Date and Time Operations . . . . . . . . . . . . . . . . . . . . . . . . . . 1-83
Programming in MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . 1-84

Object-Oriented Programming . . . . . . . . . . . . . . . . . . . . . . 1-92
Classes and Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-92
Handle Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-93
Events and Listeners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-94
Meta-Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-94

Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-96
Basic Plots and Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-96
Plotting Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-97
Annotating Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-97
Specialized Plotting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-98
Bit-Mapped Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-101
Printing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-102
Handle Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-102

3-D Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-107
Surface and Mesh Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-107
View Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-109
Lighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-111
Transparency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-111
Volume Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-111

vi Contents



GUI Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-113
Predefined Dialog Boxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-113
User Interface Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . 1-114
User Interface Development . . . . . . . . . . . . . . . . . . . . . . . . . 1-114
User Interface Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-115
Objects from Callbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-116
GUI Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-116
Program Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-117

External Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-118
Shared Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-118
Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-119
.NET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-120
Component Object Model and ActiveX . . . . . . . . . . . . . . . . . 1-121
Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-123
Serial Port Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-124

Alphabetical List

2

Index

vii



viii Contents



1

Function Reference

Desktop Tools and Development
Environment (p. 1-3)

Startup, Command Window, help,
editing and debugging, tuning, other
general functions

Data Import and Export (p. 1-12) General and low-level file I/O, plus
specific file formats, like audio,
spreadsheet, HDF, images

Mathematics (p. 1-28) Arrays and matrices, linear algebra,
other areas of mathematics

Data Analysis (p. 1-57) Basic data operations, descriptive
statistics, covariance and correlation,
filtering and convolution, numerical
derivatives and integrals, Fourier
transforms, time series analysis

Programming and Data Types
(p. 1-65)

Function/expression evaluation,
program control, function handles,
object oriented programming, error
handling, operators, data types,
dates and times, timers

Object-Oriented Programming
(p. 1-92)

Functions for working with classes
and objects

Graphics (p. 1-96) Line plots, annotating graphs,
specialized plots, images, printing,
Handle Graphics

3-D Visualization (p. 1-107) Surface and mesh plots, view control,
lighting and transparency, volume
visualization



1 Function Reference

GUI Development (p. 1-113) GUIDE, programming graphical
user interfaces

External Interfaces (p. 1-118) Interfaces to shared libraries, Java,
.NET, COM and ActiveX, Web
services, and serial port devices, and
C and Fortran routines

1-2



Desktop Tools and Development Environment

Desktop Tools and Development Environment

Startup and Shutdown (p. 1-3) Startup and shutdown options,
preferences

Command Window and History
(p. 1-4)

Control Command Window and
History, enter statements and run
functions

Help for Using MATLAB (p. 1-5) Command line help, online
documentation in the Help browser,
demos

Workspace (p. 1-6) Manage variables

Managing Files (p. 1-6) Work with files, MATLAB search
path, manage variables

Programming Tools (p. 1-8) Edit and debug MATLAB code ,
improve performance, source control,
publish results

System (p. 1-10) Identify current computer, license,
product version, and more

Startup and Shutdown

exit Terminate MATLAB® program
(same as quit)

finish Termination M-file for MATLAB
program

matlab (UNIX) Start MATLAB program (UNIX®

platforms)

matlab (Windows) Start MATLAB program (Windows®

platforms)

matlabrc Startup M-file for MATLAB program

prefdir Folder containing preferences,
history, and layout files

preferences Open Preferences dialog box

1-3



1 Function Reference

quit Terminate MATLAB program

startup Startup file for user-defined options

userpath View or change user portion of
search path

Command Window and History

clc Clear Command Window

commandhistory Open Command History window, or
select it if already open

commandwindow Open Command Window, or select
it if already open

diary Save session to file

dos Execute DOS command and return
result

format Set display format for output

home Send the cursor home

matlabcolon (matlab:) Run specified function via hyperlink

more Control paged output for Command
Window

perl Call Perl script using appropriate
operating system executable

system Execute operating system command
and return result

unix Execute UNIX command and return
result

1-4



Desktop Tools and Development Environment

Help for Using MATLAB

builddocsearchdb Build searchable documentation
database

demo Access product demos via Help
browser

doc Reference page in Help browser

docsearch Help browser search

echodemo Run scripted demo step-by-step in
Command Window

help Help for functions in Command
Window

helpbrowser Open Help browser to access online
documentation and demos

helpwin Provide access to help comments for
all functions

info Information about contacting The
MathWorks

lookfor Search for keyword in all help
entries

playshow Run M-file demo (deprecated; use
echodemo instead)

support Open MathWorks Technical Support
Web page

web Open Web site or file in Web or Help
browser

whatsnew Release Notes for MathWorks™
products

1-5



1 Function Reference

Workspace

clear Remove items from workspace,
freeing up system memory

delete Remove files or graphics objects

openvar Open workspace variable in Variable
Editor or other graphical editing tool

pack Consolidate workspace memory

which Locate functions and files

who, whos List variables in workspace

workspace Open Workspace browser to manage
workspace

Managing Files

Search Path (p. 1-6) View and change MATLAB search
path

File Operations (p. 1-7) View and change files and directories

Search Path

addpath Add folders to search path

genpath Generate path string

path View or change search path

path2rc Save current search path to
pathdef.m file

pathsep Search path separator for current
platform

pathtool Open Set Path dialog box to view
and change search path

restoredefaultpath Restore default search path

1-6



Desktop Tools and Development Environment

rmpath Remove folders from search path

savepath Save current search path

userpath View or change user portion of
search path

which Locate functions and files

File Operations
See also “Data Import and Export” on page 1-12 functions.

cd Change current folder

copyfile Copy file or folder

delete Remove files or graphics objects

dir Folder listing

fileattrib Set or get attributes of file or folder

filebrowser Open Current Folder browser, or
select it if already open

isdir Determine whether input is folder

lookfor Search for keyword in all help
entries

ls Folder contents

matlabroot Root folder

mkdir Make new folder

movefile Move file or folder

pwd Identify current folder

recycle Set option to move deleted files to
recycle folder

rmdir Remove folder

tempdir Name of system’s temporary folder

toolboxdir Root folder for specified toolbox

1-7



1 Function Reference

type Display contents of file

visdiff Compare two text files, MAT-Files,
binary files, or folders

Programming Tools

Editing Files (p. 1-8) Edit files

Debugging Programs (p. 1-8) Debug MATLAB program files

MATLAB Program Performance
(p. 1-9)

Improve performance and find
potential problems in MATLAB code

Source Control (p. 1-9) Interface MATLAB with source
control system

Publishing (p. 1-9) Publish MATLAB code and results

Editing Files

edit Edit or create file

Debugging Programs

dbclear Clear breakpoints

dbcont Resume execution

dbdown Reverse workspace shift performed
by dbup, while in debug mode

dbquit Quit debug mode

dbstack Function call stack

dbstatus List all breakpoints

dbstep Execute one or more lines from
current breakpoint

dbstop Set breakpoints

1-8



Desktop Tools and Development Environment

dbtype List text file with line numbers

dbup Shift current workspace to
workspace of caller, while in
debug mode

MATLAB Program Performance

rehash Refresh function and file system
path caches

Source Control

checkin Check files into source control
system (UNIX platforms)

checkout Check files out of source control
system (UNIX platforms)

cmopts Name of source control system

customverctrl Allow custom source control system
(UNIX platforms)

undocheckout Undo previous checkout from source
control system (UNIX platforms)

verctrl Source control actions (Windows
platforms)

Publishing

grabcode MATLAB code from files published
to HTML

notebook Open M-book in Microsoft® Word
software (on Microsoft Windows
platforms)

1-9



1 Function Reference

publish Publish MATLAB file with code cells,
saving output to specified file type

snapnow Force snapshot of image for inclusion
in published document

System

Operating System Interface (p. 1-10) Exchange operating system
information and commands with
MATLAB

MATLAB Version and License
(p. 1-11)

Information about MATLAB version
and license

Operating System Interface

clipboard Copy and paste strings to and from
system clipboard

computer Information about computer on
which MATLAB software is running

dos Execute DOS command and return
result

getenv Environment variable

hostid Server host identification number

perl Call Perl script using appropriate
operating system executable

setenv Set environment variable

system Execute operating system command
and return result

unix Execute UNIX command and return
result

winqueryreg Item from Windows registry

1-10



Desktop Tools and Development Environment

MATLAB Version and License

ismac Determine if version is for Mac OS®

X platform

ispc Determine if version is for Windows
(PC) platform

isstudent Determine if version is Student
Version

isunix Determine if version is for UNIX
platform

javachk Generate error message based on
Sun™ Java™ feature support

license Return license number or perform
licensing task

prefdir Folder containing preferences,
history, and layout files

usejava Determine whether Sun Java feature
is supported in MATLAB software

ver Version information for MathWorks
products

verLessThan Compare toolbox version to specified
version string

version Version number for MATLAB and
libraries

1-11



1 Function Reference

Data Import and Export

File Name Construction (p. 1-12) Get path, directory, filename
information; construct filenames

File Opening, Loading, and Saving
(p. 1-13)

Open files; transfer data between
files and MATLAB workspace

Memory Mapping (p. 1-13) Access file data via memory map
using MATLAB array indexing

Low-Level File I/O (p. 1-14) Low-level operations that use a file
identifier

Text Files (p. 1-14) Delimited or formatted I/O to text
files

XML Documents (p. 1-15) Documents written in Extensible
Markup Language

Spreadsheets (p. 1-15) Excel and Lotus 1-2-3 files

Scientific Data (p. 1-16) CDF, FITS, HDF formats

Audio and Video (p. 1-24) Read and write audio and video,
record and play audio

Images (p. 1-26) Graphics files

Internet Exchange (p. 1-26) URL, FTP, zip, tar, and e-mail

To see a listing of file formats that are readable from MATLAB, go to file
formats.

File Name Construction

filemarker Character to separate file name and
internal function name

fileparts Parts of file name and path

filesep File separator for current platform

fullfile Build full file name from parts

1-12



Data Import and Export

tempdir Name of system’s temporary folder

tempname Unique name for temporary file

File Opening, Loading, and Saving

daqread Read Data Acquisition Toolbox™
(.daq) file

importdata Load data from file

load Load data from MAT-file into
workspace

open Open file in appropriate application

save Save workspace variables to file

uigetdir Open standard dialog box for
selecting directory

uigetfile Open standard dialog box for
retrieving files

uiimport Open Import Wizard to import data

uiputfile Open standard dialog box for saving
files

uisave Open standard dialog box for saving
workspace variables

winopen Open file in appropriate application
(Windows)

Memory Mapping

disp (memmapfile) Information about memmapfile
object

get (memmapfile) Memmapfile object properties

memmapfile Construct memmapfile object

1-13



1 Function Reference

Low-Level File I/O

fclose Close one or all open files

feof Test for end-of-file

ferror Information about file I/O errors

fgetl Read line from file, removing
newline characters

fgets Read line from file, keeping newline
characters

fopen Open file, or obtain information
about open files

fprintf Write data to text file

fread Read data from binary file

frewind Move file position indicator to
beginning of open file

fscanf Read data from a text file

fseek Move to specified position in file

ftell Position in open file

fwrite Write data to binary file

Text Files

csvread Read comma-separated value file

csvwrite Write comma-separated value file

dlmread Read ASCII-delimited file of numeric
data into matrix

dlmwrite Write matrix to ASCII-delimited file

fileread Read contents of file into string

textread Read data from text file; write to
multiple outputs

1-14



Data Import and Export

textscan Read formatted data from text file
or string

type Display contents of file

XML Documents

xmlread Parse XML document and return
Document Object Model node

xmlwrite Serialize XML Document Object
Model node

xslt Transform XML document using
XSLT engine

Spreadsheets

Microsoft Excel (p. 1-15) Read and write Microsoft Excel
spreadsheet

Lotus 1-2-3 (p. 1-16) Read and write Lotus WK1
spreadsheet

Microsoft Excel

xlsfinfo Determine whether file contains a
Microsoft® Excel® spreadsheet

xlsread Read Microsoft Excel spreadsheet
file

xlswrite Write Microsoft Excel spreadsheet
file

1-15



1 Function Reference

Lotus 1-2-3

wk1finfo Determine whether file contains
1-2-3 WK1 worksheet

wk1read Read Lotus 1-2-3 WK1 spreadsheet
file into matrix

wk1write Write matrix to Lotus 1-2-3 WK1
spreadsheet file

Scientific Data

Common Data Format (p. 1-16) Work with CDF files

Network Common Data Form
(p. 1-22)

Work with netCDF files

Flexible Image Transport System
(p. 1-23)

Work with FITS files

Hierarchical Data Format (p. 1-24) Work with HDF files

Band-Interleaved Data (p. 1-24) Work with band-interleaved files

Common Data Format
High-level I/O Functions

cdfepoch Convert MATLAB formatted dates
to CDF formatted dates

cdfinfo Information about Common Data
Format (CDF) file

cdfread Read data from Common Data
Format (CDF) file

cdfwrite Write data to Common Data Format
(CDF) file

todatenum Convert CDF epoch object to
MATLAB datenum

1-16



Data Import and Export

Library Information

cdflib Summary of Common Data Format
(CDF) capabilities

cdflib.getConstantNames Names of Common Data Format
(CDF) library constants

cdflib.getConstantValue Numeric value corresponding to
Common Data Format (CDF) library
constant

cdflib.getLibraryCopyright Copyright notice of Common Data
Format (CDF) library

cdflib.getLibraryVersion Library version and release
information

cdflib.getValidate Library validation mode

cdflib.setValidate Specify library validation mode

File Operations

cdflib.close Close Common Data Format (CDF)
file

cdflib.create Create Common Data Format (CDF)
file

cdflib.delete Delete existing Common Data
Format (CDF) file

cdflib.getCacheSize Number of cache buffers used

cdflib.getChecksum Checksum mode

cdflib.getCompression Compression settings

cdflib.getCompressionCacheSize Number of compression cache buffers

cdflib.getCopyright Copyright notice in Common Data
Format (CDF) file

cdflib.getFormat Format of Common Data Format
(CDF) file

1-17



1 Function Reference

cdflib.getMajority Majority of variables

cdflib.getName Name of Common Data Format
(CDF) file

cdflib.getReadOnlyMode Read-only mode

cdflib.getStageCacheSize Number of cache buffers for staging

cdflib.getVersion Common Data Format (CDF) library
version and release information

cdflib.inquire Basic characteristics of Common
Data Format (CDF) file

cdflib.open Open existing Common Data Format
(CDF) file

cdflib.setCacheSize Specify number of dotCDF cache
buffers

cdflib.setChecksum Specify checksum mode

cdflib.setCompression Specify compression settings

cdflib.setCompressionCacheSize Specify number of compression cache
buffers

cdflib.setFormat Specify format of Common Data
Format (CDF) file

cdflib.setMajority Specify majority of variables

cdflib.setReadOnlyMode Specify read-only mode

cdflib.setStageCacheSize Specify number of staging cache
buffers for Common Data Format
(CDF) file

Variables

cdflib.closeVar Close specified variable from
multifile format Common Data
Format (CDF) file

cdflib.createVar Create new variable

cdflib.deleteVar Delete variable

1-18



Data Import and Export

cdflib.deleteVarRecords Delete range of records from variable

cdflib.getVarAllocRecords Number of records allocated for
variable

cdflib.getVarBlockingFactor Blocking factor for variable

cdflib.getVarCacheSize Number of multifile cache buffers

cdflib.getVarCompression Information about compression used
by variable

cdflib.getVarData Single value from record in variable

cdflib.getVarMaxAllocRecNum Maximum allocated record number
for variable

cdflib.getVarMaxWrittenRecNum Maximum written record number for
variable

cdflib.getVarName Variable name, given variable
number

cdflib.getVarNum Variable number, given variable
name

cdflib.getVarNumRecsWritten Number of records written to
variable

cdflib.getVarPadValue Pad value for variable

cdflib.getVarRecordData Entire record for variable

cdflib.getVarReservePercent Compression reserve percentage for
variable

cdflib.getVarSparseRecords Information about how variable
handles sparse records

cdflib.hyperGetVarData Read hyperslab of data from variable

cdflib.hyperPutVarData Write hyperslab of data to variable

cdflib.inquireVar Information about variable

cdflib.putVarData Write single value to variable

cdflib.putVarRecordData Write entire record to variable

cdflib.renameVar Rename existing variable

1-19



1 Function Reference

cdflib.setVarAllocBlockRecords Specify range of records to be
allocated for variable

cdflib.setVarBlockingFactor Specify blocking factor for variable

cdflib.setVarCacheSize Specify number of multi-file cache
buffers for variable

cdflib.setVarCompression Specify compression settings used
with variable

cdflib.setVarInitialRecs Specify initial number of records
written to variable

cdflib.setVarPadValue Specify pad value used with variable

cdflib.SetVarReservePercent Specify reserve percentage for
variable

cdflib.setVarsCacheSize Specify number of cache buffers used
for all variables

cdflib.setVarSparseRecords Specify how variable handles sparse
records

Attributes and Entries

cdflib.createAttr Create attribute

cdflib.deleteAttr Delete attribute

cdflib.deleteAttrEntry Delete attribute entry

cdflib.deleteAttrgEntry Delete entry in global attribute

cdflib.getAttrEntry Value of entry in attribute with
variable scope

cdflib.getAttrgEntry Value of entry in global attribute

cdflib.getAttrMaxEntry Number of last entry for variable
attribute

cdflib.getAttrMaxgEntry Number of last entry for global
attribute

cdflib.getAttrName Name of attribute, given attribute
number

1-20



Data Import and Export

cdflib.getAttrNum Attribute number, given attribute
name

cdflib.getAttrScope Scope of attribute

cdflib.getNumAttrEntries Number of entries for attribute with
variable scope

cdflib.getNumAttrgEntries Number of entries for attribute with
global scope

cdflib.getNumAttributes Number of attributes with variable
scope

cdflib.getNumgAttributes Number of attributes with global
scope

cdflib.inquireAttr Information about attribute

cdflib.inquireAttrEntry Information about entry in attribute
with variable scope

cdflib.inquireAttrgEntry Information about entry in attribute
with global scope

cdflib.putAttrEntry Write value to entry in attribute
with variable scope

cdflib.putAttrgEntry Write value to entry in attribute
with global scope

cdflib.renameAttr Rename existing attribute

Utilities

cdflib.computeEpoch Convert time value to CDF_EPOCH
value

cdflib.computeEpoch16 Convert time value to CDF_EPOCH16
value

cdflib.epoch16Breakdown Convert CDF_EPOCH16 value to time
value

cdflib.epochBreakdown Convert CDF_EPOCH value into time
value

1-21



1 Function Reference

Network Common Data Form
File Operations

netcdf Summary of MATLAB Network
Common Data Form (netCDF)
capabilities

netcdf.abort Revert recent netCDF file definitions

netcdf.close Close netCDF file

netcdf.create Create new netCDF dataset

netcdf.endDef End netCDF file define mode

netcdf.getConstant Return numeric value of named
constant

netcdf.getConstantNames Return list of constants known to
netCDF library

netcdf.inq Return information about netCDF
file

netcdf.inqLibVers Return netCDF library version
information

netcdf.open Open netCDF file

netcdf.reDef Put open netCDF file into define
mode

netcdf.setDefaultFormat Change default netCDF file format

netcdf.setFill Set netCDF fill mode

netcdf.sync Synchronize netCDF file to disk

Dimensions

netcdf.defDim Create netCDF dimension

netcdf.inqDim Return netCDF dimension name and
length

netcdf.inqDimID Return dimension ID

netcdf.renameDim Change name of netCDF dimension

1-22



Data Import and Export

Variables

netcdf.defVar Create netCDF variable

netcdf.getVar Return data from netCDF variable

netcdf.inqVar Return information about variable

netcdf.inqVarID Return ID associated with variable
name

netcdf.putVar Write data to netCDF variable

netcdf.renameVar Change name of netCDF variable

Attributes

netcdf.copyAtt Copy attribute to new location

netcdf.delAtt Delete netCDF attribute

netcdf.getAtt Return netCDF attribute

netcdf.inqAtt Return information about netCDF
attribute

netcdf.inqAttID Return ID of netCDF attribute

netcdf.inqAttName Return name of netCDF attribute

netcdf.putAtt Write netCDF attribute

netcdf.renameAtt Change name of attribute

Flexible Image Transport System

fitsinfo Information about FITS file

fitsread Read data from FITS file

1-23



1 Function Reference

Hierarchical Data Format

hdf Summary of MATLAB HDF4
capabilities

hdf5 Summary of MATLAB HDF5
capabilities

hdf5info Information about HDF5 file

hdf5read Read HDF5 file

hdf5write Write data to file in HDF5 format

hdfinfo Information about HDF4 or
HDF-EOS file

hdfread Read data from HDF4 or HDF-EOS
file

hdftool Browse and import data from HDF4
or HDF-EOS files

Band-Interleaved Data

multibandread Read band-interleaved data from
binary file

multibandwrite Write band-interleaved data to file

Audio and Video

Reading and Writing Files (p. 1-25) Input/output data to audio and video
file formats

Recording and Playback (p. 1-25) Record and listen to audio

Utilities (p. 1-26) Convert audio signal

1-24



Data Import and Export

Reading and Writing Files

aufinfo Information about NeXT/SUN (.au)
sound file

auread Read NeXT/SUN (.au) sound file

auwrite Write NeXT/SUN (.au) sound file

avifile Create new Audio/Video Interleaved
(AVI) file

aviinfo Information about Audio/Video
Interleaved (AVI) file

aviread Read Audio/Video Interleaved (AVI)
file

mmfileinfo Information about multimedia file

mmreader Create multimedia reader object for
reading video files

movie2avi Create Audio/Video Interleaved
(AVI) file from MATLAB movie

wavfinfo Information about WAVE (.wav)
sound file

wavread Read WAVE (.wav) sound file

wavwrite Write WAVE (.wav) sound file

Recording and Playback

audiodevinfo Information about audio device

audioplayer Create object for playing audio

audiorecorder Create object for recording audio

sound Convert matrix of signal data to
sound

soundsc Scale data and play as sound

1-25



1 Function Reference

wavplay Play recorded sound on PC-based
audio output device

wavrecord Record sound using PC-based audio
input device

Utilities

beep Produce beep sound

lin2mu Convert linear audio signal to
mu-law

mu2lin Convert mu-law audio signal to
linear

Images

exifread Read EXIF information from JPEG
and TIFF image files

im2java Convert image to Java image

imfinfo Information about graphics file

imread Read image from graphics file

imwrite Write image to graphics file

Tiff MATLAB Gateway to LibTIFF
library routines

Internet Exchange

URL, Zip, Tar, E-Mail (p. 1-27) Send e-mail, read from given URL,
extract from tar or zip file, compress
and decompress files

FTP (p. 1-27) Connect to FTP server, download
from server, manage FTP files, close
server connection

1-26



Data Import and Export

URL, Zip, Tar, E-Mail

gunzip Uncompress GNU zip files

gzip Compress files into GNU zip files

sendmail Send e-mail message to address list

tar Compress files into tar file

untar Extract contents of tar file

unzip Extract contents of zip file

urlread Download content at URL into
MATLAB string

urlwrite Download content at URL and save
to file

zip Compress files into zip file

FTP

ascii Set FTP transfer type to ASCII

binary Set FTP transfer type to binary

cd (ftp) Change current directory on FTP
server

close (ftp) Close connection to FTP server

delete (ftp) Remove file on FTP server

dir (ftp) Directory contents on FTP server

ftp Connect to FTP server, creating FTP
object

mget Download file from FTP server

mkdir (ftp) Create new directory on FTP server

mput Upload file or directory to FTP server

rename Rename file on FTP server

rmdir (ftp) Remove directory on FTP server

1-27



1 Function Reference

Mathematics

Arrays and Matrices (p. 1-29) Basic array operators and
operations, creation of elementary
and specialized arrays and matrices

Linear Algebra (p. 1-34) Matrix analysis, linear equations,
eigenvalues, singular values,
logarithms, exponentials,
factorization

Elementary Math (p. 1-38) Trigonometry, exponentials and
logarithms, complex values,
rounding, remainders, discrete math

Polynomials (p. 1-43) Multiplication, division, evaluation,
roots, derivatives, integration,
eigenvalue problem, curve fitting,
partial fraction expansion

Interpolation and Computational
Geometry (p. 1-43)

Interpolation, Delaunay
triangulation and tessellation,
convex hulls, Voronoi diagrams,
domain generation

Cartesian Coordinate System
Conversion (p. 1-47)

Conversions between Cartesian and
polar or spherical coordinates

Nonlinear Numerical Methods
(p. 1-47)

Differential equations, optimization,
integration

Specialized Math (p. 1-51) Airy, Bessel, Jacobi, Legendre, beta,
elliptic, error, exponential integral,
gamma functions

Sparse Matrices (p. 1-52) Elementary sparse matrices,
operations, reordering algorithms,
linear algebra, iterative methods,
tree operations

Math Constants (p. 1-55) Pi, imaginary unit, infinity,
Not-a-Number, largest and smallest
positive floating point numbers,
floating point relative accuracy

1-28



Mathematics

Arrays and Matrices

Basic Information (p. 1-29) Display array contents, get array
information, determine array type

Operators (p. 1-30) Arithmetic operators

Elementary Matrices and Arrays
(p. 1-31)

Create elementary arrays of different
types, generate arrays for plotting,
array indexing, etc.

Array Operations (p. 1-32) Operate on array content, apply
function to each array element, find
cumulative product or sum, etc.

Array Manipulation (p. 1-33) Create, sort, rotate, permute,
reshape, and shift array contents

Specialized Matrices (p. 1-34) Create Hadamard, Companion,
Hankel, Vandermonde, Pascal
matrices, etc.

Basic Information

disp Display text or array

display Display text or array (overloaded
method)

isempty Determine whether array is empty

isequal Test arrays for equality

isequalwithequalnans Test arrays for equality, treating
NaNs as equal

isfinite Array elements that are finite

isfloat Determine whether input is
floating-point array

isinf Array elements that are infinite

isinteger Determine whether input is integer
array

1-29



1 Function Reference

islogical Determine whether input is logical
array

isnan Array elements that are NaN

isnumeric Determine whether input is numeric
array

isscalar Determine whether input is scalar

issparse Determine whether input is sparse

isvector Determine whether input is vector

length Length of vector or largest array
dimension

max Largest elements in array

min Smallest elements in array

ndims Number of array dimensions

numel Number of elements in array or
subscripted array expression

size Array dimensions

Operators

+ Addition

+ Unary plus

- Subtraction

- Unary minus

* Matrix multiplication

^ Matrix power

\ Backslash or left matrix divide

/ Slash or right matrix divide

’ Transpose

.’ Nonconjugated transpose

1-30



Mathematics

.* Array multiplication (element-wise)

.^ Array power (element-wise)

.\ Left array divide (element-wise)

./ Right array divide (element-wise)

Elementary Matrices and Arrays

blkdiag Construct block diagonal matrix
from input arguments

diag Diagonal matrices and diagonals of
matrix

eye Identity matrix

freqspace Frequency spacing for frequency
response

ind2sub Subscripts from linear index

linspace Generate linearly spaced vectors

logspace Generate logarithmically spaced
vectors

meshgrid Generate X and Y arrays for 3-D plots

ndgrid Generate arrays for N-D functions
and interpolation

ones Create array of all ones

rand Uniformly distributed
pseudorandom numbers

randi Uniformly distributed
pseudorandom integers

randn Normally distributed pseudorandom
numbers

RandStream Random number stream

1-31



1 Function Reference

sub2ind Convert subscripts to linear indices

zeros Create array of all zeros

Array Operations

See “Linear Algebra” on page 1-34 and “Elementary Math” on page 1-38 for
other array operations.

accumarray Construct array with accumulation

arrayfun Apply function to each element of
array

bsxfun Apply element-by-element binary
operation to two arrays with
singleton expansion enabled

cast Cast variable to different data type

cross Vector cross product

cumprod Cumulative product

cumsum Cumulative sum

dot Vector dot product

idivide Integer division with rounding
option

kron Kronecker tensor product

prod Product of array elements

sum Sum of array elements

tril Lower triangular part of matrix

triu Upper triangular part of matrix

1-32



Mathematics

Array Manipulation

blkdiag Construct block diagonal matrix
from input arguments

cat Concatenate arrays along specified
dimension

circshift Shift array circularly

diag Diagonal matrices and diagonals of
matrix

end Terminate block of code, or indicate
last array index

flipdim Flip array along specified dimension

fliplr Flip matrix left to right

flipud Flip matrix up to down

horzcat Concatenate arrays horizontally

inline Construct inline object

ipermute Inverse permute dimensions of N-D
array

permute Rearrange dimensions of N-D array

repmat Replicate and tile array

reshape Reshape array

rot90 Rotate matrix 90 degrees

shiftdim Shift dimensions

sort Sort array elements in ascending or
descending order

sortrows Sort rows in ascending order

squeeze Remove singleton dimensions

vectorize Vectorize expression

vertcat Concatenate arrays vertically

1-33



1 Function Reference

Specialized Matrices

compan Companion matrix

gallery Test matrices

hadamard Hadamard matrix

hankel Hankel matrix

hilb Hilbert matrix

invhilb Inverse of Hilbert matrix

magic Magic square

pascal Pascal matrix

rosser Classic symmetric eigenvalue test
problem

toeplitz Toeplitz matrix

vander Vandermonde matrix

wilkinson Wilkinson’s eigenvalue test matrix

Linear Algebra

Matrix Analysis (p. 1-35) Compute norm, rank, determinant,
condition number, etc.

Linear Equations (p. 1-35) Solve linear systems, least
squares, LU factorization, Cholesky
factorization, etc.

Eigenvalues and Singular Values
(p. 1-36)

Eigenvalues, eigenvectors, Schur
decomposition, Hessenburg
matrices, etc.

Matrix Logarithms and Exponentials
(p. 1-37)

Matrix logarithms, exponentials,
square root

Factorization (p. 1-37) Cholesky, LU, and QR factorizations,
diagonal forms, singular value
decomposition

1-34



Mathematics

Matrix Analysis

cond Condition number with respect to
inversion

condeig Condition number with respect to
eigenvalues

det Matrix determinant

norm Vector and matrix norms

normest 2-norm estimate

null Null space

orth Range space of matrix

rank Rank of matrix

rcond Matrix reciprocal condition number
estimate

rref Reduced row echelon form

subspace Angle between two subspaces

trace Sum of diagonal elements

Linear Equations

chol Cholesky factorization

cholinc Sparse incomplete Cholesky and
Cholesky-Infinity factorizations

cond Condition number with respect to
inversion

condest 1-norm condition number estimate

funm Evaluate general matrix function

ilu Sparse incomplete LU factorization

inv Matrix inverse

1-35



1 Function Reference

ldl Block LDL’ factorization for
Hermitian indefinite matrices

linsolve Solve linear system of equations

lscov Least-squares solution in presence
of known covariance

lsqnonneg Solve nonnegative least-squares
constraints problem

lu LU matrix factorization

luinc Sparse incomplete LU factorization

pinv Moore-Penrose pseudoinverse of
matrix

qr Orthogonal-triangular
decomposition

rcond Matrix reciprocal condition number
estimate

Eigenvalues and Singular Values

balance Diagonal scaling to improve
eigenvalue accuracy

cdf2rdf Convert complex diagonal form to
real block diagonal form

condeig Condition number with respect to
eigenvalues

eig Eigenvalues and eigenvectors

eigs Largest eigenvalues and
eigenvectors of matrix

gsvd Generalized singular value
decomposition

hess Hessenberg form of matrix

ordeig Eigenvalues of quasitriangular
matrices

1-36



Mathematics

ordqz Reorder eigenvalues in QZ
factorization

ordschur Reorder eigenvalues in Schur
factorization

poly Polynomial with specified roots

polyeig Polynomial eigenvalue problem

rsf2csf Convert real Schur form to complex
Schur form

schur Schur decomposition

sqrtm Matrix square root

ss2tf Convert state-space filter
parameters to transfer function
form

svd Singular value decomposition

svds Find singular values and vectors

Matrix Logarithms and Exponentials

expm Matrix exponential

logm Matrix logarithm

sqrtm Matrix square root

Factorization

balance Diagonal scaling to improve
eigenvalue accuracy

cdf2rdf Convert complex diagonal form to
real block diagonal form

chol Cholesky factorization

cholinc Sparse incomplete Cholesky and
Cholesky-Infinity factorizations

1-37



1 Function Reference

cholupdate Rank 1 update to Cholesky
factorization

gsvd Generalized singular value
decomposition

ilu Sparse incomplete LU factorization

ldl Block LDL’ factorization for
Hermitian indefinite matrices

lu LU matrix factorization

luinc Sparse incomplete LU factorization

planerot Givens plane rotation

qr Orthogonal-triangular
decomposition

qrdelete Remove column or row from QR
factorization

qrinsert Insert column or row into QR
factorization

qrupdate

qz QZ factorization for generalized
eigenvalues

rsf2csf Convert real Schur form to complex
Schur form

svd Singular value decomposition

Elementary Math

Trigonometric (p. 1-39) Trigonometric functions with results
in radians or degrees

Exponential (p. 1-40) Exponential, logarithm, power, and
root functions

Complex (p. 1-41) Numbers with real and imaginary
components, phase angles

1-38



Mathematics

Rounding and Remainder (p. 1-42) Rounding, modulus, and remainder

Discrete Math (p. 1-42) Prime factors, factorials,
permutations, rational fractions,
least common multiple, greatest
common divisor

Trigonometric

acos Inverse cosine; result in radians

acosd Inverse cosine; result in degrees

acosh Inverse hyperbolic cosine

acot Inverse cotangent; result in radians

acotd Inverse cotangent; result in degrees

acoth Inverse hyperbolic cotangent

acsc Inverse cosecant; result in radians

acscd Inverse cosecant; result in degrees

acsch Inverse hyperbolic cosecant

asec Inverse secant; result in radians

asecd Inverse secant; result in degrees

asech Inverse hyperbolic secant

asin Inverse sine; result in radians

asind Inverse sine; result in degrees

asinh Inverse hyperbolic sine

atan Inverse tangent; result in radians

atan2 Four-quadrant inverse tangent

atand Inverse tangent; result in degrees

atanh Inverse hyperbolic tangent

cos Cosine of argument in radians

cosd Cosine of argument in degrees

1-39



1 Function Reference

cosh Hyperbolic cosine

cot Cotangent of argument in radians

cotd Cotangent of argument in degrees

coth Hyperbolic cotangent

csc Cosecant of argument in radians

cscd Cosecant of argument in degrees

csch Hyperbolic cosecant

hypot Square root of sum of squares

sec Secant of argument in radians

secd Secant of argument in degrees

sech Hyperbolic secant

sin Sine of argument in radians

sind Sine of argument in degrees

sinh Hyperbolic sine of argument in
radians

tan Tangent of argument in radians

tand Tangent of argument in degrees

tanh Hyperbolic tangent

Exponential

exp Exponential

expm1 Compute exp(x)-1 accurately for
small values of x

log Natural logarithm

log10 Common (base 10) logarithm

log1p Compute log(1+x) accurately for
small values of x

1-40



Mathematics

log2 Base 2 logarithm and dissect
floating-point numbers into
exponent and mantissa

nextpow2 Next higher power of 2

nthroot Real nth root of real numbers

pow2 Base 2 power and scale floating-point
numbers

reallog Natural logarithm for nonnegative
real arrays

realpow Array power for real-only output

realsqrt Square root for nonnegative real
arrays

sqrt Square root

Complex

abs Absolute value and complex
magnitude

angle Phase angle

complex Construct complex data from real
and imaginary components

conj Complex conjugate

cplxpair Sort complex numbers into complex
conjugate pairs

i Imaginary unit

imag Imaginary part of complex number

isreal Check if input is real array

j Imaginary unit

real Real part of complex number

1-41



1 Function Reference

sign Signum function

unwrap Correct phase angles to produce
smoother phase plots

Rounding and Remainder

ceil Round toward positive infinity

fix Round toward zero

floor Round toward negative infinity

idivide Integer division with rounding
option

mod Modulus after division

rem Remainder after division

round Round to nearest integer

Discrete Math

factor Prime factors

factorial Factorial function

gcd Greatest common divisor

isprime Array elements that are prime
numbers

lcm Least common multiple

nchoosek Binomial coefficient or all
combinations

perms All possible permutations

primes Generate list of prime numbers

rat, rats Rational fraction approximation

1-42



Mathematics

Polynomials

conv Convolution and polynomial
multiplication

deconv Deconvolution and polynomial
division

poly Polynomial with specified roots

polyder Polynomial derivative

polyeig Polynomial eigenvalue problem

polyfit Polynomial curve fitting

polyint Integrate polynomial analytically

polyval Polynomial evaluation

polyvalm Matrix polynomial evaluation

residue Convert between partial fraction
expansion and polynomial
coefficients

roots Polynomial roots

Interpolation and Computational Geometry

Interpolation (p. 1-44) Data interpolation, data gridding,
polynomial evaluation, nearest point
search

Delaunay Triangulation and
Tessellation (p. 1-45)

Delaunay triangulation and
tessellation, triangular surface and
mesh plots

Convex Hull (p. 1-46) Plot convex hull, plotting functions

Voronoi Diagrams (p. 1-46) Plot Voronoi diagram, patch graphics
object, plotting functions

Domain Generation (p. 1-47) Generate arrays for 3-D plots, or for
N-D functions and interpolation

1-43



1 Function Reference

Interpolation

dsearch Search Delaunay triangulation for
nearest point

dsearchn N-D nearest point search

griddata Data gridding

griddata3 Data gridding and hypersurface
fitting for 3-D data

griddatan Data gridding and hypersurface
fitting (dimension >= 2)

interp1 1-D data interpolation (table lookup)

interp1q Quick 1-D linear interpolation

interp2 2-D data interpolation (table lookup)

interp3 3-D data interpolation (table lookup)

interpft 1-D interpolation using FFT method

interpn N-D data interpolation (table lookup)

meshgrid Generate X and Y arrays for 3-D plots

mkpp Make piecewise polynomial

ndgrid Generate arrays for N-D functions
and interpolation

padecoef Padé approximation of time delays

pchip Piecewise Cubic Hermite
Interpolating Polynomial (PCHIP)

ppval Evaluate piecewise polynomial

spline Cubic spline data interpolation

TriScatteredInterp Interpolate scattered data

TriScatteredInterp Interpolate scattered data

tsearch Search for enclosing Delaunay
triangle

1-44



Mathematics

tsearchn N-D closest simplex search

unmkpp Piecewise polynomial details

Delaunay Triangulation and Tessellation

baryToCart (TriRep) Converts point coordinates from
barycentric to Cartesian

cartToBary (TriRep) Convert point coordinates from
cartesian to barycentric

circumcenters (TriRep) Circumcenters of specified simplices

delaunay Delaunay triangulation

delaunay3 3-D Delaunay tessellation

delaunayn N-D Delaunay tessellation

DelaunayTri Contruct Delaunay triangulation

DelaunayTri Delaunay triangulation in 2-D and
3-D

edgeAttachments (TriRep) Simplices attached to specified edges

edges (TriRep) Triangulation edges

faceNormals (TriRep) Unit normals to specified triangles

featureEdges (TriRep) Sharp edges of surface triangulation

freeBoundary (TriRep) Facets referenced by only one
simplex

incenters (TriRep) Incenters of specified simplices

inOutStatus (DelaunayTri) Status of triangles in 2-D constrained
Delaunay triangulation

isEdge (TriRep) Test if vertices are joined by edge

nearestNeighbor (DelaunayTri) Point closest to specified location

neighbors (TriRep) Simplex neighbor information

pointLocation (DelaunayTri) Simplex containing specified location

1-45



1 Function Reference

size (TriRep) Size of triangulation matrix

tetramesh Tetrahedron mesh plot

trimesh Triangular mesh plot

triplot 2-D triangular plot

TriRep Triangulation representation

TriRep Triangulation representation

trisurf Triangular surface plot

vertexAttachments (TriRep) Return simplices attached to
specified vertices

Convex Hull

convexHull (DelaunayTri) Convex hull

convhull Convex hull

convhulln N-D convex hull

patch Create one or more filled polygons

trisurf Triangular surface plot

Voronoi Diagrams

patch Create one or more filled polygons

voronoi Voronoi diagram

voronoiDiagram (DelaunayTri) Voronoi diagram

voronoin N-D Voronoi diagram

1-46



Mathematics

Domain Generation

meshgrid Generate X and Y arrays for 3-D plots

ndgrid Generate arrays for N-D functions
and interpolation

Cartesian Coordinate System Conversion

cart2pol Transform Cartesian coordinates to
polar or cylindrical

cart2sph Transform Cartesian coordinates to
spherical

pol2cart Transform polar or cylindrical
coordinates to Cartesian

sph2cart Transform spherical coordinates to
Cartesian

Nonlinear Numerical Methods

Ordinary Differential Equations
(p. 1-48)

Solve stiff and nonstiff differential
equations, define the problem, set
solver options, evaluate solution

Delay Differential Equations
(p. 1-49)

Solve delay differential equations
with constant and general delays,
set solver options, evaluate solution

Boundary Value Problems (p. 1-49) Solve boundary value problems for
ordinary differential equations, set
solver options, evaluate solution

Partial Differential Equations
(p. 1-50)

Solve initial-boundary value
problems for parabolic-elliptic PDEs,
evaluate solution

1-47



1 Function Reference

Optimization (p. 1-50) Find minimum of single and
multivariable functions, solve
nonnegative least-squares constraint
problem

Numerical Integration (Quadrature)
(p. 1-50)

Evaluate Simpson, Lobatto, and
vectorized quadratures, evaluate
double and triple integrals

Ordinary Differential Equations

decic Compute consistent initial conditions
for ode15i

deval Evaluate solution of differential
equation problem

ode15i Solve fully implicit differential
equations, variable order method

ode23, ode45, ode113, ode15s,
ode23s, ode23t, ode23tb

Solve initial value problems for
ordinary differential equations

odefile Define differential equation problem
for ordinary differential equation
solvers

odeget Ordinary differential equation
options parameters

odeset Create or alter options structure
for ordinary differential equation
solvers

odextend Extend solution of initial value
problem for ordinary differential
equation

1-48



Mathematics

Delay Differential Equations

dde23 Solve delay differential equations
(DDEs) with constant delays

ddeget Extract properties from delay
differential equations options
structure

ddesd Solve delay differential equations
(DDEs) with general delays

ddeset Create or alter delay differential
equations options structure

deval Evaluate solution of differential
equation problem

Boundary Value Problems

bvp4c Solve boundary value problems for
ordinary differential equations

bvp5c Solve boundary value problems for
ordinary differential equations

bvpget Extract properties from options
structure created with bvpset

bvpinit Form initial guess for bvp4c

bvpset Create or alter options structure of
boundary value problem

bvpxtend Form guess structure for extending
boundary value solutions

deval Evaluate solution of differential
equation problem

1-49



1 Function Reference

Partial Differential Equations

pdepe Solve initial-boundary value
problems for parabolic-elliptic PDEs
in 1-D

pdeval Evaluate numerical solution of PDE
using output of pdepe

Optimization

fminbnd Find minimum of single-variable
function on fixed interval

fminsearch Find minimum of unconstrained
multivariable function using
derivative-free method

fzero Find root of continuous function of
one variable

lsqnonneg Solve nonnegative least-squares
constraints problem

optimget Optimization options values

optimset Create or edit optimization options
structure

Numerical Integration (Quadrature)

dblquad Numerically evaluate double
integral over rectangle

quad Numerically evaluate integral,
adaptive Simpson quadrature

quad2d Numerically evaluate double
integral over planar region

quadgk Numerically evaluate integral,
adaptive Gauss-Kronrod quadrature

1-50



Mathematics

quadl Numerically evaluate integral,
adaptive Lobatto quadrature

quadv Vectorized quadrature

triplequad Numerically evaluate triple integral

Specialized Math

airy Airy functions

besselh Bessel function of third kind (Hankel
function)

besseli Modified Bessel function of first kind

besselj Bessel function of first kind

besselk Modified Bessel function of second
kind

bessely Bessel function of second kind

beta Beta function

betainc Incomplete beta function

betaincinv Beta inverse cumulative distribution
function

betaln Logarithm of beta function

ellipj Jacobi elliptic functions

ellipke Complete elliptic integrals of first
and second kind

erf, erfc, erfcx, erfinv, erfcinv Error functions

expint Exponential integral

gamma, gammainc, gammaln Gamma functions

gammaincinv Inverse incomplete gamma function

legendre Associated Legendre functions

psi Psi (polygamma) function

1-51



1 Function Reference

Sparse Matrices

Elementary Sparse Matrices
(p. 1-52)

Create random and nonrandom
sparse matrices

Full to Sparse Conversion (p. 1-53) Convert full matrix to sparse, sparse
matrix to full

Sparse Matrix Manipulation (p. 1-53) Test matrix for sparseness, get
information on sparse matrix,
allocate sparse matrix, apply
function to nonzero elements,
visualize sparsity pattern

Reordering Algorithms (p. 1-53) Random, column, minimum degree,
Dulmage-Mendelsohn, and reverse
Cuthill-McKee permutations

Linear Algebra (p. 1-54) Compute norms, eigenvalues,
factorizations, least squares,
structural rank

Linear Equations (Iterative
Methods) (p. 1-54)

Methods for conjugate and
biconjugate gradients, residuals,
lower quartile

Tree Operations (p. 1-55) Elimination trees, tree plotting,
factorization analysis

Elementary Sparse Matrices

spdiags Extract and create sparse band and
diagonal matrices

speye Sparse identity matrix

sprand Sparse uniformly distributed
random matrix

sprandn Sparse normally distributed random
matrix

sprandsym Sparse symmetric random matrix

1-52



Mathematics

Full to Sparse Conversion

find Find indices and values of nonzero
elements

full Convert sparse matrix to full matrix

sparse Create sparse matrix

spconvert Import matrix from sparse matrix
external format

Sparse Matrix Manipulation

issparse Determine whether input is sparse

nnz Number of nonzero matrix elements

nonzeros Nonzero matrix elements

nzmax Amount of storage allocated for
nonzero matrix elements

spalloc Allocate space for sparse matrix

spfun Apply function to nonzero sparse
matrix elements

spones Replace nonzero sparse matrix
elements with ones

spparms Set parameters for sparse matrix
routines

spy Visualize sparsity pattern

Reordering Algorithms

amd Approximate minimum degree
permutation

colamd Column approximate minimum
degree permutation

1-53



1 Function Reference

colperm Sparse column permutation based
on nonzero count

dmperm Dulmage-Mendelsohn decomposition

ldl Block LDL’ factorization for
Hermitian indefinite matrices

randperm Random permutation

symamd Symmetric approximate minimum
degree permutation

symrcm Sparse reverse Cuthill-McKee
ordering

Linear Algebra

cholinc Sparse incomplete Cholesky and
Cholesky-Infinity factorizations

condest 1-norm condition number estimate

eigs Largest eigenvalues and
eigenvectors of matrix

ilu Sparse incomplete LU factorization

luinc Sparse incomplete LU factorization

normest 2-norm estimate

spaugment Form least squares augmented
system

sprank Structural rank

svds Find singular values and vectors

Linear Equations (Iterative Methods)

bicg Biconjugate gradients method

bicgstab Biconjugate gradients stabilized
method

1-54



Mathematics

bicgstabl Biconjugate gradients stabilized (l)
method

cgs Conjugate gradients squared method

gmres Generalized minimum residual
method (with restarts)

lsqr LSQR method

minres Minimum residual method

pcg Preconditioned conjugate gradients
method

qmr Quasi-minimal residual method

symmlq Symmetric LQ method

tfqmr Transpose-free quasi-minimal
residual method

Tree Operations

etree Elimination tree

etreeplot Plot elimination tree

gplot Plot nodes and links representing
adjacency matrix

symbfact Symbolic factorization analysis

treelayout Lay out tree or forest

treeplot Plot picture of tree

unmesh Convert edge matrix to coordinate
and Laplacian matrices

Math Constants

eps Floating-point relative accuracy

i Imaginary unit

1-55



1 Function Reference

Inf Infinity

intmax Largest value of specified integer
type

intmin Smallest value of specified integer
type

j Imaginary unit

NaN Not-a-Number

pi Ratio of circle’s circumference to its
diameter

realmax Largest positive floating-point
number

realmin Smallest positive normalized
floating-point number

1-56



Data Analysis

Data Analysis

Basic Operations (p. 1-57) Sums, products, sorting

Descriptive Statistics (p. 1-57) Statistical summaries of data

Filtering and Convolution (p. 1-58) Data preprocessing

Interpolation and Regression
(p. 1-58)

Data fitting

Fourier Transforms (p. 1-59) Frequency content of data

Derivatives and Integrals (p. 1-59) Data rates and accumulations

Time Series Objects (p. 1-60) Methods for timeseries objects

Time Series Collections (p. 1-63) Methods for tscollection objects

Basic Operations

brush Interactively mark, delete, modify,
and save observations in graphs

cumprod Cumulative product

cumsum Cumulative sum

linkdata Automatically update graphs when
variables change

prod Product of array elements

sort Sort array elements in ascending or
descending order

sortrows Sort rows in ascending order

sum Sum of array elements

Descriptive Statistics

corrcoef Correlation coefficients

cov Covariance matrix

1-57



1 Function Reference

max Largest elements in array

mean Average or mean value of array

median Median value of array

min Smallest elements in array

mode Most frequent values in array

std Standard deviation

var Variance

Filtering and Convolution

conv Convolution and polynomial
multiplication

conv2 2-D convolution

convn N-D convolution

deconv Deconvolution and polynomial
division

detrend Remove linear trends

filter 1-D digital filter

filter2 2-D digital filter

Interpolation and Regression

interp1 1-D data interpolation (table lookup)

interp2 2-D data interpolation (table lookup)

interp3 3-D data interpolation (table lookup)

interpn N-D data interpolation (table lookup)

mldivide \, mrdivide / Left or right matrix division

polyfit Polynomial curve fitting

polyval Polynomial evaluation

1-58



Data Analysis

Fourier Transforms

abs Absolute value and complex
magnitude

angle Phase angle

cplxpair Sort complex numbers into complex
conjugate pairs

fft Discrete Fourier transform

fft2 2-D discrete Fourier transform

fftn N-D discrete Fourier transform

fftshift Shift zero-frequency component to
center of spectrum

fftw Interface to FFTW library run-time
algorithm tuning control

ifft Inverse discrete Fourier transform

ifft2 2-D inverse discrete Fourier
transform

ifftn N-D inverse discrete Fourier
transform

ifftshift Inverse FFT shift

nextpow2 Next higher power of 2

unwrap Correct phase angles to produce
smoother phase plots

Derivatives and Integrals

cumtrapz Cumulative trapezoidal numerical
integration

del2 Discrete Laplacian

diff Differences and approximate
derivatives

1-59



1 Function Reference

gradient Numerical gradient

polyder Polynomial derivative

polyint Integrate polynomial analytically

trapz Trapezoidal numerical integration

Time Series Objects

Utilities (p. 1-60) Combine timeseries objects,
query and set timeseries object
properties, plot timeseries objects

Data Manipulation (p. 1-61) Add or delete data, manipulate
timeseries objects

Event Data (p. 1-62) Add or delete events, create new
timeseries objects based on event
data

Descriptive Statistics (p. 1-62) Descriptive statistics for timeseries
objects

Utilities

get (timeseries) Query timeseries object property
values

getdatasamplesize Size of data sample in timeseries
object

getqualitydesc Data quality descriptions

isempty (timeseries) Determine whether timeseries
object is empty

length (timeseries) Length of time vector

plot (timeseries) Plot time series

set (timeseries) Set properties of timeseries object

size (timeseries) Size of timeseries object

1-60



Data Analysis

timeseries Create timeseries object

tsdata.event Construct event object for
timeseries object

tsprops Help on timeseries object
properties

tstool Open Time Series Tools GUI

Data Manipulation

addsample Add data sample to timeseries
object

ctranspose (timeseries) Transpose timeseries object

delsample Remove sample from timeseries
object

detrend (timeseries) Subtract mean or best-fit line and all
NaNs from time series

filter (timeseries) Shape frequency content of time
series

getabstime (timeseries) Extract date-string time vector into
cell array

getinterpmethod Interpolation method for timeseries
object

getsampleusingtime (timeseries) Extract data samples into new
timeseries object

idealfilter (timeseries) Apply ideal (noncausal) filter to
timeseries object

resample (timeseries) Select or interpolate timeseries
data using new time vector

setabstime (timeseries) Set times of timeseries object as
date strings

setinterpmethod Set default interpolation method for
timeseries object

1-61



1 Function Reference

synchronize Synchronize and resample two
timeseries objects using common
time vector

transpose (timeseries) Transpose timeseries object

vertcat (timeseries) Vertical concatenation of
timeseries objects

Event Data

addevent Add event to timeseries object

delevent Remove tsdata.event objects from
timeseries object

gettsafteratevent New timeseries object with samples
occurring at or after event

gettsafterevent New timeseries object with samples
occurring after event

gettsatevent New timeseries object with samples
occurring at event

gettsbeforeatevent New timeseries object with samples
occurring before or at event

gettsbeforeevent New timeseries object with samples
occurring before event

gettsbetweenevents New timeseries object with samples
occurring between events

Descriptive Statistics

iqr (timeseries) Interquartile range of timeseries
data

max (timeseries) Maximum value of timeseries data

mean (timeseries) Mean value of timeseries data

median (timeseries) Median value of timeseries data

1-62



Data Analysis

min (timeseries) Minimum value of timeseries data

std (timeseries) Standard deviation of timeseries
data

sum (timeseries) Sum of timeseries data

var (timeseries) Variance of timeseries data

Time Series Collections

Utilities (p. 1-63) Query and set tscollection object
properties, plot tscollection
objects

Data Manipulation (p. 1-64) Add or delete data, manipulate
tscollection objects

Utilities

get (tscollection) Query tscollection object property
values

isempty (tscollection) Determine whether tscollection
object is empty

length (tscollection) Length of time vector

plot (timeseries) Plot time series

set (tscollection) Set properties of tscollection
object

size (tscollection) Size of tscollection object

tscollection Create tscollection object

tstool Open Time Series Tools GUI

1-63



1 Function Reference

Data Manipulation

addsampletocollection Add sample to tscollection object

addts Add timeseries object to
tscollection object

delsamplefromcollection Remove sample from tscollection
object

getabstime (tscollection) Extract date-string time vector into
cell array

getsampleusingtime (tscollection) Extract data samples into new
tscollection object

gettimeseriesnames Cell array of names of timeseries
objects in tscollection object

horzcat (tscollection) Horizontal concatenation for
tscollection objects

removets Remove timeseries objects from
tscollection object

resample (tscollection) Select or interpolate data in
tscollection using new time vector

setabstime (tscollection) Set times of tscollection object as
date strings

settimeseriesnames Change name of timeseries object
in tscollection

vertcat (tscollection) Vertical concatenation for
tscollection objects

1-64



Programming and Data Types

Programming and Data Types

Data Types (p. 1-65) Numeric, character, structures, cell
arrays, and data type conversion

Data Type Conversion (p. 1-74) Convert one numeric type to another,
numeric to string, string to numeric,
structure to cell array, etc.

Operators and Special Characters
(p. 1-76)

Arithmetic, relational, and logical
operators, and special characters

Strings (p. 1-78) Create, identify, manipulate, parse,
evaluate, and compare strings

Bit-Wise Operations (p. 1-81) Perform set, shift, and, or, compare,
etc. on specific bit fields

Logical Operations (p. 1-82) Evaluate conditions, testing for true
or false

Relational Operations (p. 1-82) Compare values for equality, greater
than, less than, etc.

Set Operations (p. 1-83) Find set members, unions,
intersections, etc.

Date and Time Operations (p. 1-83) Obtain information about dates and
times

Programming in MATLAB (p. 1-84) Function/expression evaluation,
timed execution, memory, program
control, error handling, MEX
programming

Data Types

Numeric Types (p. 1-66) Integer and floating-point data

Characters and Strings (p. 1-67) Characters and arrays of characters

Structures (p. 1-68) Data of varying types and sizes
stored in fields of a structure

1-65



1 Function Reference

Cell Arrays (p. 1-69) Data of varying types and sizes
stored in cells of array

Map Container Objects (p. 1-70) Select elements of Map container
using indices of various data types

Function Handles (p. 1-71) Invoke a function indirectly via
handle

Java Classes and Objects (p. 1-71) Access Java classes through
MATLAB interface

Data Type Identification (p. 1-72) Determine data type of a variable

Numeric Types

arrayfun Apply function to each element of
array

cast Cast variable to different data type

cat Concatenate arrays along specified
dimension

class Determine class name of object

find Find indices and values of nonzero
elements

intmax Largest value of specified integer
type

intmin Smallest value of specified integer
type

intwarning Control state of integer warnings

ipermute Inverse permute dimensions of N-D
array

isa Determine whether input is object
of given class

isequal Test arrays for equality

1-66



Programming and Data Types

isequalwithequalnans Test arrays for equality, treating
NaNs as equal

isfinite Array elements that are finite

isinf Array elements that are infinite

isnan Array elements that are NaN

isnumeric Determine whether input is numeric
array

isreal Check if input is real array

isscalar Determine whether input is scalar

isvector Determine whether input is vector

permute Rearrange dimensions of N-D array

realmax Largest positive floating-point
number

realmin Smallest positive normalized
floating-point number

reshape Reshape array

squeeze Remove singleton dimensions

zeros Create array of all zeros

Characters and Strings

See “Strings” on page 1-78 for all string-related functions.

cellstr Create cell array of strings from
character array

char Convert to character array (string)

eval Execute string containing MATLAB
expression

findstr Find string within another, longer
string

1-67



1 Function Reference

isstr Determine whether input is
character array

regexp, regexpi Match regular expression

sprintf Format data into string

sscanf Read formatted data from string

strcat Concatenate strings horizontally

strcmp, strcmpi Compare strings

strfind Find one string within another

strings String handling

strjust Justify character array

strmatch Find possible matches for string

strread Read formatted data from string

strrep Find and replace substring

strtrim Remove leading and trailing white
space from string

strvcat Concatenate strings vertically

Structures

arrayfun Apply function to each element of
array

cell2struct Convert cell array to structure array

class Determine class name of object

deal Distribute inputs to outputs

fieldnames Field names of structure, or public
fields of object

getfield Field of structure array

isa Determine whether input is object
of given class

1-68



Programming and Data Types

isequal Test arrays for equality

isfield Determine whether input is
structure array field

isscalar Determine whether input is scalar

isstruct Determine whether input is
structure array

isvector Determine whether input is vector

orderfields Order fields of structure array

rmfield Remove fields from structure

setfield Assign values to structure array field

struct Create structure array

struct2cell Convert structure to cell array

structfun Apply function to each field of scalar
structure

Cell Arrays

cell Construct cell array

cell2mat Convert cell array of matrices to
single matrix

cell2struct Convert cell array to structure array

celldisp Cell array contents

cellfun Apply function to each cell in cell
array

cellplot Graphically display structure of cell
array

cellstr Create cell array of strings from
character array

class Determine class name of object

deal Distribute inputs to outputs

1-69



1 Function Reference

isa Determine whether input is object
of given class

iscell Determine whether input is cell
array

iscellstr Determine whether input is cell
array of strings

isequal Test arrays for equality

isscalar Determine whether input is scalar

isvector Determine whether input is vector

mat2cell Divide matrix into cell array of
matrices

num2cell Convert numeric array to cell array

struct2cell Convert structure to cell array

Map Container Objects

containers.Map Construct containers.Map object

isKey (Map) Check if containers.Map contains
key

keys (Map) Return all keys of containers.Map
object

length (Map) Length of containers.Map object

remove (Map) Remove key-value pairs from
containers.Map

size (Map) size of containers.Map object

values (Map) Return values of containers.Map
object

1-70



Programming and Data Types

Function Handles

class Determine class name of object

feval Evaluate function

func2str Construct function name string from
function handle

functions Information about function handle

function_handle (@) Handle used in calling functions
indirectly

isa Determine whether input is object
of given class

isequal Test arrays for equality

str2func Construct function handle from
function name string

Java Classes and Objects

cell Construct cell array

class Determine class name of object

clear Remove items from workspace,
freeing up system memory

depfun List dependencies of function or
P-file

exist Check existence of variable, function,
folder, or class

fieldnames Field names of structure, or public
fields of object

im2java Convert image to Java image

import Add package or class to current
import list

inmem Names of functions, MEX-files, Sun
Java classes in memory

1-71



1 Function Reference

isa Determine whether input is object
of given class

isjava Determine whether input is Sun
Java object

javaaddpath Add entries to dynamic Sun Java
class path

javaArray Construct Sun Java array

javachk Generate error message based on
Sun Java feature support

javaclasspath Get and set Sun Java class path

javaMethod Invoke Sun Java method

javaMethodEDT Invoke Sun Java method from Event
Dispatch Thread (EDT)

javaObject Invoke Sun Java constructor, letting
MATLAB choose the thread

javaObjectEDT Invoke Sun Java object constructor
on Event Dispatch Thread (EDT)

javarmpath Remove entries from dynamic Sun
Java class path

methods Class method names

methodsview View class methods

usejava Determine whether Sun Java feature
is supported in MATLAB software

which Locate functions and files

Data Type Identification

is* Detect state

isa Determine whether input is object
of given class

1-72



Programming and Data Types

iscell Determine whether input is cell
array

iscellstr Determine whether input is cell
array of strings

ischar Determine whether item is character
array

isfield Determine whether input is
structure array field

isfloat Determine whether input is
floating-point array

ishghandle True for Handle Graphics® object
handles

isinteger Determine whether input is integer
array

isjava Determine whether input is Sun
Java object

islogical Determine whether input is logical
array

isnumeric Determine whether input is numeric
array

isobject Is input MATLAB object

isreal Check if input is real array

isstr Determine whether input is
character array

isstruct Determine whether input is
structure array

validateattributes Check validity of array

who, whos List variables in workspace

1-73



1 Function Reference

Data Type Conversion

Numeric (p. 1-74) Convert data of one numeric type to
another numeric type

String to Numeric (p. 1-74) Convert characters to numeric
equivalent

Numeric to String (p. 1-75) Convert numeric to character
equivalent

Other Conversions (p. 1-75) Convert to structure, cell array,
function handle, etc.

Numeric

cast Cast variable to different data type

double Convert to double precision

int8, int16, int32, int64 Convert to signed integer

single Convert to single precision

typecast Convert data types without changing
underlying data

uint8, uint16, uint32, uint64 Convert to unsigned integer

String to Numeric

base2dec Convert base N number string to
decimal number

bin2dec Convert binary number string to
decimal number

cast Cast variable to different data type

hex2dec Convert hexadecimal number string
to decimal number

hex2num Convert hexadecimal number string
to double-precision number

1-74



Programming and Data Types

str2double Convert string to double-precision
value

str2num Convert string to number

unicode2native Convert Unicode® characters to
numeric bytes

Numeric to String

cast Cast variable to different data type

char Convert to character array (string)

dec2base Convert decimal to base N number
in string

dec2bin Convert decimal to binary number
in string

dec2hex Convert decimal to hexadecimal
number in string

int2str Convert integer to string

mat2str Convert matrix to string

native2unicode Convert numeric bytes to Unicode
characters

num2str Convert number to string

Other Conversions

cell2mat Convert cell array of matrices to
single matrix

cell2struct Convert cell array to structure array

datestr Convert date and time to string
format

func2str Construct function name string from
function handle

1-75



1 Function Reference

logical Convert numeric values to logical

mat2cell Divide matrix into cell array of
matrices

num2cell Convert numeric array to cell array

num2hex Convert singles and doubles to
IEEE® hexadecimal strings

str2func Construct function handle from
function name string

str2mat Form blank-padded character matrix
from strings

struct2cell Convert structure to cell array

Operators and Special Characters

Arithmetic Operators (p. 1-76) Plus, minus, power, left and right
divide, transpose, etc.

Relational Operators (p. 1-77) Equal to, greater than, less than or
equal to, etc.

Logical Operators (p. 1-77) Element-wise and short circuit and,
or, not

Special Characters (p. 1-78) Array constructors, line
continuation, comments, etc.

Arithmetic Operators

+ Plus

- Minus

. Decimal point

= Assignment

* Matrix multiplication

/ Matrix right division

1-76



Programming and Data Types

\ Matrix left division

^ Matrix power

’ Matrix transpose

.* Array multiplication (element-wise)

./ Array right division (element-wise)

.\ Array left division (element-wise)

.^ Array power (element-wise)

.’ Array transpose

Relational Operators

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

== Equal to

~= Not equal to

Logical Operators
See also “Logical Operations” on page 1-82 for functions like xor, all, any, etc.

&& Logical AND

|| Logical OR

& Logical AND for arrays

| Logical OR for arrays

~ Logical NOT

1-77



1 Function Reference

Special Characters

: Create vectors, subscript arrays, specify for-loop iterations

( ) Pass function arguments, prioritize operators

[ ] Construct array, concatenate elements, specify multiple
outputs from function

{ } Construct cell array, index into cell array

. Insert decimal point, define structure field, reference methods
of object

.( ) Reference dynamic field of structure

.. Reference parent directory

... Continue statement to next line

, Separate rows of array, separate function input/output
arguments, separate commands

; Separate columns of array, suppress output from current
command

% Insert comment line into code

%{ %} Insert block of comments into code

! Issue command to operating system

’ ’ Construct character array

@ Construct function handle, reference class directory

Strings

Description of Strings in MATLAB
(p. 1-79)

Basics of string handling in
MATLAB

String Creation (p. 1-79) Create strings, cell arrays of strings,
concatenate strings together

String Identification (p. 1-79) Identify characteristics of strings

1-78



Programming and Data Types

String Manipulation (p. 1-80) Convert case, strip blanks, replace
characters

String Parsing (p. 1-80) Formatted read, regular expressions,
locate substrings

String Evaluation (p. 1-81) Evaluate stated expression in string

String Comparison (p. 1-81) Compare contents of strings

Description of Strings in MATLAB

strings String handling

String Creation

blanks Create string of blank characters

cellstr Create cell array of strings from
character array

char Convert to character array (string)

sprintf Format data into string

strcat Concatenate strings horizontally

strvcat Concatenate strings vertically

String Identification

isa Determine whether input is object
of given class

iscellstr Determine whether input is cell
array of strings

ischar Determine whether item is character
array

isletter Array elements that are alphabetic
letters

1-79



1 Function Reference

isscalar Determine whether input is scalar

isspace Array elements that are space
characters

isstrprop Determine whether string is of
specified category

isvector Determine whether input is vector

validatestring Check validity of text string

String Manipulation

deblank Strip trailing blanks from end of
string

lower Convert string to lowercase

strjust Justify character array

strrep Find and replace substring

strtrim Remove leading and trailing white
space from string

upper Convert string to uppercase

String Parsing

findstr Find string within another, longer
string

regexp, regexpi Match regular expression

regexprep Replace string using regular
expression

regexptranslate Translate string into regular
expression

sscanf Read formatted data from string

strfind Find one string within another

1-80



Programming and Data Types

strread Read formatted data from string

strtok Selected parts of string

String Evaluation

eval Execute string containing MATLAB
expression

evalc Evaluate MATLAB expression with
capture

evalin Execute MATLAB expression in
specified workspace

String Comparison

strcmp, strcmpi Compare strings

strmatch Find possible matches for string

strncmp, strncmpi Compare first n characters of strings

Bit-Wise Operations

bitand Bitwise AND

bitcmp Bitwise complement

bitget Bit at specified position

bitmax Maximum double-precision
floating-point integer

bitor Bitwise OR

bitset Set bit at specified position

bitshift Shift bits specified number of places

bitxor Bitwise XOR

swapbytes Swap byte ordering

1-81



1 Function Reference

Logical Operations

all Determine whether all array
elements are nonzero or true

and Find logical AND of array or scalar
inputs

any Determine whether any array
elements are nonzero

false Logical 0 (false)

find Find indices and values of nonzero
elements

isa Determine whether input is object
of given class

iskeyword Determine whether input is
MATLAB keyword

isvarname Determine whether input is valid
variable name

logical Convert numeric values to logical

not Find logical NOT of array or scalar
input

or Find logical OR of array or scalar
inputs

true Logical 1 (true)

xor Logical exclusive-OR

See “Operators and Special Characters” on page 1-76 for logical operators.

Relational Operations

eq Test for equality

ge Test for greater than or equal to

1-82



Programming and Data Types

gt Test for greater than

le Test for less than or equal to

lt Test for less than

ne Test for inequality

See “Operators and Special Characters” on page 1-76 for relational operators.

Set Operations

intersect Find set intersection of two vectors

ismember Array elements that are members
of set

issorted Determine whether set elements are
in sorted order

setdiff Find set difference of two vectors

setxor Find set exclusive OR of two vectors

union Find set union of two vectors

unique Find unique elements of vector

Date and Time Operations

addtodate Modify date number by field

calendar Calendar for specified month

clock Current time as date vector

cputime Elapsed CPU time

date Current date string

datenum Convert date and time to serial date
number

datestr Convert date and time to string
format

1-83



1 Function Reference

datevec Convert date and time to vector of
components

eomday Last day of month

etime Time elapsed between date vectors

now Current date and time

weekday Day of week

Programming in MATLAB

Functions and Scripts (p. 1-85) Write and execute program code,
interact with caller, check input and
output values, dependencies

Evaluation (p. 1-86) Evaluate expression in string, apply
function to array, run script file, etc.

Timer (p. 1-87) Schedule execution of MATLAB
commands

Variables and Functions in Memory
(p. 1-88)

List, lock, or clear functions in
memory, construct variable names,
consolidate workspaces, refresh
caches

Control Flow (p. 1-89) Conditional control, loop control,
error control, program termination

Error Handling (p. 1-90) Generate warnings and errors, test
for and catch errors, capture data on
cause of error, warning control

MEX Programming (p. 1-91) Compile MEX function from C or
Fortran code, list MEX-files in
memory, debug MEX-files

1-84



Programming and Data Types

Functions and Scripts

addOptional (inputParser) Add optional argument to Input
Parser scheme

addParamValue (inputParser) Add parameter name/value
argument to Input Parser scheme

addRequired (inputParser) Add required argument to Input
Parser scheme

createCopy (inputParser) Create copy of inputParser object

depdir List dependent folders for function
or P-file

depfun List dependencies of function or
P-file

echo Display statements during function
execution

end Terminate block of code, or indicate
last array index

function Declare function

input Request user input

inputname Variable name of function input

inputParser Construct input parser object

mfilename File name of currently running
function

namelengthmax Maximum identifier length

nargchk Validate number of input arguments

nargin, nargout Number of function arguments

nargoutchk Validate number of output
arguments

parse (inputParser) Parse and validate named inputs

pcode Create protected function file

1-85



1 Function Reference

script Sequence of MATLAB statements in
file

syntax Two ways to call MATLAB functions

varargin Variable length input argument list

varargout Variable length output argument list

Evaluation

ans Most recent answer

arrayfun Apply function to each element of
array

assert Generate error when condition is
violated

builtin Execute built-in function from
overloaded method

cellfun Apply function to each cell in cell
array

echo Display statements during function
execution

eval Execute string containing MATLAB
expression

evalc Evaluate MATLAB expression with
capture

evalin Execute MATLAB expression in
specified workspace

feval Evaluate function

iskeyword Determine whether input is
MATLAB keyword

isvarname Determine whether input is valid
variable name

pause Halt execution temporarily

1-86



Programming and Data Types

run Run script that is not on current
path

script Sequence of MATLAB statements in
file

structfun Apply function to each field of scalar
structure

symvar Determine symbolic variables in
expression

tic, toc Measure performance using
stopwatch timer

Timer

delete (timer) Remove timer object from memory

disp (timer) Information about timer object

get (timer) Timer object properties

isvalid (timer) Determine whether timer object is
valid

set (timer) Configure or display timer object
properties

start Start timer(s) running

startat Start timer(s) running at specified
time

stop Stop timer(s)

timer Construct timer object

timerfind Find timer objects

timerfindall Find timer objects, including
invisible objects

wait Wait until timer stops running

1-87



1 Function Reference

Variables and Functions in Memory

ans Most recent answer

assignin Assign value to variable in specified
workspace

datatipinfo Produce short description of input
variable

genvarname Construct valid variable name from
string

global Declare global variables

inmem Names of functions, MEX-files, Sun
Java classes in memory

isglobal Determine whether input is global
variable

memory Display memory information

mislocked Determine if function is locked in
memory

mlock Prevent clearing function from
memory

munlock Allow clearing functions from
memory

namelengthmax Maximum identifier length

pack Consolidate workspace memory

persistent Define persistent variable

rehash Refresh function and file system
path caches

1-88



Programming and Data Types

Control Flow

break Terminate execution of for or while
loop

case Execute block of code if condition is
true

catch Handle error detected in try-catch
statement

continue Pass control to next iteration of for
or while loop

else Execute statements if condition is
false

elseif Execute statements if additional
condition is true

end Terminate block of code, or indicate
last array index

error Display message and abort function

for Execute statements specified
number of times

if Execute statements if condition is
true

otherwise Default part of switch statement

parfor Parallel for-loop

return Return to invoking function

switch Switch among several cases, based
on expression

try Execute statements and catch
resulting errors

while Repeatedly execute statements while
condition is true

1-89



1 Function Reference

Error Handling

addCause (MException) Record additional causes of exception

assert Generate error when condition is
violated

catch Handle error detected in try-catch
statement

disp (MException) Display MException object

eq (MException) Compare MException objects for
equality

error Display message and abort function

ferror Information about file I/O errors

getReport (MException) Get error message for exception

intwarning Control state of integer warnings

isequal (MException) Compare MException objects for
equality

last (MException) Last uncaught exception

lastwarn Last warning message

MException Capture error information

ne (MException) Compare MException objects for
inequality

rethrow (MException) Reissue existing exception

throw (MException) Issue exception and terminate
function

try Execute statements and catch
resulting errors

warning Warning message

1-90



Programming and Data Types

MEX Programming

dbmex Enable MEX-file debugging (on
UNIX platforms)

inmem Names of functions, MEX-files, Sun
Java classes in memory

mex Compile MEX-function from C/C++
or Fortran source code

mex.getCompilerConfigurations Get compiler configuration
information for building MEX-files

mexext Binary MEX-file name extension

1-91



1 Function Reference

Object-Oriented Programming

Classes and Objects (p. 1-92) Get information about classes and
objects

Handle Classes (p. 1-93) Define and use handle classes

Events and Listeners (p. 1-94) Define and use events and listeners

Meta-Classes (p. 1-94) Access information about classes
without requiring instances

Classes and Objects

class Determine class name of object

classdef Class definition keywords

exist Check existence of variable, function,
folder, or class

inferiorto Specify inferior class relationship

isobject Is input MATLAB object

loadobj Modify load process for object

methods Class method names

methodsview View class methods

properties Class property names

subsasgn Subscripted assignment

subsindex Subscript indexing with object

subsref Redefine subscripted reference for
objects

superiorto Establish superior class relationship

1-92



Object-Oriented Programming

Handle Classes

addlistener (handle) Create event listener

addprop (dynamicprops) Add dynamic property

delete (handle) Handle object destructor function

dynamicprops Abstract class used to derive handle
class with dynamic properties

findobj (handle) Find handle objects matching
specified conditions

findprop (handle) Find meta.property object
associated with property name

get (hgsetget) Query property values of handle
objects derived from hgsetget class

getdisp (hgsetget) Override to change command
window display

handle Abstract class for deriving handle
classes

hgsetget Abstract class used to derive handle
class with set and get methods

isvalid (handle) Is object valid handle class object

notify (handle) Notify listeners that event is
occurring

relationaloperators (handle) Equality and sorting of handle
objects

set (hgsetget) Assign property values to handle
objects derived from hgsetget class

setdisp (hgsetget) Override to change command
window display

1-93



1 Function Reference

Events and Listeners

addlistener (handle) Create event listener

event.EventData Base class for all data objects passed
to event listeners

event.listener Class defining listener objects

event.PropertyEvent Listener for property events

event.proplistener Define listener object for property
events

events Event names

notify (handle) Notify listeners that event is
occurring

Meta-Classes

meta.class meta.class class describes
MATLAB classes

meta.class.fromName Return meta.class object associated
with named class

meta.DynamicProperty meta.DynamicProperty class
describes dynamic property of
MATLAB object

meta.event meta.event class describes
MATLAB class events

meta.method meta.method class describes
MATLAB class methods

meta.package meta.package class describes
MATLAB packages

meta.package.fromName Return meta.package object for
specified package

meta.package.getAllPackages Get all top-level packages

1-94



Object-Oriented Programming

meta.property meta.property class describes
MATLAB class properties

metaclass Obtain meta.class object

1-95



1 Function Reference

Graphics

Basic Plots and Graphs (p. 1-96) Linear line plots, log and semilog
plots

Plotting Tools (p. 1-97) GUIs for interacting with plots

Annotating Plots (p. 1-97) Functions for and properties of titles,
axes labels, legends, mathematical
symbols

Specialized Plotting (p. 1-98) Bar graphs, histograms, pie charts,
contour plots, function plotters

Bit-Mapped Images (p. 1-101) Display image object, read and
write graphics file, convert to movie
frames

Printing (p. 1-102) Printing and exporting figures to
standard formats

Handle Graphics (p. 1-102) Creating graphics objects, setting
properties, finding handles

Basic Plots and Graphs

box Axes border

errorbar Plot error bars along curve

hold Retain current graph in figure

line Create line object

LineSpec (Line Specification) Line specification string syntax

loglog Log-log scale plot

plot 2-D line plot

plot3 3-D line plot

plotyy 2-D line plots with y-axes on both
left and right side

polar Polar coordinate plot

1-96



Graphics

semilogx, semilogy Semilogarithmic plots

subplot Create axes in tiled positions

Plotting Tools

figurepalette Show or hide figure palette

pan Pan view of graph interactively

plotbrowser Show or hide figure plot browser

plotedit Interactively edit and annotate plots

plottools Show or hide plot tools

propertyeditor Show or hide property editor

rotate3d Rotate 3-D view using mouse

showplottool Show or hide figure plot tool

zoom Turn zooming on or off or magnify
by factor

Annotating Plots

annotation Create annotation objects

clabel Contour plot elevation labels

datacursormode Enable, disable, and manage
interactive data cursor mode

datetick Date formatted tick labels

gtext Mouse placement of text in 2-D view

legend Graph legend for lines and patches

rectangle Create 2-D rectangle object

texlabel Produce TeX format from character
string

1-97



1 Function Reference

title Add title to current axes

xlabel, ylabel, zlabel Label x-, y-, and z-axis

Specialized Plotting

Area, Bar, and Pie Plots (p. 1-98) 1-D, 2-D, and 3-D graphs and charts

Contour Plots (p. 1-99) Unfilled and filled contours in 2-D
and 3-D

Direction and Velocity Plots (p. 1-99) Comet, compass, feather and quiver
plots

Discrete Data Plots (p. 1-99) Stair, step, and stem plots

Function Plots (p. 1-99) Easy-to-use plotting utilities for
graphing functions

Histograms (p. 1-100) Plots for showing distributions of
data

Polygons and Surfaces (p. 1-100) Functions to generate and plot
surface patches in two or more
dimensions

Scatter/Bubble Plots (p. 1-101) Plots of point distributions

Animation (p. 1-101) Functions to create and play movies
of plots

Area, Bar, and Pie Plots

area Filled area 2-D plot

bar, barh Plot bar graph (vertical and
horizontal)

bar3, bar3h Plot 3-D bar chart

pareto Pareto chart

pie Pie chart

pie3 3-D pie chart

1-98



Graphics

Contour Plots

contour Contour plot of matrix

contour3 3-D contour plot

contourc Low-level contour plot computation

contourf Filled 2-D contour plot

ezcontour Easy-to-use contour plotter

ezcontourf Easy-to-use filled contour plotter

Direction and Velocity Plots

comet 2-D comet plot

comet3 3-D comet plot

compass Plot arrows emanating from origin

feather Plot velocity vectors

quiver Quiver or velocity plot

quiver3 3-D quiver or velocity plot

Discrete Data Plots

stairs Stairstep graph

stem Plot discrete sequence data

stem3 Plot 3-D discrete sequence data

Function Plots

ezcontour Easy-to-use contour plotter

ezcontourf Easy-to-use filled contour plotter

ezmesh Easy-to-use 3-D mesh plotter

1-99



1 Function Reference

ezmeshc Easy-to-use combination
mesh/contour plotter

ezplot Easy-to-use function plotter

ezplot3 Easy-to-use 3-D parametric curve
plotter

ezpolar Easy-to-use polar coordinate plotter

ezsurf Easy-to-use 3-D colored surface
plotter

ezsurfc Easy-to-use combination
surface/contour plotter

fplot Plot function between specified
limits

Histograms

hist Histogram plot

histc Histogram count

rose Angle histogram plot

Polygons and Surfaces

cylinder Generate cylinder

delaunay Delaunay triangulation

delaunay3 3-D Delaunay tessellation

delaunayn N-D Delaunay tessellation

dsearch Search Delaunay triangulation for
nearest point

ellipsoid Generate ellipsoid

fill Filled 2-D polygons

fill3 Filled 3-D polygons

1-100



Graphics

inpolygon Points inside polygonal region

pcolor Pseudocolor (checkerboard) plot

polyarea Area of polygon

rectint Rectangle intersection area

ribbon Ribbon plot

slice Volumetric slice plot

sphere Generate sphere

waterfall Waterfall plot

Scatter/Bubble Plots

plotmatrix Scatter plot matrix

scatter Scatter plot

scatter3 3-D scatter plot

Animation

frame2im Return image data associated with
movie frame

getframe Capture movie frame

im2frame Convert image to movie frame

movie Play recorded movie frames

noanimate Change EraseMode of all objects to
normal

Bit-Mapped Images

frame2im Return image data associated with
movie frame

im2frame Convert image to movie frame

1-101



1 Function Reference

im2java Convert image to Java image

image Display image object

imagesc Scale data and display image object

imfinfo Information about graphics file

imformats Manage image file format registry

imread Read image from graphics file

imwrite Write image to graphics file

ind2rgb Convert indexed image to RGB
image

Printing

hgexport Export figure

orient Hardcopy paper orientation

print, printopt Print figure or save to file and
configure printer defaults

printdlg Print dialog box

printpreview Preview figure to print

saveas Save figure or Simulink block
diagram using specified format

Handle Graphics

Graphics Object Identification
(p. 1-103)

Find and manipulate graphics
objects via their handles

Object Creation (p. 1-104) Constructors for core graphics
objects

Annotation Objects (p. 1-104) Property descriptions for annotation
objects

Plot Objects (p. 1-105) Property descriptions for plot objects

1-102



Graphics

Figure Windows (p. 1-105) Control and save figures

Axes Operations (p. 1-106) Operate on axes objects

Object Property Operations (p. 1-106) Query, set, and link object properties

Graphics Object Identification

allchild Find all children of specified objects

ancestor Ancestor of graphics object

copyobj Copy graphics objects and their
descendants

delete Remove files or graphics objects

findall Find all graphics objects

findfigs Find visible offscreen figures

findobj Locate graphics objects with specific
properties

gca Current axes handle

gcbf Handle of figure containing object
whose callback is executing

gcbo Handle of object whose callback is
executing

gco Handle of current object

get Query Handle Graphics object
properties

ishandle Determine whether input is valid
Handle Graphics handle

propedit Open Property Editor

set Set Handle Graphics object
properties

1-103



1 Function Reference

Object Creation

axes Create axes graphics object

figure Create figure graphics object

hggroup Create hggroup object

hgtransform Create hgtransform graphics object

image Display image object

light Create light object

line Create line object

patch Create one or more filled polygons

rectangle Create 2-D rectangle object

root object Root

surface Create surface object

text Create text object in current axes

uicontextmenu Create context menu

Annotation Objects

Annotation Arrow Properties Define annotation arrow properties

Annotation Doublearrow Properties Define annotation doublearrow
properties

Annotation Ellipse Properties Define annotation ellipse properties

Annotation Line Properties Define annotation line properties

Annotation Rectangle Properties Define annotation rectangle
properties

Annotation Textarrow Properties Define annotation textarrow
properties

Annotation Textbox Properties Define annotation textbox properties

1-104



Graphics

Plot Objects

Areaseries Properties Define areaseries properties

Barseries Properties Define barseries properties

Contourgroup Properties Define contourgroup properties

Errorbarseries Properties Define errorbarseries properties

Image Properties Define image properties

Lineseries Properties Define lineseries properties

Quivergroup Properties Define quivergroup properties

Scattergroup Properties Define scattergroup properties

Stairseries Properties Define stairseries properties

Stemseries Properties Define stemseries properties

Surfaceplot Properties Define surfaceplot properties

Figure Windows

clf Clear current figure window

close Remove specified figure

closereq Default figure close request function

drawnow Flush event queue and update figure
window

gcf Current figure handle

hgload Load Handle Graphics object
hierarchy from file

hgsave Save Handle Graphics object
hierarchy to file

newplot Determine where to draw graphics
objects

opengl Control OpenGL® rendering

1-105



1 Function Reference

refresh Redraw current figure

saveas Save figure or Simulink block
diagram using specified format

Axes Operations

axis Axis scaling and appearance

box Axes border

cla Clear current axes

gca Current axes handle

grid Grid lines for 2-D and 3-D plots

ishold Current hold state

makehgtform Create 4-by-4 transform matrix

Object Property Operations

get Query Handle Graphics object
properties

linkaxes Synchronize limits of specified 2-D
axes

linkprop Keep same value for corresponding
properties

refreshdata Refresh data in graph when data
source is specified

set Set Handle Graphics object
properties

1-106



3-D Visualization

3-D Visualization

Surface and Mesh Plots (p. 1-107) Plot matrices, visualize functions of
two variables, specify colormap

View Control (p. 1-109) Control the camera viewpoint,
zooming, rotation, aspect ratio, set
axis limits

Lighting (p. 1-111) Add and control scene lighting

Transparency (p. 1-111) Specify and control object
transparency

Volume Visualization (p. 1-111) Visualize gridded volume data

Surface and Mesh Plots

Surface andMesh Creation (p. 1-107) Visualizing gridded and triangulated
data as lines and surfaces

Domain Generation (p. 1-108) Gridding data and creating arrays

Color Operations (p. 1-108) Specifying, converting, and
manipulating color spaces,
colormaps, colorbars, and
backgrounds

Surface and Mesh Creation

hidden Remove hidden lines from mesh plot

mesh, meshc, meshz Mesh plots

peaks Example function of two variables

surf, surfc 3-D shaded surface plot

surface Create surface object

surfl Surface plot with colormap-based
lighting

tetramesh Tetrahedron mesh plot

1-107



1 Function Reference

trimesh Triangular mesh plot

triplot 2-D triangular plot

trisurf Triangular surface plot

Domain Generation

meshgrid Generate X and Y arrays for 3-D plots

Color Operations

brighten Brighten or darken colormap

caxis Color axis scaling

colorbar Colorbar showing color scale

colordef Set default property values to
display different color schemes

colormap Set and get current colormap

colormapeditor Start colormap editor

ColorSpec (Color Specification) Color specification

contrast Grayscale colormap for contrast
enhancement

graymon Set default figure properties for
grayscale monitors

hsv2rgb Convert HSV colormap to RGB
colormap

rgb2hsv Convert RGB colormap to HSV
colormap

rgbplot Plot colormap

shading Set color shading properties

spinmap Spin colormap

1-108



3-D Visualization

surfnorm Compute and display 3-D surface
normals

whitebg Change axes background color

View Control

Camera Viewpoint (p. 1-109) Orbiting, dollying, pointing, rotating
camera positions and setting fields
of view

Aspect Ratio and Axis Limits
(p. 1-110)

Specifying what portions of axes to
view and how to scale them

Object Manipulation (p. 1-110) Panning, rotating, and zooming
views

Region of Interest (p. 1-110) Interactively identifying rectangular
regions

Camera Viewpoint

camdolly Move camera position and target

cameratoolbar Control camera toolbar
programmatically

camlookat Position camera to view object or
group of objects

camorbit Rotate camera position around
camera target

campan Rotate camera target around camera
position

campos Set or query camera position

camproj Set or query projection type

camroll Rotate camera about view axis

camtarget Set or query location of camera
target

1-109



1 Function Reference

camup Set or query camera up vector

camva Set or query camera view angle

camzoom Zoom in and out on scene

makehgtform Create 4-by-4 transform matrix

view Viewpoint specification

viewmtx View transformation matrices

Aspect Ratio and Axis Limits

daspect Set or query axes data aspect ratio

pbaspect Set or query plot box aspect ratio

xlim, ylim, zlim Set or query axis limits

Object Manipulation

pan Pan view of graph interactively

reset Reset graphics object properties to
their defaults

rotate Rotate object in specified direction

rotate3d Rotate 3-D view using mouse

selectmoveresize Select, move, resize, or copy axes
and uicontrol graphics objects

zoom Turn zooming on or off or magnify
by factor

Region of Interest

dragrect Drag rectangles with mouse

rbbox Create rubberband box for area
selection

1-110



3-D Visualization

Lighting

camlight Create or move light object in camera
coordinates

diffuse Calculate diffuse reflectance

light Create light object

lightangle Create or position light object in
spherical coordinates

lighting Specify lighting algorithm

material Control reflectance properties of
surfaces and patches

specular Calculate specular reflectance

Transparency

alim Set or query axes alpha limits

alpha Set transparency properties for
objects in current axes

alphamap Specify figure alphamap
(transparency)

Volume Visualization

coneplot Plot velocity vectors as cones in 3-D
vector field

contourslice Draw contours in volume slice planes

curl Compute curl and angular velocity
of vector field

divergence Compute divergence of vector field

flow Simple function of three variables

1-111



1 Function Reference

interpstreamspeed Interpolate stream-line vertices from
flow speed

isocaps Compute isosurface end-cap
geometry

isocolors Calculate isosurface and patch colors

isonormals Compute normals of isosurface
vertices

isosurface Extract isosurface data from volume
data

reducepatch Reduce number of patch faces

reducevolume Reduce number of elements in
volume data set

shrinkfaces Reduce size of patch faces

slice Volumetric slice plot

smooth3 Smooth 3-D data

stream2 Compute 2-D streamline data

stream3 Compute 3-D streamline data

streamline Plot streamlines from 2-D or 3-D
vector data

streamparticles Plot stream particles

streamribbon 3-D stream ribbon plot from vector
volume data

streamslice Plot streamlines in slice planes

streamtube Create 3-D stream tube plot

subvolume Extract subset of volume data set

surf2patch Convert surface data to patch data

volumebounds Coordinate and color limits for
volume data

1-112



GUI Development

GUI Development

Predefined Dialog Boxes (p. 1-113) Dialog boxes for error, user input,
waiting, etc.

User Interface Deployment (p. 1-114) Open GUIs, create the handles
structure

User Interface Development
(p. 1-114)

Start GUIDE, manage application
data, get user input

User Interface Objects (p. 1-115) Create GUI components

Objects from Callbacks (p. 1-116) Find object handles from within
callbacks functions

GUI Utilities (p. 1-116) Move objects, wrap text

Program Execution (p. 1-117) Wait and resume based on user
input

Predefined Dialog Boxes

dialog Create and display empty dialog box

errordlg Create and open error dialog box

export2wsdlg Export variables to workspace

helpdlg Create and open help dialog box

inputdlg Create and open input dialog box

listdlg Create and open list-selection dialog
box

msgbox Create and open message box

printdlg Print dialog box

printpreview Preview figure to print

questdlg Create and open question dialog box

uigetdir Open standard dialog box for
selecting directory

1-113



1 Function Reference

uigetfile Open standard dialog box for
retrieving files

uigetpref Open dialog box for retrieving
preferences

uiopen Open file selection dialog box with
appropriate file filters

uiputfile Open standard dialog box for saving
files

uisave Open standard dialog box for saving
workspace variables

uisetcolor Open standard dialog box for setting
object’s ColorSpec

uisetfont Open standard dialog box for setting
object’s font characteristics

waitbar Open or update a wait bar dialog box

warndlg Open warning dialog box

User Interface Deployment

guidata Store or retrieve GUI data

guihandles Create structure of handles

movegui Move GUI figure to specified location
on screen

openfig Open new copy or raise existing copy
of saved figure

User Interface Development

addpref Add preference

getappdata Value of application-defined data

getpref Preference

1-114



GUI Development

ginput Graphical input from mouse or
cursor

guidata Store or retrieve GUI data

guide Open GUI Layout Editor

inspect Open Property Inspector

isappdata True if application-defined data
exists

ispref Test for existence of preference

rmappdata Remove application-defined data

rmpref Remove preference

setappdata Specify application-defined data

setpref Set preference

uigetpref Open dialog box for retrieving
preferences

uisetpref Manage preferences used in
uigetpref

waitfor Wait for condition before resuming
execution

waitforbuttonpress Wait for key press or mouse-button
click

User Interface Objects

menu Generate menu of choices for user
input

uibuttongroup Create container object to exclusively
manage radio buttons and toggle
buttons

uicontextmenu Create context menu

uicontrol Create user interface control object

1-115



1 Function Reference

uimenu Create menus on figure windows

uipanel Create panel container object

uipushtool Create push button on toolbar

uitable Create 2-D graphic table GUI
component

uitoggletool Create toggle button on toolbar

uitoolbar Create toolbar on figure

Objects from Callbacks

findall Find all graphics objects

findfigs Find visible offscreen figures

findobj Locate graphics objects with specific
properties

gcbf Handle of figure containing object
whose callback is executing

gcbo Handle of object whose callback is
executing

GUI Utilities

align Align user interface controls
(uicontrols) and axes

getpixelposition Get component position in pixels

listfonts List available system fonts

selectmoveresize Select, move, resize, or copy axes
and uicontrol graphics objects

setpixelposition Set component position in pixels

1-116



GUI Development

textwrap Wrapped string matrix for given
uicontrol

uistack Reorder visual stacking order of
objects

Program Execution

uiresume Resume execution of blocked M-file

uiwait Block execution and wait for resume

1-117



1 Function Reference

External Interfaces

Shared Libraries (p. 1-118) Access functions stored in external
shared library files

Java (p. 1-119) Work with objects constructed from
Java API and third-party class
packages

.NET (p. 1-120) Work with objects constructed from
.NET assemblies

Component Object Model and
ActiveX (p. 1-121)

Integrate COM components into
your application

Web Services (p. 1-123) Communicate between applications
over a network using SOAP and
WSDL

Serial Port Devices (p. 1-124) Read and write to devices connected
to your computer’s serial port

See also MATLAB C/C++ and Fortran API Reference for functions you can
use in external routines that interact with MATLAB programs and the data
in MATLAB workspaces.

Shared Libraries

calllib Call function in shared library

libfunctions Return information on functions in
shared library

libfunctionsview View functions in shared library

libisloaded Determine if shared library is loaded

libpointer Create pointer object for use with
shared libraries

libstruct Create structure pointer for use with
shared libraries

1-118



External Interfaces

loadlibrary Load shared library into MATLAB
software

unloadlibrary Unload shared library from memory

Java

class Determine class name of object

fieldnames Field names of structure, or public
fields of object

import Add package or class to current
import list

inspect Open Property Inspector

isa Determine whether input is object
of given class

isjava Determine whether input is Sun
Java object

javaaddpath Add entries to dynamic Sun Java
class path

javaArray Construct Sun Java array

javachk Generate error message based on
Sun Java feature support

javaclasspath Get and set Sun Java class path

javaMethod Invoke Sun Java method

javaMethodEDT Invoke Sun Java method from Event
Dispatch Thread (EDT)

javaObject Invoke Sun Java constructor, letting
MATLAB choose the thread

javaObjectEDT Invoke Sun Java object constructor
on Event Dispatch Thread (EDT)

javarmpath Remove entries from dynamic Sun
Java class path

1-119



1 Function Reference

methods Class method names

methodsview View class methods

usejava Determine whether Sun Java feature
is supported in MATLAB software

.NET

enableNETfromNetworkDrive Enable access to .NET commands
from network drive

NET.addAssembly Make .NET assembly visible to
MATLAB

NET.Assembly Members of .NET assembly

NET.convertArray Convert numeric MATLAB array to
.NET array

NET.createArray Create single or multidimensional
.NET array

NET.createGeneric Create instance of specialized .NET
generic type

NET.GenericClass Represent parameterized generic
type definitions

NET.GenericClass Constructor for NET.GenericClass
class

NET.invokeGenericMethod Invoke generic method of object

NET.NetException .NET exception

NET.setStaticProperty Static property or field name

1-120



External Interfaces

Component Object Model and ActiveX

actxcontrol Create Microsoft® ActiveX® control
in figure window

actxcontrollist List currently installed Microsoft
ActiveX controls

actxcontrolselect Create Microsoft ActiveX control
from GUI

actxGetRunningServer Handle to running instance of
Automation server

actxserver Create COM server

addproperty Add custom property to COM object

delete (COM) Remove COM control or server

deleteproperty Remove custom property from COM
object

enableservice Enable, disable, or report status of
MATLAB Automation server

eventlisteners List event handler functions
associated with COM object events

events (COM) List of events COM object can trigger

Execute Execute MATLAB command in
Automation server

Feval (COM) Evaluate MATLAB function in
Automation server

fieldnames Field names of structure, or public
fields of object

get (COM) Get property value from interface, or
display properties

GetCharArray Character array from Automation
server

GetFullMatrix Matrix from Automation server
workspace

1-121



1 Function Reference

GetVariable Data from variable in Automation
server workspace

GetWorkspaceData Data from Automation server
workspace

inspect Open Property Inspector

interfaces List custom interfaces exposed by
COM server object

invoke Invoke method on COM object or
interface, or display methods

isa Determine whether input is object
of given class

iscom Determine whether input is COM or
ActiveX object

isevent Determine whether input is COM
object event

isinterface Determine whether input is COM
interface

ismethod Determine whether input is COM
object method

isprop Determine whether input is COM
object property

load (COM) Initialize control object from file

MaximizeCommandWindow Open Automation server window

methods Class method names

methodsview View class methods

MinimizeCommandWindow Minimize size of Automation server
window

move Move or resize control in parent
window

propedit (COM) Open built-in property page for
control

1-122



External Interfaces

PutCharArray Store character array in Automation
server

PutFullMatrix Matrix in Automation server
workspace

PutWorkspaceData Data in Automation server
workspace

Quit (COM) Terminate MATLAB Automation
server

registerevent Associate event handler for COM
object event at run time

release Release COM interface

save (COM) Serialize control object to file

set (COM) Set object or interface property to
specified value

unregisterallevents Unregister all event handlers
associated with COM object events
at run time

unregisterevent Unregister event handler associated
with COM object event at run time

Web Services

callSoapService Send SOAP message to endpoint

createClassFromWsdl Create MATLAB class based on
WSDL document

createSoapMessage Create SOAP message to send to
server

parseSoapResponse Convert response string from SOAP
server into MATLAB types

1-123



1 Function Reference

Serial Port Devices

clear (serial) Remove serial port object from
MATLAB workspace

delete (serial) Remove serial port object from
memory

fgetl (serial) Read line of text from device and
discard terminator

fgets (serial) Read line of text from device and
include terminator

fopen (serial) Connect serial port object to device

fprintf (serial) Write text to device

fread (serial) Read binary data from device

fscanf (serial) Read data from device, and format
as text

fwrite (serial) Write binary data to device

get (serial) Serial port object properties

instrcallback Event information when event
occurs

instrfind Read serial port objects frommemory
to MATLAB workspace

instrfindall Find visible and hidden serial port
objects

isvalid (serial) Determine whether serial port
objects are valid

length (serial) Length of serial port object array

load (serial) Load serial port objects and variables
into MATLAB workspace

readasync Read data asynchronously from
device

record Record data and event information
to file

1-124



External Interfaces

save (serial) Save serial port objects and variables
to file

serial Create serial port object

serialbreak Send break to device connected to
serial port

set (serial) Configure or display serial port
object properties

size (serial) Size of serial port object array

stopasync Stop asynchronous read and write
operations

1-125



1 Function Reference

1-126



2

Alphabetical List

Arithmetic Operators + - * / \ ^ ’
Relational Operators < > <= >= == ~=
Logical Operators: Elementwise & | ~
Logical Operators: Short-circuit && ||
Special Characters [ ] ( ) {} = ’ . ... , ; : % ! @
colon (:)
abs
accumarray
acos
acosd
acosh
acot
acotd
acoth
acsc
acscd
acsch
actxcontrol
actxcontrollist
actxcontrolselect
actxGetRunningServer
actxserver
addCause (MException)
addevent
addframe (avifile)
addlistener (handle)
addOptional (inputParser)
addParamValue (inputParser)



2 Alphabetical List

addpath
addpref
addprop (dynamicprops)
addproperty
addRequired (inputParser)
addsample
addsampletocollection
addtodate
addts
airy
align
alim
all
allchild
alpha
alphamap
amd
ancestor
and
angle
annotation
Annotation Arrow Properties
Annotation Doublearrow Properties
Annotation Ellipse Properties
Annotation Line Properties
Annotation Rectangle Properties
Annotation Textarrow Properties
Annotation Textbox Properties
ans
any
area
Areaseries Properties
arrayfun
ascii
asec
asecd
asech

2-2



asin
asind
asinh
assert
assignin
atan
atan2
atand
atanh
audiodevinfo
audioplayer
audiorecorder
aufinfo
auread
auwrite
avifile
aviinfo
aviread
axes
Axes Properties
axis
balance
bar, barh
bar3, bar3h
Barseries Properties
baryToCart
base2dec
beep
bench
besselh
besseli
besselj
besselk
bessely
beta
betainc
betaincinv

2-3



2 Alphabetical List

betaln
bicg
bicgstab
bicgstabl
bin2dec
binary
bitand
bitcmp
bitget
bitmax
bitor
bitset
bitshift
bitxor
blanks
blkdiag
box
break
brighten
brush
bsxfun
builddocsearchdb
builtin
bvp4c
bvp5c
bvpget
bvpinit
bvpset
bvpxtend
calendar
calllib
callSoapService
camdolly
cameratoolbar
camlight
camlookat
camorbit

2-4



campan
campos
camproj
camroll
camtarget
camup
camva
camzoom
cartToBary
cart2pol
cart2sph
case
cast
cat
catch
caxis
cd
convexHull
cd (ftp)
cdf2rdf
cdfepoch
cdfinfo
cdflib
cdflib.close
cdflib.closeVar
cdflib.computeEpoch
cdflib.computeEpoch16
cdflib.create
cdflib.createAttr
cdflib.createVar
cdflib.delete
cdflib.deleteAttr
cdflib.deleteAttrEntry
cdflib.deleteAttrgEntry
cdflib.deleteVar
cdflib.deleteVarRecords
cdflib.epoch16Breakdown

2-5



2 Alphabetical List

cdflib.epochBreakdown
cdflib.getAttrEntry
cdflib.getAttrgEntry
cdflib.getAttrMaxEntry
cdflib.getAttrMaxgEntry
cdflib.getAttrName
cdflib.getAttrNum
cdflib.getAttrScope
cdflib.getCacheSize
cdflib.getChecksum
cdflib.getCompression
cdflib.getCompressionCacheSize
cdflib.getConstantNames
cdflib.getConstantValue
cdflib.getCopyright
cdflib.getFormat
cdflib.getLibraryCopyright
cdflib.getLibraryVersion
cdflib.getMajority
cdflib.getName
cdflib.getNumAttrEntries
cdflib.getNumAttrgEntries
cdflib.getNumAttributes
cdflib.getNumgAttributes
cdflib.getReadOnlyMode
cdflib.getStageCacheSize
cdflib.getValidate
cdflib.getVarAllocRecords
cdflib.getVarBlockingFactor
cdflib.getVarCacheSize
cdflib.getVarCompression
cdflib.getVarData
cdflib.getVarMaxAllocRecNum
cdflib.getVarMaxWrittenRecNum
cdflib.getVarName
cdflib.getVarNum
cdflib.getVarNumRecsWritten

2-6



cdflib.getVarPadValue
cdflib.getVarRecordData
cdflib.getVarReservePercent
cdflib.getVarSparseRecords
cdflib.getVersion
cdflib.hyperGetVarData
cdflib.hyperPutVarData
cdflib.inquire
cdflib.inquireAttr
cdflib.inquireAttrEntry
cdflib.inquireAttrgEntry
cdflib.inquireVar
cdflib.open
cdflib.putAttrEntry
cdflib.putAttrgEntry
cdflib.putVarData
cdflib.putVarRecordData
cdflib.renameAttr
cdflib.renameVar
cdflib.setCacheSize
cdflib.setChecksum
cdflib.setCompression
cdflib.setCompressionCacheSize
cdflib.setFormat
cdflib.setMajority
cdflib.setReadOnlyMode
cdflib.setStageCacheSize
cdflib.setValidate
cdflib.setVarAllocBlockRecords
cdflib.setVarBlockingFactor
cdflib.setVarCacheSize
cdflib.setVarCompression
cdflib.setVarInitialRecs
cdflib.setVarPadValue
cdflib.SetVarReservePercent
cdflib.setVarsCacheSize
cdflib.setVarSparseRecords

2-7



2 Alphabetical List

cdfread
cdfwrite
ceil
cell
cell2mat
cell2struct
celldisp
cellfun
cellplot
cellstr
cgs
char
checkin
checkout
chol
cholinc
cholupdate
circshift
circumcenters
cla
clabel
class
classdef
clc
clear
clearvars
clear (serial)
clf
clipboard
clock
close
close
close (avifile)
close (ftp)
closereq
cmopts
cmpermute

2-8



cmunique
colamd
colorbar
colordef
colormap
colormapeditor
ColorSpec (Color Specification)
colperm
comet
comet3
commandhistory
commandwindow
compan
compass
complex
computeStrip
computeTile
computer
cond
condeig
condest
coneplot
conj
continue
contour
contour3
contourc
contourf
Contourgroup Properties
contourslice
contrast
conv
conv2
convhull
convhulln
convn
copyfile

2-9



2 Alphabetical List

copyobj
corrcoef
cos
cosd
cosh
cot
cotd
coth
cov
cplxpair
cputime
create (RandStream)
createClassFromWsdl
createCopy (inputParser)
createSoapMessage
cross
csc
cscd
csch
csvread
csvwrite
ctranspose (timeseries)
cumprod
cumsum
cumtrapz
curl
currentDirectory
customverctrl
cylinder
daqread
daspect
datacursormode
datatipinfo
date
datenum
datestr
datetick

2-10



datevec
dbclear
dbcont
dbdown
dblquad
dbmex
dbquit
dbstack
dbstatus
dbstep
dbstop
dbtype
dbup
dde23
ddeget
ddesd
ddeset
deal
deblank
dec2base
dec2bin
dec2hex
decic
deconv
del2
DelaunayTri
DelaunayTri
delaunay
delaunay3
delaunayn
delete
delete (COM)
delete (ftp)
delete (handle)
delete (serial)
delete (timer)
deleteproperty

2-11



2 Alphabetical List

delevent
delsample
delsamplefromcollection
demo
depdir
depfun
det
detrend
detrend (timeseries)
deval
diag
dialog
diary
diff
diffuse
dir
dir (ftp)
disp
disp (memmapfile)
disp (MException)
disp (serial)
disp (timer)
display
dither
divergence
dlmread
dlmwrite
dmperm
doc
docsearch
dos
dot
double
dragrect
drawnow
dsearch
dsearchn

2-12



dynamicprops
echo
echodemo
edgeAttachments
edges
edit
eig
eigs
ellipj
ellipke
ellipsoid
else
elseif
enableNETfromNetworkDrive
enableservice
end
eomday
eps
eq
eq (MException)
erf, erfc, erfcx, erfinv, erfcinv
error
errorbar
Errorbarseries Properties
errordlg
etime
etree
etreeplot
eval
evalc
evalin
event.EventData
event.listener
event.PropertyEvent
event.proplistener
eventlisteners
events

2-13



2 Alphabetical List

events (COM)
Execute
exifread
exist
exit
exp
expint
expm
expm1
export2wsdlg
eye
ezcontour
ezcontourf
ezmesh
ezmeshc
ezplot
ezplot3
ezpolar
ezsurf
ezsurfc
faceNormals
factor
factorial
false
fclose
fclose (serial)
feather
featureEdges
feof
ferror
feval
Feval (COM)
fft
fft2
fftn
fftshift
fftw

2-14



fgetl
fgetl (serial)
fgets
fgets (serial)
fieldnames
figure
Figure Properties
figurepalette
fileattrib
filebrowser
File Formats
filemarker
fileparts
fileread
filesep
fill
fill3
filter
filter (timeseries)
filter2
find
findall
findfigs
findobj
findobj (handle)
findprop (handle)
findstr
finish
fitsinfo
fitsread
fix
flipdim
fliplr
flipud
floor
flow
fminbnd

2-15



2 Alphabetical List

fminsearch
fopen
fopen (serial)
for
format
fplot
fprintf
fprintf (serial)
frame2im
fread
fread (serial)
freeBoundary
freqspace
frewind
fscanf
fscanf (serial)
fseek
ftell
ftp
full
fullfile
func2str
function
function_handle (@)
functions
funm
fwrite
fwrite (serial)
fzero
gallery
gamma, gammainc, gammaln
gammaincinv
gca
gcbf
gcbo
gcd
gcf

2-16



gco
ge
genpath
genvarname
get
get
get
get (COM)
get (hgsetget)
get (memmapfile)
get
get (RandStream)
get (serial)
get (timer)
get (timeseries)
get (tscollection)
getabstime (timeseries)
getabstime (tscollection)
getappdata
getaudiodata
GetCharArray
getdatasamplesize
getDefaultStream (RandStream)
getdisp (hgsetget)
getenv
getfield
getFileFormats
getframe
GetFullMatrix
getinterpmethod
getpixelposition
getpref
getqualitydesc
getReport (MException)
getsampleusingtime (timeseries)
getsampleusingtime (tscollection)
getTag

2-17



2 Alphabetical List

getTagNames
gettimeseriesnames
gettsafteratevent
gettsafterevent
gettsatevent
gettsbeforeatevent
gettsbeforeevent
gettsbetweenevents
GetVariable
getVersion
GetWorkspaceData
ginput
global
gmres
gplot
grabcode
gradient
graymon
grid
griddata
griddata3
griddatan
gsvd
gt
gtext
guidata
guide
guihandles
gunzip
gzip
hadamard
handle
hankel
hdf
hdf5
hdf5info
hdf5read

2-18



hdf5write
hdfinfo
hdfread
hdftool
help
helpbrowser
helpdesk
helpdlg
helpwin
hess
hex2dec
hex2num
hgexport
hggroup
Hggroup Properties
hgload
hgsave
hgsetget
hgtransform
Hgtransform Properties
hidden
hilb
hist
histc
hold
home
horzcat
horzcat (tscollection)
hostid
hsv2rgb
hypot
i
idealfilter (timeseries)
idivide
if
ifft
ifft2

2-19



2 Alphabetical List

ifftn
ifftshift
ilu
im2frame
im2java
imag
image
Image Properties
imagesc
imapprox
imfinfo
imformats
import
importdata
imread
imwrite
incenters
inOutStatus
ind2rgb
ind2sub
Inf
inferiorto
info
inline
inmem
inpolygon
input
inputdlg
inputname
inputParser
inspect
instrcallback
instrfind
instrfindall
int2str
int8, int16, int32, int64
interfaces

2-20



interp1
interp1q
interp2
interp3
interpft
interpn
interpstreamspeed
intersect
intmax
intmin
intwarning
inv
invhilb
invoke
ipermute
iqr (timeseries)
is*
isa
isappdata
iscell
iscellstr
ischar
iscom
isdir
isEdge
isempty
isempty (timeseries)
isempty (tscollection)
isequal
isequal (MException)
isequalwithequalnans
isevent
isfield
isfinite
isfloat
isglobal
ishandle

2-21



2 Alphabetical List

ishghandle
ishold
isinf
isinteger
isinterface
isjava
isKey (Map)
iskeyword
isletter
islogical
ismac
ismember
ismethod
isnan
isnumeric
isobject
isocaps
isocolors
isonormals
isosurface
ispc
isPlatformSupported
ispref
isprime
isprop
isreal
isscalar
issorted
isspace
issparse
isstr
isstrprop
isstruct
isstudent
isTiled
isunix
isvalid (handle)

2-22



isvalid (serial)
isvalid (timer)
isvarname
isvector
j
javaaddpath
javaArray
javachk
javaclasspath
javaMethod
javaMethodEDT
javaObject
javaObjectEDT
javarmpath
keyboard
keys (Map)
kron
last (MException)
lastDirectory
lasterr
lasterror
lastwarn
lcm
ldl
ldivide, rdivide
le
legend
legendre
length
length (Map)
length (serial)
length (timeseries)
length (tscollection)
libfunctions
libfunctionsview
libisloaded
libpointer

2-23



2 Alphabetical List

libstruct
license
light
Light Properties
lightangle
lighting
lin2mu
line
Line Properties
Lineseries Properties
LineSpec (Line Specification)
linkaxes
linkdata
linkprop
linsolve
linspace
list (RandStream)
listdlg
listfonts
load
load (COM)
load (serial)
loadlibrary
loadobj
log
log10
log1p
log2
logical
loglog
logm
logspace
lookfor
lower
ls
lscov
lsqnonneg

2-24



lsqr
lt
lu
luinc
magic
makehgtform
containers.Map
mat2cell
mat2str
material
matlabcolon (matlab:)
matlabrc
matlabroot
matlab (UNIX)
matlab (Windows)
max
max (timeseries)
MaximizeCommandWindow
maxNumCompThreads
mean
mean (timeseries)
median
median (timeseries)
memmapfile
memory
menu
mesh, meshc, meshz
meshgrid
meta.class
meta.class.fromName
meta.DynamicProperty
meta.event
meta.method
meta.package
meta.package.fromName
meta.package.getAllPackages
meta.property

2-25



2 Alphabetical List

metaclass
methods
methodsview
mex
mex.getCompilerConfigurations
MException
mexext
mfilename
mget
min
min (timeseries)
MinimizeCommandWindow
minres
mislocked
mkdir
mkdir (ftp)
mkpp
mldivide \, mrdivide /
mlint
mlintrpt
mlock
mmfileinfo
mmreader
mod
mode
more
move
movefile
movegui
movie
movie2avi
mput
msgbox
mtimes
mu2lin
multibandread
multibandwrite

2-26



munlock
namelengthmax
NaN
nargchk
nargin, nargout
nargoutchk
native2unicode
nchoosek
ndgrid
ndims
ne
nearestNeighbor
ne (MException)
neighbors
NET
NET.addAssembly
NET.Assembly
NET.convertArray
NET.createArray
NET.createGeneric
NET.GenericClass
NET.GenericClass
NET.invokeGenericMethod
NET.NetException
NET.setStaticProperty
netcdf
netcdf.abort
netcdf.close
netcdf.copyAtt
netcdf.create
netcdf.defDim
netcdf.defVar
netcdf.delAtt
netcdf.endDef
netcdf.getAtt
netcdf.getConstant
netcdf.getConstantNames

2-27



2 Alphabetical List

netcdf.getVar
netcdf.inq
netcdf.inqAtt
netcdf.inqAttID
netcdf.inqAttName
netcdf.inqDim
netcdf.inqDimID
netcdf.inqLibVers
netcdf.inqVar
netcdf.inqVarID
netcdf.open
netcdf.putAtt
netcdf.putVar
netcdf.reDef
netcdf.renameAtt
netcdf.renameDim
netcdf.renameVar
netcdf.setDefaultFormat
netcdf.setFill
netcdf.sync
newplot
nextDirectory
nextpow2
nnz
noanimate
nonzeros
norm
normest
not
notebook
notify (handle)
now
nthroot
null
num2cell
num2hex
num2str

2-28



numberOfStrips
numberOfTiles
numel
nzmax
ode15i
ode23, ode45, ode113, ode15s, ode23s, ode23t, ode23tb
odefile
odeget
odeset
odextend
onCleanup
ones
open
openfig
opengl
openvar
optimget
optimset
or
ordeig
orderfields
ordqz
ordschur
orient
orth
otherwise
pack
padecoef
pagesetupdlg
pan
pareto
parfor
parse (inputParser)
parseSoapResponse
pascal
patch
Patch Properties

2-29



2 Alphabetical List

path
path2rc
pathsep
pathtool
pause
pbaspect
pcg
pchip
pcode
pcolor
pdepe
pdeval
peaks
perl
perms
permute
persistent
pi
pie
pie3
pinv
planerot
play
play
playblocking
playshow
plot
plot (timeseries)
plot3
plotbrowser
plotedit
plotmatrix
plottools
plotyy
pointLocation
pol2cart
polar

2-30



poly
polyarea
polyder
polyeig
polyfit
polyint
polyval
polyvalm
pow2
power
ppval
prefdir
preferences
primes
print, printopt
printdlg
printpreview
prod
profile
profsave
propedit
propedit (COM)
properties
propertyeditor
psi
publish
PutCharArray
PutFullMatrix
PutWorkspaceData
pwd
qmr
qr
qrdelete
qrinsert
qrupdate
quad
quad2d

2-31



2 Alphabetical List

quadgk
quadl
quadv
questdlg
quit
Quit (COM)
quiver
quiver3
Quivergroup Properties
qz
rand
rand (RandStream)
randi
randi (RandStream)
randn
randn (RandStream)
randperm
randperm (RandStream)
RandStream
RandStream (RandStream)
rank
rat, rats
rbbox
rcond
read
read
readasync
readEncodedStrip
readEncodedTile
real
reallog
realmax
realmin
realpow
realsqrt
record
record

2-32



recordblocking
rectangle
Rectangle Properties
rectint
recycle
reducepatch
reducevolume
refresh
refreshdata
regexp, regexpi
regexprep
regexptranslate
registerevent
rehash
release
relationaloperators (handle)
rem
remove (Map)
removets
rename
repmat
resample (timeseries)
resample (tscollection)
reset
reset (RandStream)
reshape
residue
restoredefaultpath
rethrow
rethrow (MException)
return
rewriteDirectory
rgb2hsv
rgb2ind
rgbplot
ribbon
rmappdata

2-33



2 Alphabetical List

rmdir
rmdir (ftp)
rmfield
rmpath
rmpref
root object
Root Properties
roots
rose
rosser
rot90
rotate
rotate3d
round
rref
rsf2csf
run
save
save (COM)
save (serial)
saveas
saveobj
savepath
scatter
scatter3
Scattergroup Properties
schur
script
sec
secd
sech
selectmoveresize
semilogx, semilogy
sendmail
serial
serialbreak
set

2-34



set
set
set (COM)
set (hgsetget)
set
set (RandStream)
set (serial)
set (timer)
set (timeseries)
set (tscollection)
setabstime (timeseries)
setabstime (tscollection)
setappdata
setDefaultStream (RandStream)
setdiff
setDirectory
setdisp (hgsetget)
setenv
setfield
setinterpmethod
setpixelposition
setpref
setstr
setSubDirectory
setTag
settimeseriesnames
setxor
shading
shg
shiftdim
showplottool
shrinkfaces
sign
sin
sind
single
sinh

2-35



2 Alphabetical List

size
size (Map)
size (serial)
size (timeseries)
size
size (tscollection)
slice
smooth3
snapnow
sort
sortrows
sound
soundsc
spalloc
sparse
spaugment
spconvert
spdiags
specular
speye
spfun
sph2cart
sphere
spinmap
spline
spones
spparms
sprand
sprandn
sprandsym
sprank
sprintf
spy
sqrt
sqrtm
squeeze
ss2tf

2-36



sscanf
stairs
Stairseries Properties
start
startat
startup
std
std (timeseries)
stem
stem3
Stemseries Properties
stop
stopasync
str2double
str2func
str2mat
str2num
strcat
strcmp, strcmpi
stream2
stream3
streamline
streamparticles
streamribbon
streamslice
streamtube
strfind
strings
strjust
strmatch
strncmp, strncmpi
strread
strrep
strtok
strtrim
struct
struct2cell

2-37



2 Alphabetical List

structfun
strvcat
sub2ind
subplot
subsasgn
subsindex
subspace
subsref
substruct
subvolume
sum
sum (timeseries)
superclasses
superiorto
support
surf, surfc
surf2patch
surface
Surface Properties
Surfaceplot Properties
surfl
surfnorm
svd
svds
swapbytes
switch
symamd
symbfact
symmlq
symrcm
symvar
synchronize
syntax
system
tan
tand
tanh

2-38



tar
tempdir
tempname
tetramesh
texlabel
text
Text Properties
textread
textscan
textwrap
tfqmr
throw (MException)
throwAsCaller (MException)
tic, toc
Tiff
timer
timerfind
timerfindall
timeseries
title
todatenum
toeplitz
toolboxdir
trace
transpose (timeseries)
trapz
treelayout
treeplot
tril
trimesh
triplequad
triplot
TriRep
TriRep
TriScatteredInterp
TriScatteredInterp
trisurf

2-39



2 Alphabetical List

triu
true
try
tscollection
tsdata.event
tsearch
tsearchn
tsprops
tstool
type
typecast
uibuttongroup
Uibuttongroup Properties
uicontextmenu
Uicontextmenu Properties
uicontrol
Uicontrol Properties
uigetdir
uigetfile
uigetpref
uiimport
uimenu
Uimenu Properties
uint8, uint16, uint32, uint64
uiopen
uipanel
Uipanel Properties
uipushtool
Uipushtool Properties
uiputfile
uiresume
uisave
uisetcolor
uisetfont
uisetpref
uistack
uitable

2-40



Uitable Properties
uitoggletool
Uitoggletool Properties
uitoolbar
Uitoolbar Properties
uiwait
undocheckout
unicode2native
union
unique
unix
unloadlibrary
unmesh
unmkpp
unregisterallevents
unregisterevent
untar
unwrap
unzip
upper
urlread
urlwrite
usejava
userpath
validateattributes
validatestring
values (Map)
vander
var
var (timeseries)
varargin
varargout
vectorize
ver
verctrl
verLessThan
version

2-41



2 Alphabetical List

vertcat
vertcat (timeseries)
vertcat (tscollection)
vertexAttachments
view
viewmtx
visdiff
volumebounds
voronoi
voronoiDiagram
voronoin
wait
waitbar
waitfor
waitforbuttonpress
warndlg
warning
waterfall
wavfinfo
wavplay
wavread
wavrecord
wavwrite
web
weekday
what
whatsnew
which
while
whitebg
who, whos
wilkinson
winopen
winqueryreg
wk1finfo
wk1read
wk1write

2-42



workspace
write
writeDirectory
writeEncodedStrip
writeEncodedTile
xlabel, ylabel, zlabel
xlim, ylim, zlim
xlsfinfo
xlsread
xlswrite
xmlread
xmlwrite
xor
xslt
zeros
zip
zoom

2-43



pack

Purpose Consolidate workspace memory

Syntax pack
pack filename
pack('filename')

Description pack frees up needed space by reorganizing information so that it only
uses the minimum memory required. All variables from your base and
global workspaces are preserved. Any persistent variables that are
defined at the time are set to their default value (the empty matrix, []).

The MATLAB software temporarily stores your workspace data in a file
called tp######.mat (where ###### is a numeric value) that is located
in your temporary folder. (You can use the command dir(tempdir) to
see the files in this folder).

pack filename frees space in memory, temporarily storing workspace
data in a file specified by filename. This file resides in your current
working folder and, unless specified otherwise, has a .mat file extension.

pack('filename') is the function form of pack.

Remarks You can only run pack from the MATLAB command line.

If you specify a filename argument, that file must reside in a folder for
which you have write permission.

The pack function does not affect the amount of memory allocated to
the MATLAB process. You must quit MATLAB to free up this memory.

Since MATLAB uses a heap method of memory management, extended
MATLAB sessions may cause memory to become fragmented. When
memory is fragmented, there may be plenty of free space, but not
enough contiguous memory to store a new large variable.

If you get the Out of memorymessage from MATLAB, the pack function
may find you some free memory without forcing you to delete variables.

The pack function frees space by

2-2878



pack

• Saving all variables in the base and global workspaces to a temporary
file.

• Clearing all variables and functions from memory.

• Reloading the base and global workspace variables back from the
temporary file and then deleting the file.

If you use pack and there is still not enough free memory to proceed,
you must clear some variables. If you run out of memory often, you can
allocate larger matrices earlier in the MATLAB session and use these
system-specific tips:

• When running MATLAB on The Open Group UNIX platforms, ask
your system manager to increase your swap space.

• On Microsoft Windowsplatforms, increase virtual memory using the
Windows Control Panel.

To maintain persistent variables when you run pack, use mlock in the
function.

Examples Change the current folder to one that is writable, run pack, and return
to the previous folder.

cwd = pwd;
cd(tempdir);
pack
cd(cwd)

See Also clear, memory

2-2879



padecoef

Purpose Padé approximation of time delays

Syntax [num,den] = padecoef(T,N)

Description [num,den] = padecoef(T,N) returns the Nth-order Padé
approximation of the continuous-time delay in transfer function form.
The row vectors num and den contain the numerator and denominator
coefficients in descending powers of . Both are Nth-order polynomials.

Class support for input :

float: double, single

Class
Support

Input support floating-point values of type single or double.

References [1] Golub, G. H. and C. F. Van Loan Matrix Computations, 3rd ed.
Johns Hopkins University Press, Baltimore: 1996, pp. 572–574.

See Also pade

2-2880



pagesetupdlg

Purpose Page setup dialog box

Syntax dlg = pagesetupdlg(fig)

Note This function is obsolete. Use printpreview instead.

Description dlg = pagesetupdlg(fig) creates a dialog box from which a set of
pagelayout properties for the figure window, fig, can be set.

pagesetupdlg implements the "Page Setup..." option in the Figure
File Menu.

pagesetupdlg supports setting the layout for a single figure. fig must
be a single figure handle, not a vector of figures or a simulink diagram.

2-2881



pagesetupdlg

See Also printdlg, printpreview, printopt

2-2882



pan

Purpose Pan view of graph interactively

GUI
Alternatives

Use the Pan tool on the figure toolbar to enable and disable pan
mode on a plot, or select Pan from the figure’s Tools menu. For details,
see “Panning — Shifting Your View of the Graph” in the MATLAB
Graphics documentation.

Syntax pan on
pan xon
pan yon
pan off
pan
pan(figure_handle,...)
h = pan(figure_handle)

Description pan on turns on mouse-based panning in the current figure.

pan xon turns on panning only in the x direction in the current figure.

pan yon turns on panning only in the y direction in the current figure.

pan off turns panning off in the current figure.

pan toggles the pan state in the current figure on or off.

pan(figure_handle,...) sets the pan state in the specified figure.

h = pan(figure_handle) returns the figure’s pan mode object for the
figure figure_handle for you to customize the mode’s behavior.

Using Pan Mode Objects

Access the following properties of pan mode objects via get and modify
some of them using set:

• Enable 'on'|'off' — Specifies whether this figure mode is
currently enabled on the figure

• Motion 'horizontal'|'vertical'|'both'— The type of panning
enabled for the figure

2-2883



pan

• FigureHandle <handle>— The associated figure handle, a read-only
property that cannot be set

Pan Mode Callbacks

You can program the following callbacks for pan mode operations.

• ButtonDownFilter <function_handle> — Function to intercept
ButtonDown events

The application can inhibit the panning operation under
circumstances the programmer defines, depending on what the
callback returns. The input function handle should reference a
function with two implicit arguments (similar to Handle Graphics
object callbacks):

function [res] = myfunction(obj,event_obj)
% obj handle to the object that has been clicked on
% event_obj event data (empty in this release)
% res [output] a logical flag to determine whether the pan
% operation should take place or the 'ButtonDownFcn'
% property of the object should take precedence

• ActionPreCallback <function_handle> — Function to execute
before panning

Set this callback to if you need to execute code when a pan operation
begins. The function handle should reference a function with two
implicit arguments (similar to Handle Graphics object callbacks):

function myfunction(obj,event_obj)
% obj handle to the figure that has been clicked on
% event_obj object containing struct of event data

The event data struct has the following field:

Axes The handle of the axes that is being panned

2-2884



pan

• ActionPostCallback <function_handle> — Function to execute
after panning

Set this callback if you need to execute code when a pan operation
ends. The function handle should reference a function with two
implicit arguments (similar to Handle Graphics object callbacks):

function myfunction(obj,event_obj)
% obj handle to the figure that has been clicked on
% event_obj object containing struct of event data (same as the
% event data of the 'ActionPreCallback' callback)

Pan Mode Utility Functions

The following functions in pan mode query and set certain of its
properties.

• flags = isAllowAxesPan(h,axes)— Function querying permission
to pan axes

Calling the function isAllowAxesPan on the pan object, h, with a
vector of axes handles, axes, as input returns a logical array of the
same dimension as the axes handle vector, which indicates whether a
pan operation is permitted on the axes objects.

• setAllowAxesPan(h,axes,flag) — Function to set permission to
pan axes

Calling the function setAllowAxesPan on the pan object, h, with a
vector of axes handles, axes, and a logical scalar, flag, either allows
or disallows a pan operation on the axes objects.

• info = getAxesPanMotion(h,axes) — Function to get style of pan
operations

Calling the function getAxesPanMotion on the pan object, h, with
a vector of axes handles, axes, as input will return a character
cell array of the same dimension as the axes handle vector, which
indicates the type of pan operation for each axes. Possible values for
the type of operation are 'horizontal', 'vertical' or 'both'.

2-2885



pan

• setAxesPanMotion(h,axes,style) — Function to set style of pan
operations

Calling the function setAxesPanMotion on the pan object, h, with a
vector of axes handles, axes, and a character array, style, sets the
style of panning on each axes.

Examples Example 1 — Entering Pan Mode

Plot a graph and turn on Pan mode:

plot(magic(10));
pan on
% pan on the plot

Example 2 — Constrained Pan

Constrain pan to x-axis using set:

plot(magic(10));
h = pan;
set(h,'Motion','horizontal','Enable','on');
% pan on the plot in the horizontal direction.

Example 3 — Constrained Pan in Subplots

Create four axes as subplots and give each one a different panning
behavior:

ax1 = subplot(2,2,1);
plot(1:10);
h = pan;
ax2 = subplot(2,2,2);
plot(rand(3));
setAllowAxesPan(h,ax2,false);
ax3 = subplot(2,2,3);
plot(peaks);
setAxesPanMotion(h,ax3,'horizontal');
ax4 = subplot(2,2,4);

2-2886



pan

contour(peaks);
setAxesPanMotion(h,ax4,'vertical');
% pan on the plots.

Example 4 — Coding a ButtonDown Callback

Create a buttonDown callback for pan mode objects to trigger. Copy the
following code to a new file, execute it, and observe panning behavior:

function demo
% Allow a line to have its own 'ButtonDownFcn' callback.
hLine = plot(rand(1,10));
set(hLine,'ButtonDownFcn','disp(''This executes'')');
set(hLine,'Tag','DoNotIgnore');
h = pan;
set(h,'ButtonDownFilter',@mycallback);
set(h,'Enable','on');
% mouse click on the line
%
function [flag] = mycallback(obj,event_obj)
% If the tag of the object is 'DoNotIgnore', then return true.
% Indicate what the target is
disp(['Clicked ' get(obj,'Type') ' object'])
objTag = get(obj,'Tag');
if strcmpi(objTag,'DoNotIgnore')

flag = true;
else

flag = false;
end

Example 5 — Coding Pre- and Post-Callback Behavior

Create callbacks for pre- and post-ButtonDown events for pan mode
objects to trigger. Copy the following code to a new file, execute it, and
observe panning behavior:

function demo
% Listen to pan events

2-2887



pan

plot(1:10);
h = pan;
set(h,'ActionPreCallback',@myprecallback);
set(h,'ActionPostCallback',@mypostcallback);
set(h,'Enable','on');
%
function myprecallback(obj,evd)
disp('A pan is about to occur.');
%
function mypostcallback(obj,evd)
newLim = get(evd.Axes,'XLim');
msgbox(sprintf('The new X-Limits are [%.2f %.2f].',newLim));

Example 6 — Creating a Context Menu for Pan Mode

Coding a context menu that lets the user to switch to Zoom mode by
right-clicking:

figure; plot(magic(10));
hCM = uicontextmenu;
hMenu = uimenu('Parent',hCM,'Label','Switch to zoom',...

'Callback','zoom(gcbf,''on'')');
hPan = pan(gcf);
set(hPan,'UIContextMenu',hCM);
pan('on')

You cannot add items to the built-in pan context menu, but you can
replace it with your own.

Remarks You can create a pan mode object once and use it to customize the
behavior of different axes, as Example 3 illustrates. You can also
change its callback functions on the fly.

2-2888



pan

Note Do not change figure callbacks within an interactive
mode. While a mode is active (when panning, zooming, etc.), you will
receive a warning if you attempt to change any of the figure’s callbacks
and the operation will not succeed. The one exception to this rule is the
figure WindowButtonMotionFcn callback, which can be changed from
within a mode. Therefore, if you are creating a GUI that updates a
figure’s callbacks, the GUI should some keep track of which interactive
mode is active, if any, before attempting to do this.

When you assign different pan behaviors to different subplot axes
via a mode object and then link them using the linkaxes function,
the behavior of the axes you manipulate with the mouse carries over
to the linked axes, regardless of the behavior you previously set for
the other axes.

See Also zoom, linkaxes, rotate3d

“Object Manipulation” on page 1-110 for related functions

2-2889

../ref/figure_props.html#WindowButtonMotionFcn


pareto

Purpose Pareto chart

GUI
Alternatives

To graph selected variables, use the Plot Selector in the
Workspace Browser, or use the Figure Palette Plot Catalog. Manipulate
graphs in plot edit mode with the Property Editor. For details, see
Plotting Tools — Interactive Plotting in the MATLAB Graphics
documentation and Creating Graphics from the Workspace Browser in
the MATLAB Desktop Tools documentation.

Syntax pareto(Y)
pareto(Y,names)
pareto(Y,X)
H = pareto(...)

Description Pareto charts display the values in the vector Y as bars drawn in
descending order. Values in Y must be nonnegative and not include
NaNs. Only the first 95% of the cumulative distribution is displayed.

pareto(Y) labels each bar with its element index in Y and also plots a
line displaying the cumulative sum of Y.

pareto(Y,names) labels each bar with the associated name in the
string matrix or cell array names.

pareto(Y,X) labels each bar with the associated value from X.

pareto(ax,..) plots a Pareto chart in existing axes ax rather than GCA.

H = pareto(...) returns a combination of patch and line object
handles.

Examples Example 1:

Examine the cumulative productivity of a group of programmers to
see how normal its distribution is:

2-2890



pareto

codelines = [200 120 555 608 1024 101 57 687];
coders = ...
{'Fred','Ginger','Norman','Max','Julia','Wally','Heidi','Pat'};
pareto(codelines, coders)
title('Lines of Code by Programmer')

Example 2:

Generate a vector, X, representing diagnostic codes with values from 1 to
10 indicating various faults on devices emerging from a production line:

X = min(round(abs(randn(100,1)*4))+1,10);

Plot a Pareto chart showing the frequency of failure for each diagnostic
code from the most to the least common:

pareto(hist(X))

2-2891



pareto

Remarks You can use pareto to display the output of hist, even for vectors that
include negative numbers. Because only the first 95 percent of values
are displayed, one or more of the smallest bars may not appear. If you
extend the Xlim of your chart, you can display all the values, but the
new bars will not be labeled.

You cannot place datatips (use the Datacursor tool) on graphs created
with pareto.

See Also hist, bar

2-2892



parfor

Purpose Parallel for-loop

Syntax parfor loopvar = initval:endval; statements; end
parfor (loopvar = initval:endval, M); statements; end

Description parfor loopvar = initval:endval; statements; end executes a
series of MATLAB commands denoted here as statements for values of
loopvar between initval and endval, inclusive, which specify a vector
of increasing integer values. Unlike a traditional for-loop, there is no
guarantee of the order in which the loop iterations are executed.

The general format of a parfor statement is:

parfor loopvar = initval:endval
<statements>

end

Certain restrictions apply to the statements to ensure that the
iterations are independent, so that they can execute in parallel. If
you have the Parallel Computing Toolbox™ software, the iterations of
statements can execute in parallel on separate MATLAB workers on
your multi-core computer or computer cluster.

To execute the loop body in parallel, you must open a pool of MATLAB
workers using the matlabpool function, which is available in Parallel
Computing Toolbox.

parfor (loopvar = initval:endval, M); statements; end
executes statements in a loop using a maximum of M MATLAB workers
to evaluate statements in the body of the parfor-loop. Input variable
M must be a nonnegative integer. By default, MATLAB uses up to as
many workers as it finds available.

When any of the following are true, MATLAB does not execute the loop
in parallel:

• There are no workers in a MATLAB pool

• You set M to zero

2-2893



parfor

• You do not have Parallel Computing Toolbox

If you have Parallel Computing Toolbox, you can read more about
parfor and matlabpool by typing

doc distcomp/parfor
doc distcomp/matlabpool

Examples Perform three large eigenvalue computations using three computers
or cores:

matlabpool(3)
parfor i=1:3, c(:,i) = eig(rand(1000)); end

See Also for

2-2894



parse (inputParser)

Purpose Parse and validate named inputs

Syntax p.parse(arglist)
parse(p, arglist)

Description p.parse(arglist) is part of the input argument checking mechanism
employed by the MATLAB Input Parser utility. Input Parser code
residing in a function that receives data from calling functions identifies
what types of arguments are acceptable. The parse function parses and
validates the inputs named in arglist.

parse(p, arglist)is functionally the same as the syntax above.

For more information on the inputParser class, see “Validating Inputs
with Input Parser” in the MATLAB Programming Fundamentals
documentation.

Example This example writes a function called photoPrint that uses the Input
Parser to check arguments passed to it. This function accepts up to eight
input arguments. When called with the full set of inputs, the syntax is:

photoPrint(filename, format, finish, colorCode, ...
'horizDim', hDim, 'vertDim', vDim);

Only the first two of these inputs are defined as required arguments;
the rest are optional. The 'horizDim' and 'vertDim' arguments are in
parameter name/value format. Pair the 'horizDim' parameter name
with its value hDim, and likewise the 'vertDim' name with its value
vDim. Here are several possible calling syntaxes for the function:

photoPrint(filename, format);
photoPrint(filename, format, finish)
photoPrint(filename, format, finish, colorCode)
photoPrint(filename, format, finish, colorCode, ...

'horizDim', hDim)
photoPrint(filename, format, finish, colorCode, ...

'vertDim', vDim)

2-2895



parse (inputParser)

Begin writing the example function photoPrint by entering the
following two statements into a file named photoPrint.m. The second
statement calls the class constructor for inputParser to create an
instance p of the class. This class instance, or object, gives you access to
all of the methods and properties of the class:

function photoPrint(filename, format, varargin)
p = inputParser; % Create an instance of the class.

Add the following code to the photoPrint function. These statements
call the addRequired, addOptional, and addParamValue methods to
define the types of input data one can pass to this function:

p.addRequired('filename', @ischar);
p.addRequired('format', @(x)strcmp(x,'jpeg')

|| strcmp(x,'tiff'));

p.addOptional('finish', 'glossy', @(x)strcmpi(x,'flat') ...
|| strcmpi(x,'glossy'));

p.addOptional('colorCode', 'CMYK', @(x)strcmpi(x,'CMYK') ...
|| strcmpi(x,'RGB'));

p.addParamValue('horizDim', 6, @(x)isnumeric(x) && x<=20));
p.addParamValue('vertDim', 4, @(x)isnumeric(x) && x<=20));

Just after this, call the parse method to parse and validate the inputs.
MATLAB puts the results of the parse into a property named Results:

p.parse(filename, format, varargin{:});
p.Results

Save and execute the file, passing the required and any number of the
optional input arguments. Examining p.Results displays the name of
each input as a field, and the value of each input as the value of that
field:

photoPrint('myPhoto', 'tiff', 'flat', 'RGB', ...
'horizDim', 10, 'vertDim', 8)

2-2896



parse (inputParser)

The following inputs have been received and validated:
colorCode: 'RGB'
filename: 'myPhoto'

finish: 'flat'
format: 'tiff'

horizDim: 10
vertDim: 8

See Also inputParser, addRequired(inputParser),
addOptional(inputParser), addParamValue(inputParser),
createCopy(inputParser)

2-2897



parseSoapResponse

Purpose Convert response string from SOAP server into MATLAB types

Syntax parseSoapResponse(response)

Description parseSoapResponse(response) extracts data from response a string
returned by a SOAP server from the callSoapService function, and
converts it to appropriate MATLAB classes (types).

Examples This example uses parseSoapResponse in conjunction with other SOAP
functions to retrieve information about books from a library database,
specifically, the author’s name for a given book title.

Note The example does not use an actual endpoint; therefore, you
cannot run it. The example only illustrates how to use the SOAP
functions.

% Create the message:
message = createSoapMessage(...
'urn:LibraryCatalog',...
'getAuthor',...
{'In the Fall'},...
{'nameToLookUp'},...
{'{http://www.w3.org/2001/XMLSchema}string'},...
'rpc');
%
% Send the message to the service and get the response:
response = callSoapService(...
'http://test/soap/services/LibraryCatalog',...
'urn:LibraryCatalog#getAuthor',...
message)
%
% Extract MATLAB data from the response
author = parseSoapResponse(response)

MATLAB returns:

2-2898



parseSoapResponse

author = Kate Alvin

where author is a char class (type).

See Also callSoapService, createClassFromWsdl, createSoapMessage,
urlread, xmlread

“Using Web Services with MATLAB” in the MATLAB External
Interfaces documentation

2-2899



pascal

Purpose Pascal matrix

Syntax A = pascal(n)
A = pascal(n,1)
A = pascal(n,2)

Description A = pascal(n) returns the Pascal matrix of order n: a symmetric
positive definite matrix with integer entries taken from Pascal’s
triangle. The inverse of A has integer entries.

A = pascal(n,1) returns the lower triangular Cholesky factor (up to
the signs of the columns) of the Pascal matrix. It is involutary, that is,
it is its own inverse.

A = pascal(n,2) returns a transposed and permuted version of
pascal(n,1). A is a cube root of the identity matrix.

Examples pascal(4) returns

1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

A = pascal(3,2) produces

A =
1 1 1

-2 -1 0
1 0 0

See Also chol

2-2900



patch

Purpose Create one or more filled polygons

Syntax patch(X,Y,C)
patch(X,Y,Z,C)
patch(FV)
patch(X,Y,C,'PropertyName',propertyvalue...)
patch('PropertyName',propertyvalue,...)
handle = patch(...)

Properties For a list of properties, see Patch Properties.

Description patch(X,Y,C) adds a filled 2-D patch object to the current axes. A
patch object is one or more polygons defined by the coordinates of its
vertices. The elements of X and Y specify the vertices of a polygon . If X
and Y are m-by-n matrices, MATLAB draws n polygons with m vertices. C
determines the color of the patch. For more information on color input
requirements, see “Coloring Patches” on page 2-2905.

MATLAB does not require each face to have the same number of
vertices. In cases where they do not, pad the end of the Faces matrix
with NaNs. To define a patch with faces that do not close, add one or
more NaNs to the row in the Vertices matrix that defines the vertex
you do not want connected.

See “Creating 3-D Models with Patches” in MATLAB 3-D Visualization
for more information on using patch objects.

patch(X,Y,Z,C) creates a patch in 3-D coordinates. If the coordinate
data does not define closed polygons, patch closes the polygons. The
data can define concave or intersecting polygons. However, if the edges
of an individual patch face intersect themselves, the resulting face
might be only partly filled. In that case, it is better to divide the face
into smaller polygons.

patch(FV) creates a patch using structure FV, which contains the
fields vertices, faces, and optionally facevertexcdata. These fields
correspond to the Vertices, Faces, and FaceVertexCData patch
properties. Specifying only unique vertices and their connection matrix

2-2901



patch

can reduce the size of the data for patches having many faces. For an
example of how to specify patches with this method, see “Specifying
Patch Object Shapes” on page 2-2902.

patch(X,Y,C,'PropertyName',propertyvalue...) follows the X,
Y, (Z), and C arguments with property name/property value pairs to
specify additional patch properties. For a description of the properties,
see Patch Properties. You can specify properties as property
name/property value pairs, structure arrays, and cell arrays (see the set
and get reference pages for examples of how to specify these data types).

patch('PropertyName',propertyvalue,...) specifies all properties
using property name/property value pairs. This form lets you omit the
color specification because MATLAB uses the default face color and
edge color unless you explicitly assign a value to the FaceColor and
EdgeColor properties. This form also lets you specify the patch using
the Faces and Vertices properties instead of x-, y-, and z-coordinates.
See “Specifying Patch Object Shapes” on page 2-2902 for more
information.

handle = patch(...) returns the handle of the patch object it creates.

Unlike high-level area creation functions, such as fill or area, patch
does not check the settings of the figure and axes NextPlot properties.
It simply adds the patch object to the current axes.

Examples Specifying Patch Object Shapes

The next two examples create a patch object using two methods:

• Specifying x-, y-, and z-coordinates and color data (XData, YData,
ZData, and CData properties)

• Specifying vertices, the connection matrix, and color data (Vertices,
Faces, and FaceVertexCData properties)

Create five triangular faces, each having three vertices, by specifying
the x-, y-, and z-coordinates of each vertex:

xdata = [2 2 0 2 5;

2-2902



patch

2 8 2 4 5;
8 8 2 4 8];

ydata = [4 4 4 2 0;
8 4 6 2 2;
4 0 4 0 0];

zdata = ones(3,5);

% Red numbers denote the vertex indices.
% For this example:
% xindices = [1 4 7 10 13;
% 2 5 8 11 14;
% 3 6 9 12 15];
% Blue numbers denote the face numbers.
patch(xdata,ydata,zdata,'w')

Create the five triangular faces, specifying faces and vertices:

2-2903



patch

% The Vertices property contains the coordinates of each
% unique vertex defining the patch. The Faces property
% specifies how to connect these vertices to form each
% face of the patch. More than one face may use a given vertex.
% For this example, five triangles have 11 total vertices,
% instead of 15. Each row contains the x- and y-coordinates
% of each vertex.
verts = [2 4; ...

2 8; ...
8 4; ...
8 0; ...
0 4; ...
2 6; ...
2 2; ...
4 2; ...
4 0; ...
5 2; ...
5 0 ];

% There are five faces, defined by connecting the
% vertices in the order indicated.
faces = [ ...

1 2 3; ...
1 3 4; ...
5 6 1; ...
7 8 9; ...
11 10 4 ];

% Create the patch by specifying the Faces, Vertices,
% and FaceVertexCData properties as well as the
% FaceColor property. Red numbers denote the vertex
% numbers, as defined in faces. Blue indicate face numbers.
p =
patch('Faces',faces,'Vertices',verts,'FaceColor','w');

2-2904



patch

% Using the previous values for verts and faces, you can
% create the same patch object using a structure:
patchinfo.Vertices = verts;
patchinfo.Faces = faces;
patchinfo.FaceColor = 'w';

patch(patchinfo);

Coloring Patches

There are many ways to customize your patch objects using colors. The
appropriate input depends on:

• Whether you want to change the edge colors

• How you specified the patch faces:

- Using face/vertex values

2-2905



patch

- Using x-, y-, and z-coordinates

The following sections present the various options available.

Specifying Edge Colors
The following options apply to the edge colors of your patch object. The
settings are independent of the face colors, but the colors themselves
depend on the colors specified at each vertex. Markers show the color
at each vertex. Specify the colors using the EdgeColor property. To
explore the options using the Sample Input Code, first start with a
base patch object:

xdata = [2 2 0 2 5;
2 8 2 4 5;
8 8 2 4 8];

ydata = [4 4 4 2 0;
8 4 6 2 2;
4 0 4 0 0];

cdata = [15 0 4 6 10;
1 2 5 7 9;
2 3 0 8 3];

p = patch(xdata,ydata,cdata,'Marker','o','MarkerFaceColor','flat','Face

For more detailed information on how the EdgeColor property works,
see the Patch Properties page.

Desired Look EdgeColor Value Sample Code

All edges have the same color,
around all faces. This option does
not rely on the FaceColor value.

ColorSpec
set(p,'EdgeColor','g')

2-2906



patch

Desired Look EdgeColor Value Sample Code

Each edge corresponds to the color
of the vertex that precedes the
edge, with one color per edge. This
option requires that the FaceColor
property be flat or interp. By
default, if you specify CData when
creating the patch object, its
FaceColor property is interp.

'flat'
set(p,'EdgeColor','flat',...

'LineWidth',3)

2-2907



patch

Desired Look EdgeColor Value Sample Code

Each edge corresponds to the
vertex colors, interpolated between
vertices. This option requires that
the FaceColor property be flat or
interp. By default, if you specify
CData when creating the patch
object, its FaceColor property is
interp.

'interp'
set(gcf,'Renderer','zbuffer')

set(p,'EdgeColor','interp',...

'LineWidth',5)

Edges have no color. This option
does not rely on the FaceColor
value. If set, markers retain vertex
colors.

'none'
set(p,'EdgeColor','none')

2-2908



patch

Desired Look EdgeColor Value Sample Code

Specifying Face Colors Using Face/Vertex Input Matrics
The following options apply to the face colors of your patch object when
you specify the faces using face/vertex input matrices. To explore the
options, first start with a base patch object:

% For this example, there are five triangles (m = 5) sharing
% eleven unique vertices (k = 11).
verts = [2 4; ...

2 8; ...
8 4; ...
8 0; ...
0 4; ...
2 6; ...
2 2; ...
4 2; ...
4 0; ...
5 2; ...
5 0 ];

faces = [1 2 3; ...
1 3 4; ...
5 6 1; ...
7 8 9; ...
11 10 4];

2-2909



patch

p = patch('Faces',faces,'Vertices',verts,'FaceColor','b');

For more information on the relevant properties, see FaceColor,
FaceVertexCData, and CDataMapping.

Desired Look Parameter Values Sample Code

All faces have the same
color.

• FaceColor: ColorSpec

• FaceVertexCData: [] (no
input)

An empty array is the
default value, and patch
ignores any input until you
set FaceColor to 'flat' or
'interp'.

• Color source: truecolor

• CDataMapping: 'direct' or
'scaled'.

'scaled' is the default
value, but neither affects the
outcome.

set(p,'FaceColor','r')

or

set(p,'FaceColor',[1 0 0])

Each face has a single,
unique color, indexed
from a selected section
of the colormap.

• FaceColor: 'flat'

• FaceVertexCData: m-by-1
matrix of index values

• Color source: A selected
portion of the colormap

• CDataMapping: 'scaled'

clear cdata

set(gca,'CLim',[0 40])

cdata = [15 30 25 2 60]';

set(p,'FaceColor','flat',...

'FaceVertexCData',cdata...

'CDataMapping','scaled')

2-2910



patch

Desired Look Parameter Values Sample Code

Each face has a
single, unique color,
indexed from the whole
colormap.

• FaceColor: 'flat'

• FaceVertexCData: m-by-1
matrix of index values

• Color source: colormap

• CDataMapping: 'direct'

'scaled' is the default
value when you input
CData values. If you
want to change the axes
CLim property, but want
your patch object to index
the entire colormap, use
'CDataMapping','direct'.

clear cdata

set(gca,'CLim',[0 40])

cdata = [15 30 25 2 60]';

set(p,'FaceColor','flat',...

'FaceVertexCData',cdata,...

'CDataMapping','direct')

Each face has a
single, unique color,
determined by truecolor
value input.

• FaceColor: 'flat'

• FaceVertexCData: m-by-3
matrix of truecolor values,
from 0 to 1

• Color source: truecolor

• CDataMapping: 'direct' or
'scaled'.

'scaled' is the default
value, but neither affects the
outcome.

clear cdata

cdata = [0 0 1 0 0.8;

0 1 0 0 0.8;

1 0 1 0 0.8]';

set(p,'FaceColor','flat',...

'FaceVertexCData',cdata)

2-2911



patch

Desired Look Parameter Values Sample Code

Each unique vertex has
a single, unique color,
indexed from a selected
section of the colormap.
Faces each have a
single, unique color, but
edges may have 'flat'
or 'interp' color.

• FaceColor: 'flat'

• FaceVertexCData: k-by-1
matrix of index values

• Color source: A selected
portion of the colormap

• CDataMapping: 'scaled'

clear cdata

set(gca,'CLim',[0 40])

cdata = [15 30 25 2 ...

60 12 23 40 13 26 24]';

set(p,'FaceColor','flat',...

'FaceVertexCData',cdata,...

'EdgeColor','flat',...

'LineWidth',5,...

'CDataMapping','scaled')

Each unique vertex
has a single, unique
color, indexed from the
whole colormap. Faces
each have a single,
unique color, but edges
may have 'flat' or
'interp' color.

• FaceColor: 'flat'

• FaceVertexCData: k-by-1
matrix of index values

• Color source: colormap

• CDataMapping: 'direct'

'scaled' is the default
value when you input
CData values. If you
want to change the axes
CLim property, but want
your patch object to index
the entire colormap, use
'CDataMapping','direct'.

clear cdata

set(gca,'CLim',[0 40])

cdata = [15 30 25 2 ...

60 12 23 40 13 26 24]';

set(p,'FaceColor','flat',...

'FaceVertexCData',cdata,...

'CDataMapping','direct',...

'EdgeColor','flat',...

'LineWidth',5)

2-2912



patch

Desired Look Parameter Values Sample Code

Each unique vertex has
a single, unique color,
determined by truecolor
value input. Faces
each have a single,
unique color, but edges
may have 'flat' or
'interp' color.

• FaceColor: 'flat'

• FaceVertexCData: k-by-3
matrix of truecolor values,
from 0 to 1

• Color source: truecolor

• CDataMapping: 'direct' or
'scaled'.

'scaled' is the default
value, but neither affects the
outcome.

clear cdata

cdata = [0 0 1;

0 1 0;

0 1 1;

1 0 0;

1 0 1;

1 1 0;

0 0 0;

0.2 0.2 0.2;

0.4 0.4 0.4;

0.6 0.6 0.6;

0.8 0.8 0.8];

set(p,'FaceColor','flat',...

'FaceVertexCData',cdata,...

'EdgeColor','interp',...

'LineWidth',5)

Each unique vertex has
a single, unique color,
indexed from a selected
section of the colormap.
Edges may have 'flat'
or 'interp' color.

• FaceColor: 'interp'

• FaceVertexCData: k-by-1
matrix of index values

• Color source: A selected
portion of the colormap

• CDataMapping: 'scaled'

clear cdata

set(gca,'CLim',[0 40])

cdata = [15 30 25 2 ...

60 12 23 40 13 26 24]';

set(p,'FaceColor','interp',...

'FaceVertexCData',cdata,...

'EdgeColor','flat',...

'LineWidth',5...

'CDataMapping','scaled')

2-2913



patch

Desired Look Parameter Values Sample Code

Each unique vertex
has a single, unique
color, indexed from the
whole colormap. Edges
may have 'flat' or
'interp' color.

• FaceColor: 'interp'

• FaceVertexCData: k-by-1
matrix of index values

• Color source: colormap

• CDataMapping: 'direct'

'scaled' is the default
value when you input
CData values. If you
want to change the axes
CLim property, but want
your patch object to index
the entire colormap, use
'CDataMapping','direct'.

clear cdata

set(gca,'CLim',[0 40])

cdata = [15 30 25 2 ...

60 12 23 40 13 26 24]';

set(p,'FaceColor','interp',...

'FaceVertexCData',cdata,...

'CDataMapping','direct',...

'EdgeColor','flat',...

'LineWidth',5)

Each unique vertex has
a single, unique color,
determined by truecolor
value input. Edges
may have 'flat' or
'interp' color.

• FaceColor: 'interp'

• FaceVertexCData: k-by-3
matrix of truecolor values,
from 0 to 1

• Color source: truecolor

• CDataMapping: 'direct' or
'scaled'.

'scaled' is the default
value, but neither affects the
outcome.

clear cdata

cdata = [0 0 1;

0 1 0;

0 1 1;

1 0 0;

1 0 1;

1 1 0;

0 0 0;

0.2 0.2 0.2;

0.4 0.4 0.4;

0.6 0.6 0.6;

0.8 0.8 0.8];

set(p,'FaceColor','interp',...

'FaceVertexCData',cdata,...

'EdgeColor','interp',...

'LineWidth',5)

2-2914



patch

Specifying Face Colors Using x-, y-, and z-Coordinate Input
The following options apply to the face colors of your patch object when
you specify the faces using x-, y-, and z-coordinates. To explore the
options, first start with a base patch object:

% For this example, there are five (m=5) triangles (n=3).
% The total number of vertices is mxn, or k = 15.
xdata = [2 2 0 2 5;

2 8 2 4 5;
8 8 2 4 8];

ydata = [4 4 4 2 0;
8 4 6 2 2;
4 0 4 0 0];

zdata = ones(3,5);
p = patch(xdata,ydata,zdata,'b')

For more information on the relevant properties, see FaceColor, CData,
and CDataMapping.

Desired Look Parameter Values Sample Code

All faces have the same
color.

• FaceColor: ColorSpec

• FaceVertexCData: [] (no
input)

• Color source: truecolor

• CDataMapping: 'direct' or
'scaled'.

'scaled' is the default
value, but neither affects the
outcome.

set(p,'FaceColor','r')

or

set(p,'FaceColor',[1 0 0])

Each face has a single,
unique color, indexed
from a selected section
of the colormap.

• FaceColor: 'flat'

• FaceVertexCData: m-by-1
matrix of index values

clear cdata

set(gca,'CLim',[0 40])

cdata = [15 30 25 2 60];

2-2915



patch

Desired Look Parameter Values Sample Code

• Color source: A selected
portion of the colormap

• CDataMapping: 'scaled'

set(p,'FaceColor','flat',...

'CData',cdata...

'CDataMapping','scaled')

Each face has a
single, unique color,
indexed from the whole
colormap.

• FaceColor: 'flat'

• FaceVertexCData: m-by-1
matrix of index values

• Color source: colormap

• CDataMapping: 'direct'

'scaled' is the default
value when you input
CData values. If you
want to change the axes
CLim property, but want
your patch object to index
the entire colormap, use
'CDataMapping','direct'.

clear cdata

set(gca,'CLim',[0 40])

cdata = [15 30 25 2 60];

set(p,'FaceColor','flat',...

'CData',cdata,...

'CDataMapping','direct')

2-2916



patch

Desired Look Parameter Values Sample Code

Each face has a
single, unique color,
determined by truecolor
value input.

• FaceColor: 'flat'

• FaceVertexCData:
m-by-1-by-3 matrix of
truecolor values, from 0
to 1

• Color source: truecolor

• CDataMapping: 'direct' or
'scaled'.

'scaled' is the default
value, but neither affects the
outcome.

clear cdata

cdata(:,:,1) = [0 0 1 0 0.8];

cdata(:,:,2) = [0 0 0 0 0.8];

cdata(:,:,3) = [1 1 1 0 0.8];

set(p,'FaceColor','flat',...

'CData',cdata)

Each unique vertex has
a single, unique color,
indexed from a selected
section of the colormap.
Faces each have a
single, unique color, but
edges may have 'flat'
or 'interp' color.

• FaceColor: 'flat'

• FaceVertexCData: m-by-n
matrix of index values

• Color source: A selected
portion of the colormap

• CDataMapping: 'scaled'

clear cdata

set(gca,'CLim',[0 40])

cdata = [15 30 25 2 60;

12 23 40 13 26;

24 8 1 65 42];

set(p,'FaceColor','flat',...

'CData',cdata,...

'EdgeColor','flat',...

'LineWidth',5...

'CDataMapping','scaled')

2-2917



patch

Desired Look Parameter Values Sample Code

Each unique vertex
has a single, unique
color, indexed from the
whole colormap. Faces
each have a single,
unique color, but edges
may have 'flat' or
'interp' color.

• FaceColor: 'flat'

• FaceVertexCData: m-by-n
matrix of index values

• Color source: colormap

• CDataMapping: 'direct'

'scaled' is the default
value when you input
CData values. If you
want to change the axes
CLim property, but want
your patch object to index
the entire colormap, use
'CDataMapping','direct'.

clear cdata

set(gca,'CLim',[0 40])

cdata = [15 30 25 2 60;

12 23 40 13 26;

24 8 1 65 42];

set(p,'FaceColor','flat',...

'CData',cdata,...

'CDataMapping','direct',...

'EdgeColor','flat',...

'LineWidth',5)

Each vertex has a
single, unique color,
determined by truecolor
value input. Faces
each have a single,
unique color, but edges
may have 'flat' or
'interp' color.

• FaceColor: 'flat'

• FaceVertexCData:
m-by-n-by-3 matrix of
truecolor values, from 0
to 1

• Color source: truecolor

• CDataMapping: 'direct' or
'scaled'.

'scaled' is the default
value, but neither affects the
outcome.

clear cdata

cdata(:,:,1) = [0 0 1 0 0.8;

0 0 1 0.2 0.6;

0 1 0 0.4 1];

cdata(:,:,2) = [0 0 0 0 0.8;

1 1 1 0.2 0.6;

1 0 0 0.4 0];

cdata(:,:,3) = [1 1 1 0 0.8;

0 1 0 0.2 0.6;

1 0 1 0.4 0];

set(p,'FaceColor','flat',...

'CData',cdata,...

'EdgeColor','interp',...

'LineWidth',5)

2-2918



patch

Desired Look Parameter Values Sample Code

Each vertex has a single,
unique color, indexed
from a selected section
of the colormap. Edges
may have 'flat' or
'interp' color.

• FaceColor: 'interp'

• FaceVertexCData: m-by-n
matrix of index values

• Color source: A selected
portion of the colormap

• CDataMapping: 'scaled'

clear cdata

set(gca,'CLim',[0 40])

cdata = [15 30 25 2 60;

12 23 40 13 26;

24 8 1 65 42];

set(p,'FaceColor','interp',...

'CData',cdata,...

'EdgeColor','flat',...

'LineWidth',5...

'CDataMapping','scaled')

Each vertex has a
single, unique color,
indexed from the
whole colormap. Edges
may have 'flat' or
'interp' color.

• FaceColor: 'interp'

• FaceVertexCData: m-by-n
matrix of index values

• Color source: colormap

• CDataMapping: 'direct'

'scaled' is the default
value when you input
CData values. If you
want to change the axes
CLim property, but want
your patch object to index
the entire colormap, use
'CDataMapping','direct'.

clear cdata

set(gca,'CLim',[0 40])

cdata = [15 30 25 2 60;

12 23 40 13 26;

24 8 1 65 42];

set(p,'FaceColor','interp',...

'CData',cdata,...

'CDataMapping','direct',...

'EdgeColor','flat',...

'LineWidth',5)

Each vertex has a
single, unique color,
determined by truecolor
value input. Edges

• FaceColor: 'interp'

• FaceVertexCData:
m-by-n-by-3 matrix of

clear cdata

cdata(:,:,1) = [0.8 0.1 0.2

0.9 0.3 1;

2-2919



patch

Desired Look Parameter Values Sample Code

may have 'flat' or
'interp' color.

truecolor values, from 0
to 1

• Color source: truecolor

• CDataMapping: 'direct' or
'scaled'.

'scaled' is the default
value, but neither affects the
outcome.

0.1 0.5 0.9;

0.9 1 0.5;

0.6 0.9 0.8];

cdata(:,:,2) =[0.1 0.6 0.7;

0.4 0.1 0.7;

0.9 0.8 0.3;

0.7 0.9 0.6;

0.9 0.6 0.1];

cdata(:,:,3) =[0.7 0.8 0.4;

0.1 0.6 0.3;

0.2 0.3 0.7;

0.0 0.9 0.7;

0.0 0.0 0.1];

set(p,'FaceColor','interp',...

'CData',cdata,...

'EdgeColor','interp',...

'LineWidth',5)

See Also area | caxis | fill | fill3 | isosurface | surface | FaceColor |
CData | CDataMapping | FaceVertexCData | Patch Properties

Tutorials • “Creating 3-D Models with Patches”

2-2920



Patch Properties

Purpose Patch properties

Creating
Patch
Objects

Use patch to create patch objects.

Modifying
Properties

You can set and query graphics object properties in two ways:

• “The Property Editor” is an interactive tool that enables you to see
and change object property values.

• The set and get commands enable you to set and query the values of
properties.

To change the default values of properties, see “Setting Default Property
Values”.

See “Core Graphics Objects” for general information about this type
of object.

Patch
Property
Descriptions

This section lists property names along with the type of values each
accepts. Curly braces { } enclose default values.

AlphaDataMapping
none| {scaled} | direct

Transparency mapping method. This property determines how
the MATLAB software interprets indexed alpha data. This
property can be any of the following:

• none— The transparency values of FaceVertexAlphaData are
between 0 and 1 or are clamped to this range.

• scaled — Transform the FaceVertexAlphaData to span the
portion of the alphamap indicated by the axes ALim property,
linearly mapping data values to alpha values. (scaled is the
default)

2-2921

../ref/axes_props.html#ALim


Patch Properties

• direct — Use the FaceVertexAlphaData as indices directly
into the alphamap. When not scaled, the data are usually
integer values ranging from 1 to length(alphamap). MATLAB
maps values less than 1 to the first alpha value in the
alphamap, and values greater than length(alphamap)
to the last alpha value in the alphamap. Values with a
decimal portion are fixed to the nearest lower integer. If
FaceVertexAlphaData is an array of uint8 integers, then the
indexing begins at 0 (i.e., MATLAB maps a value of 0 to the
first alpha value in the alphamap).

AmbientStrength
scalar >= 0 and <= 1

Strength of ambient light. This property sets the strength of
the ambient light, which is a nondirectional light source that
illuminates the entire scene. You must have at least one visible
light object in the axes for the ambient light to be visible. The
axes AmbientColor property sets the color of the ambient light,
which is therefore the same on all objects in the axes.

You can also set the strength of the diffuse and specular
contribution of light objects. See the DiffuseStrength and
SpecularStrength properties.

Annotation
hg.Annotation object Read Only

Control the display of patch objects in legends. The Annotation
property enables you to specify whether this patch object is
represented in a figure legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

2-2922



Patch Properties

Once you have obtained the hg.LegendEntry object, you can set
its IconDisplayStyle property to control whether the patch
object is displayed in a figure legend:

IconDisplayStyle
Value

Purpose

on Represent this patch object in a legend
(default)

off Do not include this patch object in a legend

children Same as on because patch objects do not
have children

Setting the IconDisplayStyle property

These commands set the IconDisplayStyle of a graphics object
with handle hobj to off:

hAnnotation = get(hobj,'Annotation');
hLegendEntry = get(hAnnotation','LegendInformation');
set(hLegendEntry,'IconDisplayStyle','off')

Using the IconDisplayStyle property

See “Controlling Legends” for more information and examples.

Selecting which objects to display in legend

Some graphics functions create multiple objects. For example,
contour3 uses patch objects to create a 3D contour graph. You
can use the Annotation property set select a subset of the objects
for display in the legend.

[X,Y] = meshgrid(-2:.1:2);
[Cm hC] = contour3(X.*exp(-X.^2-Y.^2));
hA = get(hC,'Annotation');
hLL = get([hA{:}],'LegendInformation');

2-2923



Patch Properties

% Set the IconDisplayStyle property to display
% the first, fifth, and ninth patch in the legend
set([hLL{:}],{'IconDisplayStyle'},...

{'on','off','off','off','on','off','off','off','on'}')
% Assign DisplayNames for the three patch
that are displayed in the legend
set(hC([1,5,9]),{'DisplayName'},{'bottom','middle','top'}')
legend show

BackFaceLighting
unlit | lit | {reverselit}

Face lighting control. This property determines how faces are lit
when their vertex normals point away from the camera:

• unlit — Face is not lit.

• lit — Face is lit in normal way.

• reverselit — Face is lit as if the vertex pointed towards the
camera.

This property is useful for discriminating between the internal
and external surfaces of an object. See the Using MATLAB
Graphics manual for an example.

BeingDeleted
on | {off} Read Only

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in
the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property) It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions
that act on a number of different objects. These functions may not
need to perform actions on objects that are going to be deleted,

2-2924

../ref/patch_props.html#DeleteFcn


Patch Properties

and therefore, can check the object’s BeingDeleted property
before acting.

BusyAction
cancel | {queue}

Callback routine interruption. The BusyAction property enables
you to control how MATLAB handles events that potentially
interrupt executing callback routines. If there is a callback
routine executing, callback routines invoked subsequently always
attempt to interrupt it. If the Interruptible property of the
object whose callback is executing is set to on (the default), then
interruption occurs at the next point where the event queue is
processed. If the Interruptible property is off, the BusyAction
property (of the object owning the executing callback) determines
how MATLAB handles the event. The choices are

• cancel— Discard the event that attempted to execute a second
callback routine.

• queue — Queue the event that attempted to execute a second
callback routine until the current callback finishes.

ButtonDownFcn
function handle, cell array containing function handle and
additional arguments, or string (not recommended)

Button press callback routine. A callback routine that executes
whenever you press a mouse button while the pointer is over the
patch object.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

Set this property to a function handle that references the callback.
You can also use a string that is a valid MATLAB expression
or the name of a MATLAB file. The expressions execute in the
MATLAB workspace.

2-2925



Patch Properties

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

CData
scalar, vector, or matrix

Patch colors. This property specifies the color of the patch. You
can specify color for each vertex, each face, or a single color for
the entire patch. The way MATLAB interprets CData depends
on the type of data supplied. The data can be numeric values
that are scaled to map linearly into the current colormap, integer
values that are used directly as indices into the current colormap,
or arrays of RGB values. RGB values are not mapped into the
current colormap, but interpreted as the colors defined. On true
color systems, MATLAB uses the actual colors defined by the
RGB triples.

The following two diagrams illustrate the dimensions of CData
with respect to the coordinate data arrays, XData, YData, and
ZData. The first diagram illustrates the use of indexed color.

2-2926



Patch Properties

The second diagram illustrates the use of true color. True
color requires m-by-n-by-3 arrays to define red, green, and blue
components for each color.

Note that if CData contains NaNs, MATLAB does not color the
faces.

See also the Faces, Vertices, and FaceVertexCData properties
for an alternative method of patch definition.

CDataMapping
{scaled} | direct

Direct or scaled color mapping. This property determines how
MATLAB interprets indexed color data used to color the patch.
(If you use true color specification for CData or FaceVertexCData,
this property has no effect.)

• scaled — Transform the color data to span the portion of
the colormap indicated by the axes CLim property, linearly

2-2927



Patch Properties

mapping data values to colors. See the caxis command for
more information on this mapping.

• direct — Use the color data as indices directly into the
colormap. When not scaled, the data are usually integer values
ranging from 1 to length(colormap). MATLAB maps values
less than 1 to the first color in the colormap, and values greater
than length(colormap) to the last color in the colormap.
Values with a decimal portion are fixed to the nearest lower
integer.

Children
matrix of handles

Always the empty matrix; patch objects have no children.

Clipping
{on} | off

Clipping to axes rectangle. When Clipping is on, MATLAB does
not display any portion of the patch outside the axes rectangle.

CreateFcn
string or function handle

Callback routine executed during object creation. This property
defines a callback routine that executes when MATLAB creates a
patch object. You must define this property as a default value for
patches or in a call to the patch function that creates a new object.

For example, the following statement creates a patch (assuming
x, y, z, and c are defined), and executes the function referenced by
the function handle @myCreateFcn.

patch(x,y,z,c,'CreateFcn',@myCreateFcn)

MATLAB executes the create function after setting all properties
for the patch created. Setting this property on an existing patch
object has no effect.

2-2928



Patch Properties

The handle of the object whose CreateFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

DeleteFcn
string or function handle

Delete patch callback routine. A callback routine that executes
when you delete the patch object (for example, when you issue a
delete command or clear the axes (cla) or figure (clf) containing
the patch). MATLAB executes the routine before deleting the
object’s properties so these values are available to the callback
routine.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

See Function Handle Callbacks for information on how to use
function handles to define the callback function.

DiffuseStrength
scalar >= 0 and <= 1

Intensity of diffuse light. This property sets the intensity of the
diffuse component of the light falling on the patch. Diffuse light
comes from light objects in the axes.

You can also set the intensity of the ambient and specular
components of the light on the patch object. See the
AmbientStrength and SpecularStrength properties.

DisplayName
string (default is empty string)

2-2929



Patch Properties

String used by legend for this patch object. The legend function
uses the string defined by the DisplayName property to label this
patch object in the legend.

• If you specify string arguments with the legend function,
DisplayName is set to this patch object’s corresponding string
and that string is used for the legend.

• If DisplayName is empty, legend creates a string of the form,
['data' n], where n is the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

• If you edit the string directly in an existing legend, DisplayName
is set to the edited string.

• If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

• To add programmatically a legend that uses the DisplayName
string, call legend with the toggle or show option.

See “Controlling Legends” for more examples.

EdgeAlpha
{scalar = 1} | flat | interp

Transparency of the edges of patch faces. This property can be
any of the following:

• scalar — A single non-NaN scalar value between 0 and 1
that controls the transparency of all the edges of the object.
1 (the default) means fully opaque and 0 means completely
transparent.

• flat— The alpha data (FaceVertexAlphaData) of each vertex
controls the transparency of the edge that follows it.

2-2930



Patch Properties

• interp — Linear interpolation of the alpha data
(FaceVertexAlphaData) at each vertex determines the
transparency of the edge.

Note that you cannot specify flat or interp EdgeAlpha without
first setting FaceVertexAlphaData to a matrix containing one
alpha value per face (flat) or one alpha value per vertex (interp).

EdgeColor
{ColorSpec} | none | flat | interp

Color of the patch edge. This property determines how MATLAB
colors the edges of the individual faces that make up the patch.

• ColorSpec — A three-element RGB vector or one of the
MATLAB predefined names, specifying a single color for
edges. The default edge color is black. See ColorSpec for more
information on specifying color.

• none — Edges are not drawn.

• flat — The color of each vertex controls the color of the edge
that follows it. This means flat edge coloring is dependent on
the order in which you specify the vertices:

• interp—Linear interpolation of the CData or FaceVertexCData
values at the vertices determines the edge color.

EdgeLighting
{none} | flat | gouraud | phong

2-2931



Patch Properties

Algorithm used for lighting calculations. This property selects the
algorithm used to calculate the effect of light objects on patch
edges. Choices are

• none — Lights do not affect the edges of this object.

• flat — The effect of light objects is uniform across each edge
of the patch.

• gouraud — The effect of light objects is calculated at the
vertices and then linearly interpolated across the edge lines.

• phong — The effect of light objects is determined by
interpolating the vertex normals across each edge line and
calculating the reflectance at each pixel. Phong lighting
generally produces better results than Gouraud lighting, but
takes longer to render.

EraseMode
{normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses
to draw and erase patch objects. Alternative erase modes are
useful in creating animated sequences, where control of the way
individual objects redraw is necessary to improve performance
and obtain the desired effect.

• normal— Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all
objects are rendered correctly. This mode produces the most
accurate picture, but is the slowest. The other modes are faster,
but do not perform a complete redraw and are therefore less
accurate.

• none — Do not erase the patch when it is moved or destroyed.
While the object is still visible on the screen after erasing with
EraseMode none, you cannot print it because MATLAB stores
no information about its former location.

• xor — Draw and erase the patch by performing an exclusive
OR (XOR) with each pixel index of the screen behind it. Erasing

2-2932



Patch Properties

the patch does not damage the color of the objects behind it.
However, patch color depends on the color of the screen behind
it and is correctly colored only when over the axes background
Color, or the figure background Color if the axes Color is set
to none.

• background — Erase the patch by drawing it in the axes
background Color, or the figure background Color if the axes
Color is set to none. This damages objects that are behind the
erased patch, but the patch is always properly colored.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all
objects is normal. This means graphics objects created
with EraseMode set to none, xor, or background can look
different on screen than on paper. On screen, MATLAB may
mathematically combine layers of colors (for example, perform
an XOR of a pixel color with that of the pixel behind it) and
ignore three-dimensional sorting to obtain greater rendering
speed. However, these techniques are not applied to the printed
output.

You can use the MATLAB getframe command or other screen
capture application to create an image of a figure containing
nonnormal mode objects.

FaceAlpha
{scalar = 1} | flat | interp

Transparency of the patch face. This property can be any of the
following:

• A scalar — A single non-NaN value between 0 and 1 that
controls the transparency of all the faces of the object. 1
(the default) means fully opaque and 0 means completely
transparent (invisible).

2-2933



Patch Properties

• flat — The values of the alpha data (FaceVertexAlphaData)
determine the transparency for each face. The alpha data at
the first vertex determines the transparency of the entire face.

• interp — Bilinear interpolation of the alpha data
(FaceVertexAlphaData) at each vertex determines the
transparency of each face.

Note that you cannot specify flat or interp FaceAlpha without
first setting FaceVertexAlphaData to a matrix containing one
alpha value per face (flat) or one alpha value per vertex (interp).

FaceColor
{ColorSpec} | none | flat | interp

Color of the patch face. This property can be any of the following:

• ColorSpec — A three-element RGB vector or one of the
MATLAB predefined names, specifying a single color for faces.
See ColorSpec for more information on specifying color.

• none — Do not draw faces. Note that edges are drawn
independently of faces.

• flat— The CData or FaceVertexCData property must contain
one value per face and determines the color for each face in the
patch. The color data at the first vertex determines the color
of the entire face.

• interp — Bilinear interpolation of the color at each
vertex determines the coloring of each face. The CData or
FaceVertexCData property must contain one value per vertex.

FaceLighting
{none} | flat | gouraud | phong

Algorithm used for lighting calculations. This property selects the
algorithm used to calculate the effect of light objects on patch
faces. Choices are

• none — Lights do not affect the faces of this object.

2-2934



Patch Properties

• flat— The effect of light objects is uniform across the faces of
the patch. Select this choice to view faceted objects.

• gouraud — The effect of light objects is calculated at the
vertices and then linearly interpolated across the faces. Select
this choice to view curved surfaces.

• phong — The effect of light objects is determined by
interpolating the vertex normals across each face and
calculating the reflectance at each pixel. Select this choice to
view curved surfaces. Phong lighting generally produces better
results than Gouraud lighting, but takes longer to render.

Faces
m-by-n matrix

Vertex connection defining each face. This property is the
connection matrix specifying which vertices in the Vertices
property are connected. The Faces matrix defines m faces with
up to n vertices each. Each row designates the connections for a
single face, and the number of elements in that row that are not
NaN defines the number of vertices for that face.

The Faces and Vertices properties provide an alternative way
to specify a patch that can be more efficient than using x, y, and
z coordinates in most cases. For example, consider the following
patch. It is composed of eight triangular faces defined by nine
vertices.

2-2935



Patch Properties

The corresponding Faces and Vertices properties are shown to
the right of the patch. Note how some faces share vertices with
other faces. For example, the fifth vertex (V5) is used six times,
once each by faces one, two, and three and six, seven, and eight.
Without sharing vertices, this same patch requires 24 vertex
definitions.

FaceVertexAlphaData
m-by-1 matrix

Face and vertex transparency data. The FaceVertexAlphaData
property specifies the transparency of patches that have been
defined by the Faces and Vertices properties. The interpretation
of the values specified for FaceVertexAlphaData depends on the
dimensions of the data.

FaceVertexAlphaData can be one of the following:

• A single value, which applies the same transparency to the
entire patch. The FaceAlpha property must be set to flat.

• An m-by-1 matrix (where m is the number of rows in the Faces
property), which specifies one transparency value per face. The
FaceAlpha property must be set to flat.

2-2936



Patch Properties

• An m-by-1 matrix (where m is the number of rows in the
Vertices property), which specifies one transparency value per
vertex. The FaceAlpha property must be set to interp.

The AlphaDataMapping property determines how MATLAB
interprets the FaceVertexAlphaData property values.

FaceVertexCData
matrix

Face and vertex colors. The FaceVertexCData property specifies
the color of patches defined by the Faces and Vertices properties.
You must also set the values of the FaceColor, EdgeColor,
MarkerFaceColor, or MarkerEdgeColor appropriately. The
interpretation of the values specified for FaceVertexCData
depends on the dimensions of the data.

For indexed colors, FaceVertexCData can be

• A single value, which applies a single color to the entire patch

• An n-by-1 matrix, where n is the number of rows in the Faces
property, which specifies one color per face

• An n-by-1 matrix, where n is the number of rows in the
Vertices property, which specifies one color per vertex

For true colors, FaceVertexCData can be

• A 1-by-3 matrix, which applies a single color to the entire patch

• An n-by-3 matrix, where n is the number of rows in the Faces
property, which specifies one color per face

• An n-by-3 matrix, where n is the number of rows in the
Vertices property, which specifies one color per vertex

The following diagram illustrates the various forms of the
FaceVertexCData property for a patch having eight faces and
nine vertices. The CDataMapping property determines how

2-2937



Patch Properties

MATLAB interprets the FaceVertexCData property when you
specify indexed colors.

HandleVisibility
{on} | callback | off

Control access to object’s handle by command-line users and GUIs.
This property determines when an object’s handle is visible in
its parent’s list of children. HandleVisibility is useful for
preventing command-line users from accidentally drawing into or
deleting a figure that contains only user interface devices (such as
a dialog box).

Handles are always visible when HandleVisibility is on.

Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by
callback routines, but not from within functions invoked from

2-2938



Patch Properties

the command line. This provides a means to protect GUIs from
command-line users, while allowing callback routines to have
complete access to object handles.

Setting HandleVisibility to off makes handles invisible at all
times. This may be necessary when a callback routine invokes
a function that might potentially damage the GUI (such as
evaluating a user-typed string), and so temporarily hides its own
handles during the execution of that function.

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties).

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties, and pass it to any
function that operates on handles.

HitTest
{on} | off

Selectable by mouse click. HitTest determines if the patch can
become the current object (as returned by the gco command and
the figure CurrentObject property) as a result of a mouse click on

2-2939



Patch Properties

the patch. If HitTest is off, clicking the patch selects the object
below it (which may be the axes containing it).

Interruptible
{on} | off

Callback routine interruption mode. The Interruptible property
controls whether a patch callback routine can be interrupted by
subsequently invoked callback routines. Only callback routines
defined for the ButtonDownFcn are affected by the Interruptible
property. MATLAB checks for events that can interrupt a callback
routine only when it encounters a drawnow, figure, getframe,
or pause command in the routine. See the BusyAction property
for related information.

LineStyle
{-} | -- | : | -. | none

Edge linestyle. This property specifies the line style of the patch
edges. The following table lists the available line styles.

Symbol Line Style

- Solid line (default)

-- Dashed line

: Dotted line

-. Dash-dot line

none No line

You can use LineStyle none when you want to place a marker
at each point but do not want the points connected with a line
(see the Marker property).

LineWidth
scalar

2-2940



Patch Properties

Edge line width. The width, in points, of the patch edges (1 point
= 1/72 inch). The default LineWidth is 0.5 points.

Marker
character (see table)

Marker symbol. The Marker property specifies marks that
locate vertices. You can set values for the Marker property
independently from the LineStyle property. The following tables
lists the available markers.

Marker Specifier Description

+ Plus sign

o Circle

* Asterisk

. Point

x Cross

s Square

d Diamond

^ Upward-pointing triangle

v Downward-pointing triangle

> Right-pointing triangle

< Left-pointing triangle

p Five-pointed star (pentagram)

h Six-pointed star (hexagram)

none No marker (default)

MarkerEdgeColor
ColorSpec | none | {auto} | flat

2-2941



Patch Properties

Marker edge color. The color of the marker or the edge color for
filled markers (circle, square, diamond, pentagram, hexagram,
and the four triangles).

• ColorSpec — Defines the color to use.

• none — Specifies no color, which makes nonfilled markers
invisible.

• auto — Sets MarkerEdgeColor to the same color as the
EdgeColor property.

• flat— The color of each vertex controls the color of the marker
that denotes it.

MarkerFaceColor
ColorSpec | {none} | auto | flat

Marker face color. The fill color for markers that are closed shapes
(circle, square, diamond, pentagram, hexagram, and the four
triangles).

• ColorSpec — Defines the color to use.

• none—Makes the interior of the marker transparent, allowing
the background to show through.

• auto — Sets the fill color to the axes color, or the figure color,
if the axes Color property is set to none.

• flat— The color of each vertex controls the color of the marker
that denotes it.

MarkerSize
size in points

Marker size. A scalar specifying the size of the marker, in points.
The default value for MarkerSize is 6 points (1 point = 1/72
inch). Note that MATLAB draws the point marker at 1/3 of the
specified size.

2-2942



Patch Properties

NormalMode
{auto} | manual

MATLAB generated or user-specified normal vectors. When this
property is auto, MATLAB calculates vertex normals based on
the coordinate data. If you specify your own vertex normals,
MATLAB sets this property to manual and does not generate its
own data. See also the VertexNormals property.

Parent
handle of axes, hggroup, or hgtransform

Parent of patch object. This property contains the handle of the
patch object’s parent. The parent of a patch object is the axes,
hggroup, or hgtransform object that contains it.

See “Objects That Can Contain Other Objects” for more
information on parenting graphics objects.

Selected
on | {off}

Is object selected? When this property is on, MATLAB displays
selection handles or a dashed box (depending on the number of
faces) if the SelectionHighlight property is also on. You can, for
example, define the ButtonDownFcn to set this property, allowing
users to select the object with the mouse.

SelectionHighlight
{on} | off

Objects are highlighted when selected. When the Selected
property is on, MATLAB indicates the selected state by

• Drawing handles at each vertex for a single-faced patch

• Drawing a dashed bounding box for a multifaced patch

2-2943



Patch Properties

When SelectionHighlight is off, MATLAB does not draw the
handles.

SpecularColorReflectance
scalar in the range 0 to 1

Color of specularly reflected light. When this property is 0, the
color of the specularly reflected light depends on both the color of
the object from which it reflects and the color of the light source.
When set to 1, the color of the specularly reflected light depends
only on the color of the light source (i.e., the light object Color
property). The proportions vary linearly for values in between.

SpecularExponent
scalar >= 1

Harshness of specular reflection. This property controls the size
of the specular spot. Most materials have exponents in the range
of 5 to 20.

SpecularStrength
scalar >= 0 and <= 1

Intensity of specular light. This property sets the intensity of the
specular component of the light falling on the patch. Specular
light comes from light objects in the axes.

You can also set the intensity of the ambient and diffuse
components of the light on the patch object. See the
AmbientStrength and DiffuseStrength properties.

Tag
string

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This is
particularly useful when you are constructing interactive graphics
programs that would otherwise need to define object handles as

2-2944



Patch Properties

global variables or pass them as arguments between callback
routines.

For example, suppose you use patch objects to create borders for a
group of uicontrol objects and want to change the color of the
borders in a uicontrol’s callback routine. You can specify a Tag
with the patch definition

patch(X,Y,'k','Tag','PatchBorder')

Then use findobj in the uicontrol’s callback routine to obtain the
handle of the patch and set its FaceColor property.

set(findobj('Tag','PatchBorder'),'FaceColor','w')

Type
string (read only)

Class of the graphics object. For patch objects, Type is always
the string 'patch'.

UIContextMenu
handle of a uicontextmenu object

Associate a context menu with the patch. Assign this property
the handle of a uicontextmenu object created in the same figure
as the patch. Use the uicontextmenu function to create the
context menu. MATLAB displays the context menu whenever
you right-click over the patch.

UserData
matrix

User-specified data. Any matrix you want to associate with the
patch object. MATLAB does not use this data, but you can access
it using set and get.

VertexNormals
matrix

2-2945



Patch Properties

Surface normal vectors. This property contains the vertex normals
for the patch. MATLAB generates this data to perform lighting
calculations. You can supply your own vertex normal data, even
if it does not match the coordinate data. This can be useful to
produce interesting lighting effects.

Vertices
matrix

Vertex coordinates. A matrix containing the x-, y-, z-coordinates
for each vertex. See the Faces property for more information.

Visible
{on} | off

Patch object visibility. By default, all patches are visible. When
set to off, the patch is not visible, but still exists, and you can
query and set its properties.

XData
vector or matrix

X-coordinates. The x-coordinates of the patch vertices. If XData
is a matrix, each column represents the x-coordinates of a single
face of the patch. In this case, XData, YData, and ZData must
have the same dimensions.

YData
vector or matrix

Y-coordinates. The y-coordinates of the patch vertices. If YData
is a matrix, each column represents the y-coordinates of a single
face of the patch. In this case, XData, YData, and ZData must
have the same dimensions.

ZData
vector or matrix

2-2946



Patch Properties

Z-coordinates. The z-coordinates of the patch vertices. If ZData
is a matrix, each column represents the z-coordinates of a single
face of the patch. In this case, XData, YData, and ZData must
have the same dimensions.

See Also patch

2-2947



path

Purpose View or change search path

GUI
Alternatives

As an alternative to the path function, use the Set Path dialog box.

Syntax path
path('newpath')
path(path,'newpath')
path('newpath',path)
p = path

Description path displays the MATLAB search path, which is stored in pathdef.m.

path('newpath') changes the search path to newpath, where newpath
is a string array of folders.

path(path,'newpath') adds the newpath folder to the end of the search
path. If newpath is already on the search path, then path(path,
'newpath') moves newpath to the end of the search path.

path('newpath',path) adds the newpath folder to the top of the search
path. If newpath is already on the search path, then path('newpath',
path) moves newpath to the top of the search path. To add multiple
folders in one statement, instead use addpath.

p = path returns the search path to string variable p.

Examples Display the search path:

path

MATLAB returns, for example

MATLABPATH

H:\My Documents\MATLAB
C:\Program Files\MATLAB\R200nn\toolbox\matlab\general
C:\Program Files\MATLAB\R200nn\toolbox\matlab\ops
C:\Program Files\MATLAB\R200nn\toolbox\matlab\lang

2-2948



path

C:\Program Files\MATLAB\R200nn\toolbox\matlab\elmat
C:\Program Files\MATLAB\R200nn\toolbox\matlab\elfun

...

R200nn represents the folder for the MATLAB release, for example,
R2009b.

Add a new folder to the search path on Microsoft Windows platforms:

path(path,'c:/tools/goodstuff')

2-2949



path

Add a new folder to the search path on UNIX13 platforms:

path(path,'/home/tools/goodstuff')

Temporarily add the folder my_files to the search path, run
my_function in my_files, then restore the previous search path:

p = path
path('my_files')
my_function
path(p)

See Also addpath, cd, dir, genpath, matlabroot, pathsep, pathtool, rehash,
restoredefaultpath, rmpath, savepath, startup, userpath, what

Topics in the User Guide:

• “Using the MATLAB Search Path”

• “Making Files and Folders Accessible to MATLAB”

13. UNIX is a registered trademark of The Open Group in the United States and
other countries.

2-2950



path2rc

Purpose Save current search path to pathdef.m file

Syntax path2rc

Description path2rc runs savepath. The savepath function is replacing path2rc.
Use savepath instead of path2rc and replace instances of path2rc
with savepath.

2-2951



pathsep

Purpose Search path separator for current platform

Syntax c = pathsep

Description c = pathsep returns the search path separator character for this
platform. The search path separator is the character that separates
path names in the pathdef.m file, as returned by the path function. The
character is a semicolon (;). For versions of MATLAB software earlier
than version 7.7 (R2008b), the character on UNIX14 platforms was a
colon (:). Use pathsep to work programmatically with the content of
the search path file.

See Also fileparts, filesep, fullfile, path

“Using the MATLAB Search Path”

14. UNIX is a registered trademark of The Open Group in the United States and
other countries.

2-2952



pathtool

Purpose Open Set Path dialog box to view and change search path

GUI
Alternatives

As an alternative to the pathtool function, select File > Set Path
in the MATLAB desktop.

Syntax pathtool

Description pathtool opens the Set Path dialog box, a graphical user interface you
use to view and modify the MATLAB search path.

2-2953



pathtool

See Also addpath, cd, dir, genpath, matlabroot, path, pathsep, rehash,
restoredefaultpath, rmpath, savepath, startup, what

“Using the MATLAB Search Path”

2-2954



pause

Purpose Halt execution temporarily

Syntax pause
pause(n)
pause on
pause off
pause query
state = pause('query')
oldstate = pause(newstate)

Description pause, by itself, causes the currently executing function to stop and wait
for you to press any key before continuing. Pausing must be enabled for
this to take effect. (See pause on, below). pause without arguments
also blocks execution of Simulink models, but not repainting of them.

pause(n) pauses execution for n seconds before continuing, where n can
be any nonnegative real number. The resolution of the clock is platform
specific. A fractional pause of 0.01 seconds should be supported on most
platforms. Pausing must be enabled for this to take effect.

Typing pause(inf) puts you into an infinite loop. To return to the
MATLAB prompt, type Ctrl+C.

pause on enables the pausing of MATLAB execution via the pause and
pause(n) commands. Pausing remains enabled until you enter pause
off in your function or at the command line.

pause off disables the pausing of MATLAB execution via the pause
and pause(n) commands. This allows normally interactive scripts to
run unattended. Pausing remains disabled until you enter pause on in
your function or at the command line, or start a new MATLAB session.

pause query displays 'on' if pausing is currently enabled. Otherwise,
it displays 'off'.

state = pause('query') returns 'on' in character array state if
pausing is currently enabled. Otherwise, the value of state is 'off'.

2-2955



pause

oldstate = pause(newstate), enables or disables pausing, depending
on the 'on' or 'off' value in newstate, and returns the former setting
(also either 'on' or 'off') in character array oldstate.

Remarks While MATLAB is paused, the following continue to execute:

• Repainting of figure windows, Simulink block diagrams, and Java
windows

• HG callbacks from figure windows

• Event handling from Java windows

See Also keyboard, input, drawnow

2-2956



pbaspect

Purpose Set or query plot box aspect ratio

Syntax pbaspect
pbaspect([aspect_ratio])
pbaspect('mode')
pbaspect('auto')
pbaspect('manual')
pbaspect(axes_handle,...)

Description The plot box aspect ratio determines the relative size of the x-, y-, and
z-axes.

pbaspect with no arguments returns the plot box aspect ratio of the
current axes.

pbaspect([aspect_ratio]) sets the plot box aspect ratio in the current
axes to the specified value. Specify the aspect ratio as three relative
values representing the ratio of the x-, y-, and z-axes size. For example,
a value of [1 1 1] (the default) means the plot box is a cube (although
with stretch-to-fill enabled, it may not appear as a cube). See Remarks.

pbaspect('mode') returns the current value of the plot box aspect ratio
mode, which can be either auto (the default) or manual. See Remarks.

pbaspect('auto') sets the plot box aspect ratio mode to auto.

pbaspect('manual') sets the plot box aspect ratio mode to manual.

pbaspect(axes_handle,...) performs the set or query on the axes
identified by the first argument, axes_handle. If you do not specify an
axes handle, pbaspect operates on the current axes.

Remarks pbaspect sets or queries values of the axes object PlotBoxAspectRatio
and PlotBoxAspectRatioMode properties.

When the plot box aspect ratio mode is auto, the MATLAB software
sets the ratio to [1 1 1], but may change it to accommodate manual
settings of the data aspect ratio, camera view angle, or axis limits. See
the axes DataAspectRatio property for a table listing the interactions
between various properties.

2-2957



pbaspect

Setting a value for the plot box aspect ratio or setting the plot box
aspect ratio mode to manual disables the MATLAB stretch-to-fill feature
(stretching of the axes to fit the window). This means setting the plot
box aspect ratio to its current value,

pbaspect(pbaspect)

can cause a change in the way the graphs look. See the Remarks section
of the axes reference description, “Axes Aspect Ratio Properties” in the
3-D Visualization manual, and “Setting Aspect Ratio” in the MATLAB
Graphics manual for a discussion of stretch-to-fill.

Examples The following surface plot of the function is useful
to illustrate the plot box aspect ratio. First plot the function over the
range –2 ≤ x ≤ 2, –2 ≤ y ≤ 2,

[x,y] = meshgrid([-2:.2:2]);
z = x.*exp(-x.^2 - y.^2);
surf(x,y,z)

2-2958



pbaspect

Querying the plot box aspect ratio shows that the plot box is square.

pbaspect
ans =

1 1 1

It is also interesting to look at the data aspect ratio selected by
MATLAB.

daspect
ans =

4 4 1

To illustrate the interaction between the plot box and data aspect
ratios, set the data aspect ratio to [1 1 1] and again query the plot
box aspect ratio.

daspect([1 1 1])

2-2959



pbaspect

pbaspect
ans =

4 4 1

The plot box aspect ratio has changed to accommodate the specified
data aspect ratio. Now suppose you want the plot box aspect ratio to
be [1 1 1] as well.

pbaspect([1 1 1])

2-2960



pbaspect

Notice how MATLAB changed the axes limits because of the constraints
introduced by specifying both the plot box and data aspect ratios.

You can also use pbaspect to disable stretch-to-fill. For example,
displaying two subplots in one figure can give surface plots a squashed
appearance. Disabling stretch-to-fill,

upper_plot = subplot(211);
surf(x,y,z)
lower_plot = subplot(212);
surf(x,y,z)
pbaspect(upper_plot,'manual')

2-2961



pbaspect

See Also axis, daspect, xlim, ylim, zlim

The axes properties DataAspectRatio, PlotBoxAspectRatio, XLim,
YLim, ZLim

Setting Aspect Ratio in the MATLAB Graphics manual

Axes Aspect Ratio Properties in the 3-D Visualization manual

2-2962



pcg

Purpose Preconditioned conjugate gradients method

Syntax x = pcg(A,b)
pcg(A,b,tol)
pcg(A,b,tol,maxit)
pcg(A,b,tol,maxit,M)
pcg(A,b,tol,maxit,M1,M2)
pcg(A,b,tol,maxit,M1,M2,x0)
[x,flag] = pcg(A,b,...)
[x,flag,relres] = pcg(A,b,...)
[x,flag,relres,iter] = pcg(A,b,...)
[x,flag,relres,iter,resvec] = pcg(A,b,...)

Description x = pcg(A,b) attempts to solve the system of linear equations A*x=b
for x. The n-by-n coefficient matrix A must be symmetric and positive
definite, and should also be large and sparse. The column vector b must
have length n. A can be a function handle afun such that afun(x)
returns A*x. See Function Handles in the MATLAB Programming
documentation for more information.

“Parameterizing Functions”, in the MATLAB Mathematics
documentation, explains how to provide additional parameters to the
function afun, as well as the preconditioner function mfun described
below, if necessary.

If pcg converges, a message to that effect is displayed. If pcg fails to
converge after the maximum number of iterations or halts for any
reason, a warning message is printed displaying the relative residual
norm(b-A*x)/norm(b) and the iteration number at which the method
stopped or failed.

pcg(A,b,tol) specifies the tolerance of the method. If tol is [], then
pcg uses the default, 1e-6.

pcg(A,b,tol,maxit) specifies the maximum number of iterations. If
maxit is [], then pcg uses the default, min(n,20).

pcg(A,b,tol,maxit,M) and pcg(A,b,tol,maxit,M1,M2) use
symmetric positive definite preconditioner M or M = M1*M2 and

2-2963



pcg

effectively solve the system inv(M)*A*x = inv(M)*b for x. If M is []
then pcg applies no preconditioner. M can be a function handle mfun
such that mfun(x) returns M\x.

pcg(A,b,tol,maxit,M1,M2,x0) specifies the initial guess. If x0 is [],
then pcg uses the default, an all-zero vector.

[x,flag] = pcg(A,b,...) also returns a convergence flag.

Flag Convergence

0 pcg converged to the desired tolerance tol within maxit
iterations.

1 pcg iterated maxit times but did not converge.

2 Preconditioner M was ill-conditioned.

3 pcg stagnated. (Two consecutive iterates were the same.)

4 One of the scalar quantities calculated during pcg became
too small or too large to continue computing.

Whenever flag is not 0, the solution x returned is that with minimal
norm residual computed over all the iterations. No messages are
displayed if the flag output is specified.

[x,flag,relres] = pcg(A,b,...) also returns the relative residual
norm(b-A*x)/norm(b). If flag is 0, relres <= tol.

[x,flag,relres,iter] = pcg(A,b,...) also returns the iteration
number at which x was computed, where 0 <= iter <= maxit.

[x,flag,relres,iter,resvec] = pcg(A,b,...) also returns a vector
of the residual norms at each iteration including norm(b-A*x0).

Examples Example 1

n1 = 21;
A = gallery('moler',n1);
b1 = A*ones(n1,1);
tol = 1e-6;

2-2964



pcg

maxit = 15;
M = diag([10:-1:1 1 1:10]);
[x1,flag1,rr1,iter1,rv1] = pcg(A,b1,tol,maxit,M);

Alternatively, you can use the following parameterized matrix-vector
product function afun in place of the matrix A:

afun = @(x,n)gallery('moler',n)*x;
n2 = 21;
b2 = afun(ones(n2,1),n2);
[x2,flag2,rr2,iter2,rv2] = pcg(@(x)afun(x,n2),b2,tol,maxit,M);

Example 2

A = delsq(numgrid('C',25));
b = ones(length(A),1);
[x,flag] = pcg(A,b)

flag is 1 because pcg does not converge to the default tolerance of 1e-6
within the default 20 iterations.

R = cholinc(A,1e-3);
[x2,flag2,relres2,iter2,resvec2] = pcg(A,b,1e-8,10,R',R)

flag2 is 0 because pcg converges to the tolerance of 1.2e-9 (the value of
relres2) at the sixth iteration (the value of iter2) when preconditioned
by the incomplete Cholesky factorization with a drop tolerance of 1e-3.
resvec2(1) = norm(b) and resvec2(7) = norm(b-A*x2). You can
follow the progress of pcg by plotting the relative residuals at each
iteration starting from the initial estimate (iterate number 0).

semilogy(0:iter2,resvec2/norm(b),'-o')
xlabel('iteration number')
ylabel('relative residual')

2-2965



pcg

See Also bicg, bicgstab, cgs, cholinc, gmres, lsqr, minres, qmr, symmlq

function_handle (@), mldivide (\)

References [1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods, SIAM,
Philadelphia, 1994.

2-2966



pchip

Purpose Piecewise Cubic Hermite Interpolating Polynomial (PCHIP)

Syntax yi = pchip(x,y,xi)
pp = pchip(x,y)

Description yi = pchip(x,y,xi) returns vector yi containing elements
corresponding to the elements of xi and determined by piecewise cubic
interpolation within vectors x and y. The vector x specifies the points
at which the data y is given. If y is a matrix, then the interpolation is
performed for each column of y and yi is length(xi)-by-size(y,2).

pp = pchip(x,y) returns a piecewise polynomial structure for use by
ppval. x can be a row or column vector. y is a row or column vector of
the same length as x, or a matrix with length(x) columns.

pchip finds values of an underlying interpolating function P x( ) at
intermediate points, such that:

• On each subinterval x x xk k≤ ≤ +1 , P x( ) is the cubic Hermite
interpolant to the given values and certain slopes at the two
endpoints.

• P x( ) interpolates y, i.e., P x yj j( ) = , and the first derivative ′P x( ) is

continuous. ′′P x( ) is probably not continuous; there may be jumps

at the x j .

• The slopes at the x j are chosen in such a way that P x( ) preserves
the shape of the data and respects monotonicity. This means that, on

intervals where the data are monotonic, so is P x( ) ; at points where

the data has a local extremum, so does P x( ) .

Note If y is a matrix, P x( ) satisfies the above for each column of y.

2-2967



pchip

Remarks spline constructs S x( ) in almost the same way pchip constructs P x( ) .

However, spline chooses the slopes at the x j differently, namely to

make even ′′S x( ) continuous. This has the following effects:

• spline produces a smoother result, i.e. ′′S x( ) is continuous.

• spline produces a more accurate result if the data consists of values
of a smooth function.

• pchip has no overshoots and less oscillation if the data are not
smooth.

• pchip is less expensive to set up.

• The two are equally expensive to evaluate.

Examples x = -3:3;
y = [-1 -1 -1 0 1 1 1];
t = -3:.01:3;
p = pchip(x,y,t);
s = spline(x,y,t);
plot(x,y,'o',t,p,'-',t,s,'-.')
legend('data','pchip','spline',4)

2-2968



pchip

See Also interp1, spline, ppval

References [1] Fritsch, F. N. and R. E. Carlson, "Monotone Piecewise Cubic
Interpolation," SIAM J. Numerical Analysis, Vol. 17, 1980, pp.238-246.

[2] Kahaner, David, Cleve Moler, Stephen Nash, Numerical Methods
and Software, Prentice Hall, 1988.

2-2969



pcode

Purpose Create protected function file

Syntax pcode fun
pcode *.m
pcode fun1 fun2 ...
pcode... -inplace

Description pcode fun obfuscates (i.e., shrouds) the code in fun.m for the purpose of
protecting its proprietary source code. The encrypted code is written
to pcode file fun.p in the current folder. The original .m file can be
anywhere on the search path.

If the input file resides within a package and/or class folder, then the
same package and class folders are applied to the output file. See
example 2, below.

pcode *.m creates pcode files for all files in the current folder that have
a .m file extension.

pcode fun1 fun2 ... creates pcode files for the listed functions.

pcode... -inplace creates pcode files in the same folder as the script
or function files. An error occurs if the files cannot be created.

See “Protecting Your Source Code” in the MATLAB Programming
Fundamentals documentation for more information.

Examples Example 1 – PCoding Multiple Files

Convert selected files from the sparfun folder into pcode files:

dir([matlabroot '\toolbox\matlab\sparfun\spr*.m'])

. .. sprand.m sprandn.m sprandsym.m sprank.m

cd C:\work\pcodetest
pcode([matlabroot '\toolbox\matlab\sparfun\spr*.m'])

dir

2-2970



pcode

. .. sprand.p sprandn.p sprandsym.p sprank.p

Example 2 – Parsing Files That Belong to a Package and/or
Class

This example takes an input file that is part of a package and class, and
generates a pcode file for it in a separate folder. File test.m resides in
the following package and class folder:

C:\work\+mypkg\@char\test.m

Set your current working folder to empty folder math\pcodetest. This
is where you will generate the pcode file. This folder has no package or
class structure associated with it at this time:

cd C:\math\pcodetest
dir

. ..

Generate pcode for test.m. Because the input file is part of a package
and class, MATLAB creates folders +mypkg and @char so that the
output file belongs to the same:

pcode C:\work\+mypkg\@char\test.m
dir('C:\math\pcodetest\+mypkg\@char')

. .. test.p

Example 3 – PCoding In Place

When you generate a pcode file inplace, MATLAB writes the output
file to the same folder as the input file:

pcode C:\work\+mypkg\@char\test.m -inplace
dir C:\work\+mypkg\@char

. .. test.m test.p

See Also

depfun, depdir,

2-2971



pcolor

Purpose Pseudocolor (checkerboard) plot

GUI
Alternatives

To graph selected variables, use the Plot Selector in the
Workspace Browser, or use the Figure Palette Plot Catalog. Manipulate
graphs in plot edit mode with the Property Editor. For details, see
Plotting Tools — Interactive Plotting in the MATLAB Graphics
documentation and Creating Graphics from the Workspace Browser in
the MATLAB Desktop Tools documentation.

Syntax pcolor(C)
pcolor(X,Y,C)
pcolor(axes_handles,...)
h = pcolor(...)

Description A pseudocolor plot is a rectangular array of cells with colors determined
by C. MATLAB creates a pseudocolor plot using each set of four adjacent
points in C to define a surface rectangle (i.e., cell).

The default shading is faceted, which colors each cell with a single
color. The last row and column of C are not used in this case. With
shading interp, each cell is colored by bilinear interpolation of the
colors at its four vertices, using all elements of C.

The minimum and maximum elements of C are assigned the first and
last colors in the colormap. Colors for the remaining elements in C are
determined by a linear mapping from value to colormap element.

pcolor(C) draws a pseudocolor plot. The elements of C are linearly
mapped to an index into the current colormap. The mapping from C to
the current colormap is defined by colormap and caxis.

pcolor(X,Y,C) draws a pseudocolor plot of the elements of C at the
locations specified by X and Y. The plot is a logically rectangular,
two-dimensional grid with vertices at the points [X(i,j), Y(i,j)]. X
and Y are vectors or matrices that specify the spacing of the grid lines. If

2-2972



pcolor

X and Y are vectors, X corresponds to the columns of C and Y corresponds
to the rows. If X and Y are matrices, they must be the same size as C.

pcolor(axes_handles,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

h = pcolor(...) returns a handle to a surface graphics object.

Remarks A pseudocolor plot is a flat surface plot viewed from above.
pcolor(X,Y,C) is the same as viewing surf(X,Y,zeros(size(X)),C)
using view([0 90]).

When you use shading faceted or shading flat, the constant color of
each cell is the color associated with the corner having the smallest x-y
coordinates. Therefore, C(i,j) determines the color of the cell in the
ith row and jth column. The last row and column of C are not used.

When you use shading interp, each cell’s color results from a bilinear
interpolation of the colors at its four vertices, and all elements of C are
used.

Examples A Hadamard matrix has elements that are +1 and -1. A colormap with
only two entries is appropriate when displaying a pseudocolor plot of
this matrix.

pcolor(hadamard(20))
colormap(gray(2))
axis ij
axis square

2-2973



pcolor

A simple color wheel illustrates a polar coordinate system.

n = 6;
r = (0:n)'/n;
theta = pi*(-n:n)/n;
X = r*cos(theta);
Y = r*sin(theta);
C = r*cos(2*theta);
pcolor(X,Y,C)
axis equal tight

2-2974



pcolor

Algorithm The number of vertex colors for pcolor(C) is the same as the number
of cells for image(C). pcolor differs from image in that pcolor(C)
specifies the colors of vertices, which are scaled to fit the colormap;
changing the axes clim property changes this color mapping. image(C)
specifies the colors of cells and directly indexes into the colormap
without scaling. Additionally, pcolor(X,Y,C) can produce parametric
grids, which is not possible with image.

See Also caxis, image, mesh, shading, surf, view

2-2975



pdepe

Purpose Solve initial-boundary value problems for parabolic-elliptic PDEs in 1-D

Syntax sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan)
sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan,options)
[sol,tsol,sole,te,ie] = pdepe(m,pdefun,icfun,bcfun,xmesh,

tspan,options)

Arguments m A parameter corresponding to the symmetry of
the problem. m can be slab = 0, cylindrical = 1, or
spherical = 2.

pdefun A handle to a function that defines the components
of the PDE.

icfun A handle to a function that defines the initial
conditions.

bcfun A handle to a function that defines the boundary
conditions.

xmesh A vector [x0, x1, ..., xn] specifying the points at
which a numerical solution is requested for every
value in tspan. The elements of xmesh must satisfy
x0 < x1 < ... < xn. The length of xmesh must
be >= 3.

tspan A vector [t0, t1, ..., tf] specifying the points at
which a solution is requested for every value
in xmesh. The elements of tspan must satisfy
t0 < t1 < ... < tf. The length of tspan must be
>= 3.

options Some options of the underlying ODE solver are
available in pdepe: RelTol, AbsTol, NormControl,
InitialStep, MaxStep, and Events. In most cases,
default values for these options provide satisfactory
solutions. See odeset for details.

2-2976



pdepe

Description sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan) solves
initial-boundary value problems for systems of parabolic and elliptic
PDEs in the one space variable and time . pdefun, icfun, and
bcfun are function handles. See “Function Handles” in the MATLAB
Programming documentation for more information. The ordinary
differential equations (ODEs) resulting from discretization in space
are integrated to obtain approximate solutions at times specified in
tspan. The pdepe function returns values of the solution on a mesh
provided in xmesh.

“Parameterizing Functions”, in the MATLAB Mathematics
documentation, explains how to provide additional parameters to the
functions pdefun, icfun, or bcfun, if necessary.

pdepe solves PDEs of the form:

(2-2)

The PDEs hold for and . The interval must
be finite. can be 0, 1, or 2, corresponding to slab, cylindrical, or
spherical symmetry, respectively. If , then must be >= 0.

In Equation 2-2, is a flux term and
is a source term. The coupling of the partial

derivatives with respect to time is restricted to multiplication by a
diagonal matrix . The diagonal elements of this
matrix are either identically zero or positive. An element that is
identically zero corresponds to an elliptic equation and otherwise to a
parabolic equation. There must be at least one parabolic equation. An
element of that corresponds to a parabolic equation can vanish at
isolated values of if those values of are mesh points. Discontinuities
in and/or due to material interfaces are permitted provided that a
mesh point is placed at each interface.

For and all , the solution components satisfy initial conditions
of the form

2-2977



pdepe

(2-3)

For all and either or , the solution components satisfy
a boundary condition of the form

(2-4)

Elements of are either identically zero or never zero. Note that the
boundary conditions are expressed in terms of the flux rather than

. Also, of the two coefficients, only can depend on .

In the call sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan):

• m corresponds to .

• xmesh(1) and xmesh(end) correspond to and .

• tspan(1) and tspan(end) correspond to and .

• pdefun computes the terms , , and (Equation 2-2). It has the form

[c,f,s] = pdefun(x,t,u,dudx)

The input arguments are scalars x and t and vectors u and dudx that
approximate the solution and its partial derivative with respect to
, respectively. c, f, and s are column vectors. c stores the diagonal
elements of the matrix (Equation 2-2).

• icfun evaluates the initial conditions. It has the form

u = icfun(x)

When called with an argument x, icfun evaluates and returns the
initial values of the solution components at x in the column vector u.

• bcfun evaluates the terms and of the boundary conditions
(Equation 2-4). It has the form

[pl,ql,pr,qr] = bcfun(xl,ul,xr,ur,t)

2-2978



pdepe

ul is the approximate solution at the left boundary xl = and ur is
the approximate solution at the right boundary xr = . pl and ql are
column vectors corresponding to and evaluated at xl, similarly
pr and qr correspond to xr. When and , boundedness
of the solution near requires that the flux vanish at .
pdepe imposes this boundary condition automatically and it ignores
values returned in pl and ql.

pdepe returns the solution as a multidimensional array sol.
= ui = sol(:,:,i) is an approximation to the ith component of the

solution vector . The element ui(j,k) = sol(j,k,i) approximates at
= (tspan(j),xmesh(k)).

ui = sol(j,:,i) approximates component i of the solution at time
tspan(j) and mesh points xmesh(:). Use pdeval to compute the

approximation and its partial derivative at points not included
in xmesh. See pdeval for details.

sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan,options) solves
as above with default integration parameters replaced by values in
options, an argument created with the odeset function. Only some
of the options of the underlying ODE solver are available in pdepe:
RelTol, AbsTol, NormControl, InitialStep, and MaxStep. The defaults
obtained by leaving off the input argument options will generally be
satisfactory. See odeset for details.

[sol,tsol,sole,te,ie] =
pdepe(m,pdefun,icfun,bcfun,xmesh,tspan,options) with the
'Events' property in options set to a function handle Events, solves
as above while also finding where event functions g(t,u(x,t))are
zero. For each function you specify whether the integration is
to terminate at a zero and whether the direction of the zero
crossing matters. Three column vectors are returned by events:
[value,isterminal,direction] = events(m,t,xmesh,umesh).
xmesh contains the spatial mesh and umesh is the solution at the mesh
points. Use pdeval to evaluate the solution between mesh points.
For the I-th event function, value(i) is the value of the function,

2-2979



pdepe

ISTERMINAL(I) = 1 if the integration is to terminate at a zero of this
event function and 0 otherwise. direction(i) = 0 if all zeros are to be
computed (the default), +1 if only zeros where the event function is
increasing, and -1 if only zeros where the event function is decreasing.
Output tsol is a column vector of times specified in tspan, prior to first
terminal event. SOL(j,:,:) is the solution at T(j). TE is a vector of
times at which events occur. SOLE(j,:,:) is the solution at TE(j) and
indices in vector IE specify which event occurred.

If UI = SOL(j,:,i) approximates component i of the solution
at time TSPAN(j) and mesh points XMESH, pdeval evaluates the

approximation and its partial derivative at the array of points
XOUT and returns them in UOUT and DUOUTDX: [UOUT,DUOUTDX] =
PDEVAL(M,XMESH,UI,XOUT)

Note The partial derivative is evaluated here rather than
the flux. The flux is continuous, but at a material interface the partial
derivative may have a jump.

Remarks • The arrays xmesh and tspan play different roles in pdepe.

tspan – The pdepe function performs the time integration with an
ODE solver that selects both the time step and formula dynamically.
The elements of tspan merely specify where you want answers and
the cost depends weakly on the length of tspan.

xmesh – Second order approximations to the solution are made on the
mesh specified in xmesh. Generally, it is best to use closely spaced
mesh points where the solution changes rapidly. pdepe does not
select the mesh in automatically. You must provide an appropriate
fixed mesh in xmesh. The cost depends strongly on the length of
xmesh. When , it is not necessary to use a fine mesh near

to account for the coordinate singularity.

• The time integration is done with ode15s. pdepe exploits the
capabilities of ode15s for solving the differential-algebraic equations

2-2980



pdepe

that arise when Equation 2-2 contains elliptic equations, and for
handling Jacobians with a specified sparsity pattern.

• After discretization, elliptic equations give rise to algebraic equations.
If the elements of the initial conditions vector that correspond to
elliptic equations are not "consistent" with the discretization, pdepe
tries to adjust them before beginning the time integration. For
this reason, the solution returned for the initial time may have a
discretization error comparable to that at any other time. If the mesh
is sufficiently fine, pdepe can find consistent initial conditions close
to the given ones. If pdepe displays a message that it has difficulty
finding consistent initial conditions, try refining the mesh.

No adjustment is necessary for elements of the initial conditions
vector that correspond to parabolic equations.

Examples Example 1. This example illustrates the straightforward formulation,
computation, and plotting of the solution of a single PDE.

This equation holds on an interval for times .

The PDE satisfies the initial condition

and boundary conditions

It is convenient to use subfunctions to place all the functions required
by pdepe in a single M-file.

function pdex1

2-2981



pdepe

m = 0;
x = linspace(0,1,20);
t = linspace(0,2,5);

sol = pdepe(m,@pdex1pde,@pdex1ic,@pdex1bc,x,t);
% Extract the first solution component as u.
u = sol(:,:,1);

% A surface plot is often a good way to study a solution.
surf(x,t,u)
title('Numerical solution computed with 20 mesh points.')
xlabel('Distance x')
ylabel('Time t')

% A solution profile can also be illuminating.
figure
plot(x,u(end,:))
title('Solution at t = 2')
xlabel('Distance x')
ylabel('u(x,2)')
% --------------------------------------------------------------
function [c,f,s] = pdex1pde(x,t,u,DuDx)
c = pi^2;
f = DuDx;
s = 0;
% --------------------------------------------------------------
function u0 = pdex1ic(x)
u0 = sin(pi*x);
% --------------------------------------------------------------
function [pl,ql,pr,qr] = pdex1bc(xl,ul,xr,ur,t)
pl = ul;
ql = 0;
pr = pi * exp(-t);
qr = 1;

In this example, the PDE, initial condition, and boundary conditions
are coded in subfunctions pdex1pde, pdex1ic, and pdex1bc.

2-2982



pdepe

The surface plot shows the behavior of the solution.

The following plot shows the solution profile at the final value of t (i.e.,
t = 2).

2-2983



pdepe

Example 2. This example illustrates the solution of a system of PDEs.
The problem has boundary layers at both ends of the interval. The
solution changes rapidly for small .

The PDEs are

where .

This equation holds on an interval for times .

2-2984



pdepe

The PDE satisfies the initial conditions

and boundary conditions

In the form expected by pdepe, the equations are

The boundary conditions on the partial derivatives of have to be
written in terms of the flux. In the form expected by pdepe, the left
boundary condition is

and the right boundary condition is

2-2985



pdepe

The solution changes rapidly for small . The program selects the step
size in time to resolve this sharp change, but to see this behavior in the
plots, the example must select the output times accordingly. There are
boundary layers in the solution at both ends of [0,1], so the example
places mesh points near 0 and 1 to resolve these sharp changes. Often
some experimentation is needed to select a mesh that reveals the
behavior of the solution.

function pdex4
m = 0;
x = [0 0.005 0.01 0.05 0.1 0.2 0.5 0.7 0.9 0.95 0.99 0.995 1];
t = [0 0.005 0.01 0.05 0.1 0.5 1 1.5 2];

sol = pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t);
u1 = sol(:,:,1);
u2 = sol(:,:,2);

figure
surf(x,t,u1)
title('u1(x,t)')
xlabel('Distance x')
ylabel('Time t')

figure
surf(x,t,u2)
title('u2(x,t)')
xlabel('Distance x')
ylabel('Time t')
% --------------------------------------------------------------
function [c,f,s] = pdex4pde(x,t,u,DuDx)
c = [1; 1];
f = [0.024; 0.17] .* DuDx;
y = u(1) - u(2);

2-2986



pdepe

F = exp(5.73*y)-exp(-11.47*y);
s = [-F; F];
% --------------------------------------------------------------
function u0 = pdex4ic(x);
u0 = [1; 0];
% --------------------------------------------------------------
function [pl,ql,pr,qr] = pdex4bc(xl,ul,xr,ur,t)
pl = [0; ul(2)];
ql = [1; 0];
pr = [ur(1)-1; 0];
qr = [0; 1];

In this example, the PDEs, initial conditions, and boundary conditions
are coded in subfunctions pdex4pde, pdex4ic, and pdex4bc.

The surface plots show the behavior of the solution components.

2-2987



pdepe

See Also function_handle (@), pdeval, ode15s, odeset, odeget

References [1] Skeel, R. D. and M. Berzins, "A Method for the Spatial Discretization
of Parabolic Equations in One Space Variable," SIAM Journal on
Scientific and Statistical Computing, Vol. 11, 1990, pp.1–32.

2-2988



pdeval

Purpose Evaluate numerical solution of PDE using output of pdepe

Syntax [uout,duoutdx] = pdeval(m,x,ui,xout)

Arguments m Symmetry of the problem: slab = 0, cylindrical = 1,
spherical = 2. This is the first input argument used
in the call to pdepe.

xmesh A vector [x0, x1, ..., xn] specifying the points at which
the elements of ui were computed. This is the same
vector with which pdepe was called.

ui A vector sol(j,:,i) that approximates component i of

the solution at time and mesh points xmesh, where
sol is the solution returned by pdepe.

xout A vector of points from the interval [x0,xn] at which
the interpolated solution is requested.

Description [uout,duoutdx] = pdeval(m,x,ui,xout) approximates the solution

and its partial derivative at points from the interval
[x0,xn]. The pdeval function returns the computed values in uout and
duoutdx, respectively.

Note pdeval evaluates the partial derivative rather than
the flux . Although the flux is continuous, the partial derivative may
have a jump at a material interface.

See Also pdepe

2-2989



peaks

Purpose Example function of two variables

Syntax Z = peaks;
Z = peaks(n);
Z = peaks(V);
Z = peaks(X,Y);

peaks;
peaks(N);
peaks(V);
peaks(X,Y);

[X,Y,Z] = peaks;
[X,Y,Z] = peaks(n);
[X,Y,Z] = peaks(V);

Description peaks is a function of two variables, obtained by translating and scaling
Gaussian distributions, which is useful for demonstrating mesh, surf,
pcolor, contour, and so on.

Z = peaks; returns a 49-by-49 matrix.

Z = peaks(n); returns an n-by-n matrix.

Z = peaks(V); returns an n-by-n matrix, where n = length(V).

Z = peaks(X,Y); evaluates peaks at the given X and Y (which must be
the same size) and returns a matrix the same size.

2-2990



peaks

peaks(...) (with no output argument) plots the peaks function with
surf.

[X,Y,Z] = peaks(...); returns two additional matrices, X and Y, for
parametric plots, for example, surf(X,Y,Z,del2(Z)). If not given as
input, the underlying matrices X and Y are

[X,Y] = meshgrid(V,V)

where V is a given vector, or V is a vector of length n with elements
equally spaced from -3 to 3. If no input argument is given, the default
n is 49.

See Also meshgrid, surf

2-2991



perl

Purpose Call Perl script using appropriate operating system executable

Syntax perl('perlfile')
perl('perlfile',arg1,arg2,...)
result = perl(...)
[result, status] = perl(...)

Description perl('perlfile') calls the Perl script perlfile, using the appropriate
operating system Perl executable. Perl is included with the MATLAB
software on Microsoft Windows systems, and thus MATLAB users
can run M-files containing the perl function. On UNIX 15 systems,
MATLAB calls the Perl interpreter available with the operating system.

perl('perlfile',arg1,arg2,...) calls the Perl script perlfile,
using the appropriate operating system Perl executable, and passes the
arguments arg1, arg2, and so on, to perlfile.

result = perl(...) returns the results of attempted Perl call to
result.

[result, status] = perl(...) returns the results of attempted Perl
call to result and its exit status to status.

It is sometimes beneficial to use Perl scripts instead of MATLAB code.
The perl function allows you to run those scripts from MATLAB.
Specific examples where you might choose to use a Perl script include:

• Perl script already exists

• Perl script preprocesses data quickly, formatting it in a way more
easily read by MATLAB

• Perl has features not supported by MATLAB

Examples Given the Perl script, hello.pl:

$input = $ARGV[0];

15. UNIX is a registered trademark of The Open Group in the United States and
other countries.

2-2992



perl

print "Hello $input.";

At the MATLAB command line, type:

perl('hello.pl','World')

MATLAB displays:

ans =
Hello World.

See Also ! (exclamation point), dos, regexp, system, unix

2-2993



perms

Purpose All possible permutations

Syntax P = perms(v)

Description P = perms(v), where v is a row vector of length n, creates a matrix
whose rows consist of all possible permutations of the n elements of v.
Matrix P contains n! rows and n columns.

Examples The command perms([2 4 6]) returns all the permutations of the
numbers 2, 4, and 6:

6 4 2
6 2 4
4 6 2
4 2 6
2 4 6
2 6 4

Limitations This function is only practical for situations where n is less than about
15.

See Also nchoosek, permute, randperm

2-2994



permute

Purpose Rearrange dimensions of N-D array

Syntax B = permute(A,order)

Description B = permute(A,order) rearranges the dimensions of A so that they are
in the order specified by the vector order. B has the same values of A
but the order of the subscripts needed to access any particular element
is rearranged as specified by order. All the elements of order must
be unique.

Remarks permute and ipermute are a generalization of transpose (.') for
multidimensional arrays.

Examples Given any matrix A, the statement

permute(A,[2 1])

is the same as A.'.

For example:

A = [1 2; 3 4]; permute(A,[2 1])
ans =

1 3
2 4

The following code permutes a three-dimensional array:

X = rand(12,13,14);
Y = permute(X,[2 3 1]);
size(Y)
ans =

13 14 12

See Also ipermute, circshift, shiftdim, reshape

2-2995



persistent

Purpose Define persistent variable

Syntax persistent X Y Z

Description persistent X Y Z defines X, Y, and Z as variables that are local to
the function in which they are declared; yet their values are retained
in memory between calls to the function. Persistent variables are
similar to global variables because the MATLAB software creates
permanent storage for both. They differ from global variables in that
persistent variables are known only to the function in which they are
declared. This prevents persistent variables from being changed by
other functions or from the MATLAB command line.

Whenever you clear or modify a function that is in memory, MATLAB
also clears all persistent variables declared by that function. To keep a
function in memory until MATLAB quits, use mlock.

If the persistent variable does not exist the first time you issue the
persistent statement, it is initialized to the empty matrix.

It is an error to declare a variable persistent if a variable with the same
name exists in the current workspace. MATLAB also errors if you
declare any of a function’s input or output arguments as persistent
within that same function. For example, the following persistent
declaration is invalid:

function myfun(argA, argB, argC)
persistent argB

Remarks There is no function form of the persistent command (i.e., you cannot
use parentheses and quote the variable names).

Example This function writes a large array to a spreadsheet file and then reads
several rows from the same file. Because you only need to write the
array to the spreadsheet one time, the program tests whether an array
can be read from the file and, if so, does not waste time in repeating
that task. By defining the dblArray variable as persistent, you can
easily check whether the array has been read from the spreadsheet file.

2-2996



persistent

Here is the arrayToXLS function:

function arrayToXLS(A, xlsfile, x1, x2)
persistent dblArray;

if isempty(dblArray)
disp 'Writing spreadsheet file ...'
xlswrite(xlsfile, A);

end

disp 'Reading array from spreadsheet ...'
dblArray = xlsread(xlsfile, 'Sheet1', [x1 ':' x2])
fprintf('\n');

Run the function three times and observe the time elapsed for each run.
The second and third run take approximately one tenth the time of the
first run in which the function must create the spreadsheet:

largeArray = rand(4000, 200);

tic, arrayToXLS(largeArray, 'myTest.xls','E254', 'J256'), toc
Writing spreadsheet file ...
Reading array from spreadsheet ...
dblArray =

0.0982 0.3783 0.1264 0.7880 0.1902 0.5811
0.2251 0.2704 0.5682 0.7271 0.8028 0.2834
0.6453 0.5568 0.8254 0.4961 0.9096 0.5402

Elapsed time is 8.990525 seconds.

tic, arrayToXLS(largeArray, 'myTest.xls','E257', 'J258'), toc
Reading array from spreadsheet ...
dblArray =

0.4620 0.3781 0.6386 0.5930 0.0946 0.4865
0.1605 0.1251 0.8709 0.5188 0.6702 0.2138

2-2997



persistent

Elapsed time is 0.912534 seconds.

tic, arrayToXLS(largeArray, 'myTest.xls','E259', 'J262'), toc
Reading array from spreadsheet ...
dblArray =

0.7015 0.6588 0.4023 0.0359 0.4512 0.6097
0.1308 0.6441 0.0431 0.6396 0.7481 0.8688
0.8278 0.2686 0.5475 0.8550 0.5896 0.1080
0.9437 0.1671 0.0505 0.1203 0.2461 0.7306

Elapsed time is 0.928843 seconds.

Now clear the arrayToXLS function from memory and observe that
running it takes much longer again:

clear functions

tic, arrayToXLS(largeArray, 'myTest.xls','E263', 'J264'), toc
Writing spreadsheet file ...
Reading array from spreadsheet ...
dblArray =

0.6292 0.7788 0.0732 0.6481 0.9299 0.8631
0.7700 0.5181 0.9805 0.5092 0.8658 0.4070

Elapsed time is 7.603461 seconds.

See Also global, clear, mislocked, mlock, munlock, isempty

2-2998



pi

Purpose Ratio of circle’s circumference to its diameter

Syntax pi

Description pi returns the floating-point number nearest the value of π. The
expressions 4*atan(1) and imag(log(-1)) provide the same value.

Examples Find the sine of π:

sin(pi)

returns

ans =

1.2246e-16

The expression sin(pi) is not exactly zero because pi is not exactly π.

2-2999



pie

Purpose Pie chart

GUI
Alternatives

To graph selected variables, use the Plot Selector in the
Workspace Browser, or use the Figure Palette Plot Catalog. Manipulate
graphs in plot edit mode with the Property Editor. For details, see
Plotting Tools — Interactive Plotting in the MATLAB Graphics
documentation and Creating Graphics from the Workspace Browser in
the MATLAB Desktop Tools documentation.

Syntax pie(X)
pie(X,explode)
pie(...,labels)
pie(axes_handle,...)
h = pie(...)

Description pie(X) draws a pie chart using the data in X. Each element in X is
represented as a slice in the pie chart.

pie(X,explode) offsets a slice from the pie. explode is a vector or
matrix of zeros and nonzeros that correspond to X. A nonzero value
offsets the corresponding slice from the center of the pie chart, so that
X(i,j) is offset from the center if explode(i,j) is nonzero. explode
must be the same size as X.

pie(...,labels) specifies text labels for the slices. The number of
labels must equal the number of elements in X. For example,

pie(1:3,{'Taxes','Expenses','Profit'})

pie(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

h = pie(...) returns a vector of handles to patch and text graphics
objects.

2-3000



pie

Remarks The values in X are normalized via X/sum(X) to determine the area of
each slice of the pie. If sum(X) 1, the values in X directly specify the
area of the pie slices. MATLAB draws only a partial pie if sum(X) < 1.

Examples Emphasize the second slice in the chart by setting its corresponding
explode element to 1.

x = [1 3 0.5 2.5 2];
explode = [0 1 0 0 0];
pie(x,explode)
colormap jet

See Also pie3

2-3001



pie3

Purpose 3-D pie chart

GUI
Alternatives

To graph selected variables, use the Plot Selector in the
Workspace Browser, or use the Figure Palette Plot Catalog. Manipulate
graphs in plot edit mode with the Property Editor. For details, see
Plotting Tools — Interactive Plotting in the MATLAB Graphics
documentation and Creating Graphics from the Workspace Browser in
the MATLAB Desktop Tools documentation.

Syntax pie3(X)
pie3(X,explode)
pie3(...,labels)
pie3(axes_handle,...)
h = pie3(...)

Description pie3(X) draws a three-dimensional pie chart using the data in X. Each
element in X is represented as a slice in the pie chart.

pie3(X,explode) specifies whether to offset a slice from the center
of the pie chart. X(i,j) is offset from the center of the pie chart if
explode(i,j) is nonzero. explode must be the same size as X.

pie3(...,labels) specifies text labels for the slices. The number of
labels must equal the number of elements in X. For example,

pie3(1:3,{'Taxes','Expenses','Profit'})

pie3(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

h = pie3(...) returns a vector of handles to patch, surface, and text
graphics objects.

2-3002



pie3

Remarks The values in X are normalized via X/sum(X) to determine the area of
each slice of the pie. If sum(X) 1, the values in X directly specify the
area of the pie slices. MATLAB draws only a partial pie if sum(X) < 1.

Examples Offset a slice in the pie chart by setting the corresponding explode
element to 1:

x = [1 3 0.5 2.5 2];
explode = [0 1 0 0 0];
pie3(x,explode)
colormap hsv

See Also pie

2-3003



pinv

Purpose Moore-Penrose pseudoinverse of matrix

Syntax B = pinv(A)
B = pinv(A,tol)

Definition The Moore-Penrose pseudoinverse is a matrix B of the same dimensions
as A' satisfying four conditions:

A*B*A = A
B*A*B = B
A*B is Hermitian
B*A is Hermitian

The computation is based on svd(A) and any singular values less than
tol are treated as zero.

Description B = pinv(A) returns the Moore-Penrose pseudoinverse of A.

B = pinv(A,tol) returns the Moore-Penrose pseudoinverse and
overrides the default tolerance, max(size(A))*norm(A)*eps.

Examples If A is square and not singular, then pinv(A) is an expensive way to
compute inv(A). If A is not square, or is square and singular, then
inv(A) does not exist. In these cases, pinv(A) has some of, but not all,
the properties of inv(A).

If A has more rows than columns and is not of full rank, then the
overdetermined least squares problem

minimize norm(A*x-b)

does not have a unique solution. Two of the infinitely many solutions are

x = pinv(A)*b

and

y = A\b

2-3004



pinv

These two are distinguished by the facts that norm(x) is smaller than
the norm of any other solution and that y has the fewest possible
nonzero components.

For example, the matrix generated by

A = magic(8); A = A(:,1:6)

is an 8-by-6 matrix that happens to have rank(A) = 3.

A =
64 2 3 61 60 6
9 55 54 12 13 51

17 47 46 20 21 43
40 26 27 37 36 30
32 34 35 29 28 38
41 23 22 44 45 19
49 15 14 52 53 11
8 58 59 5 4 62

The right-hand side is b = 260*ones(8,1),

b =
260
260
260
260
260
260
260
260

The scale factor 260 is the 8-by-8 magic sum. With all eight columns,
one solution to A*x = b would be a vector of all 1’s. With only six
columns, the equations are still consistent, so a solution exists, but it
is not all 1’s. Since the matrix is rank deficient, there are infinitely
many solutions. Two of them are

x = pinv(A)*b

2-3005



pinv

which is

x =
1.1538
1.4615
1.3846
1.3846
1.4615
1.1538

and

y = A\b

which produces this result.

Warning: Rank deficient, rank = 3 tol = 1.8829e-013.
y =

4.0000
5.0000

0
0
0

-1.0000

Both of these are exact solutions in the sense that norm(A*x-b) and
norm(A*y-b) are on the order of roundoff error. The solution x is special
because

norm(x) = 3.2817

is smaller than the norm of any other solution, including

norm(y) = 6.4807

On the other hand, the solution y is special because it has only three
nonzero components.

See Also inv, qr, rank, svd

2-3006



planerot

Purpose Givens plane rotation

Syntax [G,y] = planerot(x)

Description [G,y] = planerot(x) where x is a 2-component column vector, returns
a 2-by-2 orthogonal matrix G so that y = G*x has y(2) = 0.

Examples x = [3 4];
[G,y] = planerot(x')

G =
0.6000 0.8000

-0.8000 0.6000

y =
5
0

See Also qrdelete, qrinsert

2-3007



audioplayer.play

Purpose Play audio from audioplayer object

Syntax play(playerObj)
play(playerObj, start)
play(playerObj, [start stop])

Description play(playerObj) plays the audio associated with audioplayer object
playerObj from beginning to end.

play(playerObj, start) plays audio from the sample indicated by
start to the end.

play(playerObj, [start stop]) plays audio from the sample
indicated by start to the sample indicated by stop.

Example Load the demo file handel.mat and play the first 3 seconds of audio:

load handel.mat;
handel = audioplayer(y, Fs);
play(handel, [1 handel.SampleRate*3]);

See Also audioplayer | playblocking

How To • “Playing Audio”

2-3008



audiorecorder.play

Purpose Play audio from audiorecorder object

Syntax player = play(recObj)
player = play(recObj, start)
player = play(recObj, [start stop])

Description player = play(recObj) plays the audio associated with
audiorecorder object recObj from beginning to end, and returns an
audioplayer object.

player = play(recObj, start) plays audio from the sample indicated
by start to the end.

player = play(recObj, [start stop]) plays audio from the sample
indicated by start to the sample indicated by stop.

Examples Record 5 seconds of your speech with a microphone, and play it back.
Display the properties of the audioplayer object.

myVoice = audiorecorder;

disp('Start speaking.');
recordblocking(myVoice, 5);
disp('End of recording. Playing back ...');

playerObj = play(myVoice);

disp('Properties of playerObj:');
get(playerObj)

Play back only the first 3 seconds of the speech recorded in the previous
example:

play(myVoice, [1 myVoice.SampleRate*3]);

See Also audioplayer | audiorecorder

2-3009



audioplayer.playblocking

Purpose Play audio from audioplayer object, holding control until playback
completes

Syntax playblocking(playerObj)
playblocking(playerObj, start)
playblocking(playerObj, [start stop])

Description playblocking(playerObj) plays the audio associated with
audioplayer object playerObj from beginning to end. playblocking
does not return control until playback completes.

playblocking(playerObj, start) plays audio from the sample
indicated by start to the end.

playblocking(playerObj, [start stop]) plays audio from the
sample indicated by start to the sample indicated by stop.

Examples Load the demo files chirp.mat and gong.mat. Play with and without
blocking.

chirpData = load('chirp.mat');
chirpObj = audioplayer(chirpData.y, chirpData.Fs);

gongData = load('gong.mat');
gongObj = audioplayer(gongData.y, gongData.Fs);

% Play with blocking, one after the other.
playblocking(chirpObj);
playblocking(gongObj);

% Play without blocking: audio overlaps.
play(chirpObj);
play(gongObj);

Load the demo file handel.mat and play the first 3 seconds. Beep
when finished.

2-3010



audioplayer.playblocking

load handel.mat;
handel = audioplayer(y, Fs);
playblocking(handel, [1 handel.SampleRate*3]);
beep;

See Also audioplayer | play

How To • “Playing Audio”

2-3011



playshow

Purpose Run M-file demo (deprecated; use echodemo instead)

Syntax playshow filename

Description playshow filename runs filename, which is a demo. Replace playshow
filename with echodemo filename. Note that other arguments supported
by playshow are not supported by echodemo.

See Also demo, echodemo, helpbrowser

2-3012



plot

Purpose 2-D line plot

Syntax plot(Y)
plot(X1,Y1,...,Xn,Yn)
plot(X1,Y1,LineSpec,...,Xn,Yn,LineSpec)
plot(X1,Y1,LineSpec,'PropertyName',PropertyValue)
plot(axes_handle,X1,Y1,LineSpec,'PropertyName',PropertyValue)
h = plot(X1,Y1,LineSpec,'PropertyName',PropertyValue)

Description plot(Y) plots the columns of Y versus the index of each value
when Y is a real number. For complex Y, plot(Y) is equivalent to
plot(real(Y),imag(Y)).

plot(X1,Y1,...,Xn,Yn) plots each vector Yn versus vector Xn on the
same axes. If one of Yn or Xn is a matrix and the other is a vector, plots
the vector versus the matrix row or column with a matching dimension
to the vector. If Xn is a scalar and Yn is a vector, plots discrete Yn points
vertically at Xn. If Xn or Yn are complex, imaginary components are
ignored. plot automatically chooses colors and line styles in the order
specified by ColorOrder and LineStyleOrder properties of current
axes.

plot(X1,Y1,LineSpec,...,Xn,Yn,LineSpec) plots lines defined by
the Xn,Yn,LineSpec triplets, where LineSpec specifies the line type,
marker symbol, and color. You can mix Xn,Yn,LineSpec triplets with
Xn,Yn pairs: plot(X1,Y1,X2,Y2,LineSpec,X3,Y3).

plot(X1,Y1,LineSpec,'PropertyName',PropertyValue) manipulates
plot characteristics by setting lineseries properties (of lineseries
graphics objects created by plot). Enter properties as one or more
name and value pairs.

plot(axes_handle,X1,Y1,LineSpec,'PropertyName',PropertyValue)
plots using axes with the handle axes_handle instead of the
current axes (gca).

h = plot(X1,Y1,LineSpec,'PropertyName',PropertyValue) returns
a column vector of handles to lineseries objects, one handle per line.

2-3013



plot

Examples Plot a sine curve:

x = -pi:.1:pi;
y = sin(x);
plot(x,y)

Create line plot using specific line width, marker color, and marker size:

x = -pi:pi/10:pi;
y = tan(sin(x)) - sin(tan(x));
plot(x,y,'--rs','LineWidth',2,...

'MarkerEdgeColor','k',...

2-3014



plot

'MarkerFaceColor','g',...
'MarkerSize',10)

Modify axis tick marks and tick labels:

x = -pi:.1:pi;
y = sin(x);
plot(x,y)
set(gca,'XTick',-pi:pi/2:pi)
set(gca,'XTickLabel',{'-pi','-pi/2','0','pi/2','pi'})

2-3015



plot

Add a plot title, axis labels, and annotations:

x = -pi:.1:pi;
y = sin(x);
p = plot(x,y)
set(gca,'XTick',-pi:pi/2:pi)
set(gca,'XTickLabel',{'-pi','-pi/2','0','pi/2','pi'})
xlabel('-\pi \leq \Theta \leq \pi')
ylabel('sin(\Theta)')
title('Plot of sin(\Theta)')
% \Theta appears as a Greek symbol (see String)
% Annotate the point (-pi/4, sin(-pi/4))
text(-pi/4,sin(-pi/4),'\leftarrow sin(-\pi\div4)',...

'HorizontalAlignment','left')
% Change the line color to red and
% set the line width to 2 points

2-3016



plot

set(p,'Color','red','LineWidth',2)

Plot multiple line plots on the same axes:

plot(rand(12,1))
% hold axes and all lineseries properties, such as
% ColorOrder and LineStyleOrder, for the next plot
hold all
plot(randn(12,1))

Set line color to be always black and line style order to cycle through
solid, dash-dot, dash-dash, and dotted line styles:

2-3017



plot

set(0,'DefaultAxesColorOrder',[0 0 0],...
'DefaultAxesLineStyleOrder','-|-.|--|:')

plot(rand(12,1))
hold all
plot(rand(12,1))
hold all
plot(rand(12,1))

Alternatives To plot variables in the MATLAB workspace:

1 In the MATLAB workspace browser, select one or more variables.

2 Choose the plot type from the menu.

See Also axis | axes | bar | gca | grid | hold | legend | line | lineseries
properties | LineSpec | LineWidth | loglog | MarkerEdgeColor
| MarkerFaceColor | MarkerSize | plot3 | plotyy | semilogx |
semilogy | subplot | title | xlabel | xlim | ylabel | ylim

How To • Editing Plot Characteristics

• Creating Line Plots

• Annotating Graphs

• Creating Graphics from the Workspace Browser

• “Axes Objects — Defining Coordinate Systems for Graphs”

2-3018



plot (timeseries)

Purpose Plot time series

Syntax plot(ts)
plot(tsc.tsname)
plot(...,linespec)
plot(...,'Property1',value1,'Property2',value2,...)

Description plot(ts) plots the time-series data ts against time and interpolates
values between samples by using either zero-order-hold ('zoh') or
linear interpolation (the default). The plot displays in the current axes.
A figure and axes is created if none exists.

plot(tsc.tsname) plots the timeseries object tsname that is part
of the tscollection tsc.

plot(...,linespec) plots a line graph and applies the specified
linespec to lines and/or markers.

plot(...,'Property1',value1,'Property2',value2,...) plots a
line graph using the values specified for lineseries properties.

Remarks The timeseries/plot method generates titles and axis labels
automatically, as the following example illustrates. These labels are:

• Plot Title — 'Time Series Plot: <name>'

• X-Axis Label — 'Time (<units>)'

• Y-Axis Label — '<name>'

where <name> is the string assigned to ts.Name, or by default,
'unnamed'. <units> is the value of the ts.TimeInfo.Units field, which
defaults to 'seconds'.

You can place new time-series data on a time-series plot (by setting
hold on, for example, and issuing another timeseries/plot command).
When you add data to a plot, the title and axis labels are replaced by
blank strings to avoid labeling confusion. You can add your own labels
after plotting using the title, xlabel, and ylabel commands.

2-3019



plot (timeseries)

Time-series events, when defined, are marked in the plot by a circular
marker with red fill. You can also specify markers for all data points
using a linespec or property/value syntax in addition to any event
markers your data defines. The event markers plot on top of the
markers you define.

The value assigned to ts.DataInfo.Interpolation.Name controls the
type of interpolation used when plotting and resampling time series
data. Invoke the timeseries method setinterpmethod to change default
linear interpolation to zero-order hold interpolation (staircase). This
method creates a new timeseries object, with which you can overwrite
the original one if you want. For example, to cause time series ts to use
zero-order hold interpolation, type the following:

ts = ts.setinterpmethod('zoh');

Example Create two time-series objects from traffic count data and plot them
in sequence on the same axes. Add an event to one series, which is
automatically displayed by a red marker.

load count.dat;
count1=timeseries(count(:,1),1:24);
count1.Name = 'Oak St. Traffic Count';
count1.TimeInfo.Units = 'Hours';
plot(count1,':b'), grid on

2-3020



plot (timeseries)

% Obtain time of maximum value and add it as an event
[~,index] = max(count1.Data);
max_event = tsdata.event('peak',count1.Time(index));
max_event.Units = 'hours';
% Add the event to the time series
count1 = addevent(count1,max_event);
% Replace plot with new one showing the event
plot(count1,'.-b'), grid on

2-3021



plot (timeseries)

% Make a new ts object from column 2 of the same data source
count2=timeseries(count(:,2),1:24);
count2.Name = 'Maple St. Traffic Count';
count2.TimeInfo.Units = 'Hours';
% Turn hold on to add the new data to the plot
hold on
% The plot method does not add labels to a held plot
% Use property/value pair to customize markers
plot(count2,'s-m','MarkerSize',6),

2-3022



plot (timeseries)

% Labels are erased, so generate them manually
title('Time Series: Oak Street and Maple Street')
xlabel('Hour of day')
ylabel('Vehicle count')
% Add a legend in the upper left
legend('Oak St.','Maple St.','Location','northwest')

2-3023



plot (timeseries)

See Also setinterpmethod, timeseries, tscollection, tsdata.event,
tsprops, plot

2-3024



plot3

Purpose 3-D line plot

GUI
Alternatives

To graph selected variables, use the Plot Selector in the
Workspace Browser, or use the Figure Palette Plot Catalog. Manipulate
graphs in plot edit mode with the Property Editor. For details, see
Plotting Tools — Interactive Plotting in the MATLAB Graphics
documentation and Creating Graphics from the Workspace Browser in
the MATLAB Desktop Tools documentation.

Syntax plot3(X1,Y1,Z1,...)
plot3(X1,Y1,Z1,LineSpec,...)
plot3(...,'PropertyName',PropertyValue,...)
h = plot3(...)

Description The plot3 function displays a three-dimensional plot of a set of data
points.

plot3(X1,Y1,Z1,...), where X1, Y1, Z1 are vectors or matrices, plots
one or more lines in three-dimensional space through the points whose
coordinates are the elements of X1, Y1, and Z1.

plot3(X1,Y1,Z1,LineSpec,...) creates and displays all lines defined
by the Xn,Yn,Zn,LineSpec quads, where LineSpec is a line specification
that determines line style, marker symbol, and color of the plotted lines.

plot3(...,'PropertyName',PropertyValue,...) sets properties to
the specified property values for all line graphics objects created by
plot3.

h = plot3(...) returns a column vector of handles to lineseries
graphics objects, with one handle per object.

2-3025



plot3

Remarks If one or more of X1, Y1, Z1 is a vector, the vectors are plotted versus the
rows or columns of the matrix, depending whether the vectors’ lengths
equal the number of rows or the number of columns.

You can mix Xn,Yn,Zn triples with Xn,Yn,Zn,LineSpec quads, for
example,

plot3(X1,Y1,Z1,X2,Y2,Z2,LineSpec,X3,Y3,Z3)

See LineSpec and plot for information on line types and markers.

Examples Plot a three-dimensional helix.

t = 0:pi/50:10*pi;
plot3(sin(t),cos(t),t)
grid on
axis square

2-3026



plot3

See Also axis, bar3, grid, line, LineSpec, loglog, plot, semilogx, semilogy,
subplot

2-3027



plotbrowser

Purpose Show or hide figure plot browser

GUI
Alternatives

Click the larger Plotting Tools icon on the figure toolbar to

collectively enable plotting tools, and the smaller icon to collectively
disable them. Open or close the Plot Browser tool from the figure’s
View menu. For details, see “The Plot Browser” in the MATLAB
Graphics documentation.

Syntax plotbrowser('on')
plotbrowser('off')
plotbrowser('toggle')
plotbrowser
plotbrowser(figure_handle,...)

Description plotbrowser('on') displays the Plot Browser on the current figure.

plotbrowser('off') hides the Plot Browser on the current figure.

plotbrowser('toggle') or plotbrowser toggles the visibility of the
Plot Browser on the current figure.

plotbrowser(figure_handle,...) shows or hides the Plot Browser on
the figure specified by figure_handle.

See Also plottools, figurepalette, propertyeditor

2-3028



plotedit

Purpose Interactively edit and annotate plots

Syntax plotedit on
plotedit off
plotedit
plotedit(h)
plotedit('state')
plotedit(h,'state')

Description plotedit on starts plot edit mode for the current figure, allowing you
to use a graphical interface to annotate and edit plots easily. In plot
edit mode, you can label axes, change line styles, and add text, line, and
arrow annotations.

plotedit off ends plot mode for the current figure.

plotedit toggles the plot edit mode for the current figure.

plotedit(h) toggles the plot edit mode for the figure specified by figure
handle h.

plotedit('state') specifies the plotedit state for the current figure.
Values for state can be as shown.

Value for state Description

on Starts plot edit mode

off Ends plot edit mode

showtoolsmenu Displays the Tools menu in the
menu bar

hidetoolsmenu Removes the Tools menu from
the menu bar

Note hidetoolsmenu is intended for GUI developers who do not want
the Tools menu to appear in applications that use the figure window.

2-3029



plotedit

plotedit(h,'state') specifies the plotedit state for figure handle h.

Remarks Plot Editing Mode Graphical Interface Components

Examples Start plot edit mode for figure 2.

plotedit(2)

End plot edit mode for figure 2.

plotedit(2, 'off')

2-3030



plotedit

Hide the Tools menu for the current figure:

plotedit('hidetoolsmenu')

See Also axes, line, open, plot, print, saveas, text, propedit

2-3031



plotmatrix

Purpose Scatter plot matrix

Syntax plotmatrix(X,Y)
plotmatrix(X)
plotmatrix(...,'LineSpec')
[H,AX,BigAx,P] = plotmatrix(...)

Description plotmatrix(X,Y) scatter plots the columns of X against the columns
of Y. If X is p-by-m and Y is p-by-n, plotmatrix produces an n-by-m
matrix of axes.

plotmatrix(X) is the same as plotmatrix(X,X), except that the
diagonal is replaced by hist(X(:,i)).

plotmatrix(...,'LineSpec') uses a LineSpec to create the scatter
plot. The default is '.'.

[H,AX,BigAx,P] = plotmatrix(...) returns a matrix of handles to
the objects created in H, a matrix of handles to the individual subaxes in
AX, a handle to a big (invisible) axes that frames the subaxes in BigAx,
and a matrix of handles for the histogram plots in P. BigAx is left as the
current axes so that a subsequent title, xlabel, or ylabel command
is centered with respect to the matrix of axes.

Examples Generate plots of random data.

x = randn(50,3); y = x*[-1 2 1;2 0 1;1 -2 3;]';
plotmatrix(y,'*r')

2-3032



plotmatrix

See Also scatter, scatter3

2-3033



plottools

Purpose Show or hide plot tools

GUI
Alternatives

Click the larger Plotting Tools icon on the figure toolbar to

collectively enable plotting tools, and the smaller icon to collectively
disable them. Individually select the Figure Palette, Plot Browser,
and Property Editor tools from the figure’s View menu. For details,
see “Plotting Tools — Interactive Plotting” in the MATLAB Graphics
documentation.

Syntax plottools('on')
plottools('off')
plottools
plottools(figure_handle,...)

2-3034



plottools

plottools(...,'tool')

Description plottools('on') displays the Figure Palette, Plot Browser, and
Property Editor on the current figure, configured as you last used them.

plottools('off') hides the Figure Palette, Plot Browser, and
Property Editor on the current figure.

plottools with no arguments, is the same as plottools('on')

plottools(figure_handle,...) displays or hides the plot tools on the
specified figure instead of on the current figure.

plottools(...,'tool') operates on the specified tool only. tool can
be one of the following strings:

• figurepalette

• plotbrowser

• propertyeditor

Note The first time you open the plotting tools, all three of them
appear, grouped around the current figure as shown above. If you
close, move, or undock any of the tools, MATLAB remembers the
configuration you left them in and restores it when you invoke the tools
for subsequent figures, both within and across MATLAB sessions.

See Also figurepalette, plotbrowser, propertyeditor

2-3035



plotyy

Purpose 2-D line plots with y-axes on both left and right side

GUI
Alternatives

To graph selected variables, use the Plot Selector in the
Workspace Browser, or use the Figure Palette Plot Catalog. Manipulate
graphs in plot edit mode with the Property Editor. For details, see
“Plotting Tools — Interactive Plotting” in the MATLAB Graphics
documentation and “Creating Plots from the Workspace Browser” in the
MATLAB Desktop Tools documentation.

Syntax plotyy(X1,Y1,X2,Y2)
plotyy(X1,Y1,X2,Y2,function)
plotyy(X1,Y1,X2,Y2,'function1','function2')
[AX,H1,H2] = plotyy(...)

Description plotyy(X1,Y1,X2,Y2) plots X1 versus Y1 with y-axis labeling on the
left and plots X2 versus Y2 with y-axis labeling on the right.

plotyy(X1,Y1,X2,Y2,function) uses the specified plotting function to
produce the graph.

function can be either a function handle or a string specifying plot,
semilogx, semilogy, loglog, stem, or any MATLAB function that
accepts the syntax

h = function(x,y)

For example,

plotyy(x1,y1,x2,y2,@loglog) % function handle
plotyy(x1,y1,x2,y2,'loglog') % string

Function handles enable you to access user-defined subfunctions and
can provide other advantages. See @ for more information on using
function handles.

2-3036



plotyy

plotyy(X1,Y1,X2,Y2,'function1','function2') uses
function1(X1,Y1) to plot the data for the left axis and
function2(X2,Y2) to plot the data for the right axis.

[AX,H1,H2] = plotyy(...) returns the handles of the two axes
created in AX and the handles of the graphics objects from each plot in
H1 and H2. AX(1) is the left axes and AX(2) is the right axes.

Examples This example graphs two mathematical functions using plot as the
plotting function. The two y-axes enable you to display both sets of data
on one graph even though relative values of the data are quite different.

x = 0:0.01:20;
y1 = 200*exp(-0.05*x).*sin(x);
y2 = 0.8*exp(-0.5*x).*sin(10*x);
[AX,H1,H2] = plotyy(x,y1,x,y2,'plot');

You can use the handles returned by plotyy to label the axes and set
the line styles used for plotting. With the axes handles you can specify
the YLabel properties of the left- and right-side y-axis:

set(get(AX(1),'Ylabel'),'String','Slow Decay')
set(get(AX(2),'Ylabel'),'String','Fast Decay')

Use the xlabel and title commands to label the x-axis and add a title:

xlabel('Time (\musec)')
title('Multiple Decay Rates')

Use the line handles to set the LineStyle properties of the left- and
right-side plots:

set(H1,'LineStyle','--')
set(H2,'LineStyle',':')

2-3037



plotyy

See Also plot, linkaxes, linkprop, loglog, semilogx, semilogy,
XAxisLocation, YAxisLocation

See “Using Multiple X- and Y-Axes” for more information.

2-3038



DelaunayTri.pointLocation

Purpose Simplex containing specified location

Syntax SI = pointLocation(DT,QX)
SI = pointLocation(DT,QX,QY)
SI = pointLocation(DT,QX,QY,QZ)
[SI, BC] = pointLocation(DT,...)

Description SI = pointLocation(DT,QX) returns the indices SI of the enclosing
simplex (triangle/tetrahedron) for each query point location in QX. The
enclosing simplex for point QX(k,:) is SI(k). pointLocation returns
NaN for all points outside the convex hull.

SI = pointLocation(DT,QX,QY) and SI =
pointLocation(DT,QX,QY,QZ) allow the query point locations to be
specified in alternative column vector format when working in 2-D
and 3-D.

[SI, BC] = pointLocation(DT,...) returns the barycentric
coordinates BC.

Input
Arguments

DT Delaunay triangulation.

QX Matrix of size mpts-by-ndim, mpts being the
number of query points.

Output
Arguments

SI Column vector of length mpts containing the
indices of the enclosing simplex for each query
point. mpts is the number of query points.

BC BC is a mpts-by-ndimmatrix, each row BC(i,:)
represents the barycentric coordinates of
QX(i,:) with respect to the enclosing simplex
SI(i).

2-3039



DelaunayTri.pointLocation

Examples Example 1

Create a 2-D Delaunay triangulation:

X = rand(10,2);
dt = DelaunayTri(X);

Find the triangles that contain specified query points:

qrypts = [0.25 0.25; 0.5 0.5];
triids = pointLocation(dt, qrypts)

Example 2

Create a 3-D Delaunay triangulation:

x = rand(10,1);
y = rand(10,1);
z = rand(10,1);
dt = DelaunayTri(x,y,z);

Find the triangles that contain specified query points and evaluate
the barycentric coordinates:

qrypts = [0.25 0.25 0.25; 0.5 0.5 0.5];
[tetids, bcs] = pointLocation(dt, qrypts)

See Also nearestNeighbor

2-3040



pol2cart

Purpose Transform polar or cylindrical coordinates to Cartesian

Syntax [X,Y] = pol2cart(THETA,RHO)
[X,Y,Z] = pol2cart(THETA,RHO,Z)

Description [X,Y] = pol2cart(THETA,RHO) transforms the polar coordinate data
stored in corresponding elements of THETA and RHO to two-dimensional
Cartesian, or xy, coordinates. The arrays THETA and RHO must be the
same size (or either can be scalar). The values in THETA must be in
radians.

xyz, [X,Y,Z] = pol2cart(THETA,RHO,Z) transforms the cylindrical
coordinate data stored in corresponding elements of THETA, RHO, and Z
to three-dimensional Cartesian, or coordinates. The arrays THETA, RHO,
and Z must be the same size (or any can be scalar). The values in THETA
must be in radians.

Algorithm The mapping from polar and cylindrical coordinates to Cartesian
coordinates is:

2-3041



pol2cart

See Also cart2pol, cart2sph, sph2cart

2-3042



polar

Purpose Polar coordinate plot

GUI
Alternatives

To graph selected variables, use the Plot Selector in the
Workspace Browser, or use the Figure Palette Plot Catalog. Manipulate
graphs in plot edit mode with the Property Editor. For details, see
Plotting Tools — Interactive Plotting in the MATLAB Graphics
documentation and Creating Graphics from the Workspace Browser in
the MATLAB Desktop Tools documentation.

Syntax polar(theta,rho)
polar(theta,rho,LineSpec)
polar(axes_handle,...)
h = polar(...)

Description The polar function accepts polar coordinates, plots them in a Cartesian
plane, and draws the polar grid on the plane.

polar(theta,rho) creates a polar coordinate plot of the angle theta
versus the radius rho. theta is the angle from the x-axis to the radius
vector specified in radians; rho is the length of the radius vector
specified in dataspace units.

polar(theta,rho,LineSpec) LineSpec specifies the line type, plot
symbol, and color for the lines drawn in the polar plot.

polar(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

h = polar(...) returns the handle of a line object in h.

Remarks Negative r values reflect through the origin, rotating by pi (since
(theta,r) transforms to (r*cos(theta), r*sin(theta))). If you
want different behavior, you can manipulate r prior to plotting. For
example, you can make r equal to max(0,r) or abs(r).

2-3043



polar

Examples Create a simple polar plot using a dashed red line:

t = 0:.01:2*pi;
polar(t,sin(2*t).*cos(2*t),'--r')

See Also cart2pol, compass, LineSpec, plot, pol2cart, rose

2-3044



poly

Purpose Polynomial with specified roots

Syntax p = poly(A)
p = poly(r)

Description p = poly(A) where A is an n-by-n matrix returns an n+1 element
row vector whose elements are the coefficients of the characteristic
polynomial, . The coefficients are ordered in descending
powers: if a vector c has n+1 components, the polynomial it represents

is

p = poly(r) where r is a vector returns a row vector whose elements
are the coefficients of the polynomial whose roots are the elements of r.

Remarks Note the relationship of this command to

r = roots(p)

which returns a column vector whose elements are the roots of the
polynomial specified by the coefficients row vector p. For vectors, roots
and poly are inverse functions of each other, up to ordering, scaling,
and roundoff error.

Examples MATLAB displays polynomials as row vectors containing the coefficients
ordered by descending powers. The characteristic equation of the matrix

A =

1 2 3
4 5 6
7 8 0

is returned in a row vector by poly:

p = poly(A)

p =

2-3045



poly

1 -6 -72 -27

The roots of this polynomial (eigenvalues of matrix A) are returned in
a column vector by roots:

r = roots(p)

r =

12.1229
-5.7345
-0.3884

Algorithm The algorithms employed for poly and roots illustrate an interesting
aspect of the modern approach to eigenvalue computation. poly(A)
generates the characteristic polynomial of A, and roots(poly(A)) finds
the roots of that polynomial, which are the eigenvalues of A. But both
poly and roots use eig, which is based on similarity transformations.
The classical approach, which characterizes eigenvalues as roots of the
characteristic polynomial, is actually reversed.

If A is an n-by-n matrix, poly(A) produces the coefficients c(1) through
c(n+1), with c(1) = 1, in

The algorithm is

z = eig(A);
c = zeros(n+1,1); c(1) = 1;
for j = 1:n

c(2:j+1) = c(2:j+1)-z(j)*c(1:j);
end

This recursion is easily derived by expanding the product.

2-3046



poly

It is possible to prove that poly(A) produces the coefficients in the
characteristic polynomial of a matrix within roundoff error of A. This is
true even if the eigenvalues of A are badly conditioned. The traditional
algorithms for obtaining the characteristic polynomial, which do not use
the eigenvalues, do not have such satisfactory numerical properties.

See Also conv, polyval, residue, roots

2-3047



polyarea

Purpose Area of polygon

Syntax A = polyarea(X,Y)
A = polyarea(X,Y,dim)

Description A = polyarea(X,Y) returns the area of the polygon specified by the
vertices in the vectors X and Y.

If X and Y are matrices of the same size, then polyarea returns the area
of polygons defined by the columns X and Y.

If X and Y are multidimensional arrays, polyarea returns the area of
the polygons in the first nonsingleton dimension of X and Y.

A = polyarea(X,Y,dim) operates along the dimension specified by
scalar dim.

Examples L = linspace(0,2.*pi,6); xv = cos(L)';yv = sin(L)';
xv = [xv ; xv(1)]; yv = [yv ; yv(1)];
A = polyarea(xv,yv);
plot(xv,yv); title(['Area = ' num2str(A)]); axis image

2-3048



polyarea

See Also convhull, inpolygon, rectint

2-3049



polyder

Purpose Polynomial derivative

Syntax k = polyder(p)
k = polyder(a,b)
[q,d] = polyder(b,a)

Description The polyder function calculates the derivative of polynomials,
polynomial products, and polynomial quotients. The operands a, b, and
p are vectors whose elements are the coefficients of a polynomial in
descending powers.

k = polyder(p) returns the derivative of the polynomial p.

k = polyder(a,b) returns the derivative of the product of the
polynomials a and b.

[q,d] = polyder(b,a) returns the numerator q and denominator d of
the derivative of the polynomial quotient b/a.

Examples The derivative of the product

is obtained with

a = [3 6 9];
b = [1 2 0];
k = polyder(a,b)
k =

12 36 42 18

This result represents the polynomial

See Also conv, deconv

2-3050



polyeig

Purpose Polynomial eigenvalue problem

Syntax [X,e] = polyeig(A0,A1,...Ap)
e = polyeig(A0,A1,..,Ap)
[X, e, s] = polyeig(A0,A1,..,AP)

Description [X,e] = polyeig(A0,A1,...Ap) solves the polynomial eigenvalue
problem of degree p

where polynomial degree p is a non-negative integer, and A0,A1,...Ap
are input matrices of order n. The output consists of a matrix X of size
n-by-n*p whose columns are the eigenvectors, and a vector e of length
n*p containing the eigenvalues.

If lambda is the jth eigenvalue in e, and x is the jth column of
eigenvectors in X, then (A0 + lambda*A1 + ... + lambda^p*Ap)*x
is approximately 0.

e = polyeig(A0,A1,..,Ap) is a vector of length n*p whose elements
are the eigenvalues of the polynomial eigenvalue problem.

[X, e, s] = polyeig(A0,A1,..,AP) also returns a vector s of length
p*n containing condition numbers for the eigenvalues. At least one of
A0 and AP must be nonsingular. Large condition numbers imply that
the problem is close to a problem with multiple eigenvalues.

Remarks Based on the values of p and n, polyeig handles several special cases:

• p = 0, or polyeig(A) is the standard eigenvalue problem: eig(A).

• p = 1, or polyeig(A,B) is the generalized eigenvalue problem:
eig(A,-B).

• n = 1, or polyeig(a0,a1,...ap) for scalars a0, a1 ..., ap is the standard
polynomial problem: roots([ap ... a1 a0]).

2-3051



polyeig

If both A0 and Ap are singular the problem is potentially ill-posed.
Theoretically, the solutions might not exist or might not be unique.
Computationally, the computed solutions might be inaccurate. If one,
but not both, of A0 and Ap is singular, the problem is well posed, but
some of the eigenvalues might be zero or infinite.

Note that scaling A0,A1,..,Ap to have norm(Ai) roughly equal 1 may
increase the accuracy of polyeig. In general, however, this cannot be
achieved. (See Tisseur [3] for more detail.)

Algorithm The polyeig function uses the QZ factorization to find intermediate
results in the computation of generalized eigenvalues. It uses
these intermediate results to determine if the eigenvalues are
well-determined. See the descriptions of eig and qz for more on this.

See Also condeig, eig, qz

References [1] Dedieu, Jean-Pierre Dedieu and Francoise Tisseur, “Perturbation
theory for homogeneous polynomial eigenvalue problems,” Linear
Algebra Appl., Vol. 358, pp. 71-94, 2003.

[2] Tisseur, Francoise and Karl Meerbergen, “The quadratic eigenvalue
problem,” SIAM Rev., Vol. 43, Number 2, pp. 235-286, 2001.

[3] Francoise Tisseur, “Backward error and condition of polynomial
eigenvalue problems” Linear Algebra Appl., Vol. 309, pp. 339-361, 2000.

2-3052



polyfit

Purpose Polynomial curve fitting

Syntax p = polyfit(x,y,n)
[p,S] = polyfit(x,y,n)
[p,S,mu] = polyfit(x,y,n)

Description p = polyfit(x,y,n) finds the coefficients of a polynomial p(x) of
degree n that fits the data, p(x(i)) to y(i), in a least squares sense.
The result p is a row vector of length n+1 containing the polynomial
coefficients in descending powers:

p x p px p x x pn n
n n( ) ... .= + ++ +−

+1 2
1

1

[p,S] = polyfit(x,y,n) returns the polynomial coefficients p
and a structure S for use with polyval to obtain error estimates or
predictions. Structure S contains fields R, df, and normr, for the
triangular factor from a QR decomposition of the Vandermonde matrix
of x, the degrees of freedom, and the norm of the residuals, respectively.
If the data y are random, an estimate of the covariance matrix of p is
(Rinv*Rinv')*normr^2/df, where Rinv is the inverse of R. If the errors
in the data y are independent normal with constant variance, polyval
produces error bounds that contain at least 50% of the predictions.

[p,S,mu] = polyfit(x,y,n) finds the coefficients of a polynomial in

x̂
x

=
− 


1

2

where 1 = mean( )x and 2 = std( )x . mu is the two-element vector
[μ1,μ2]. This centering and scaling transformation improves the
numerical properties of both the polynomial and the fitting algorithm.

Examples This example involves fitting the error function, erf(x), by a polynomial
in x. This is a risky project because erf(x) is a bounded function, while
polynomials are unbounded, so the fit might not be very good.

2-3053



polyfit

First generate a vector of x points, equally spaced in the interval [0,
2.5]; then evaluate erf(x) at those points.

x = (0: 0.1: 2.5)';
y = erf(x);

The coefficients in the approximating polynomial of degree 6 are

p = polyfit(x,y,6)

p =

0.0084 -0.0983 0.4217 -0.7435 0.1471 1.1064 0.0004

There are seven coefficients and the polynomial is

. . . . . .0084 0 0983 0 4217 0 1471 1 106 0 00046 5 3 2x x x x x− + + + + .
To see how good the fit is, evaluate the polynomial at the data points
with:

f = polyval(p,x);

A table showing the data, fit, and error is

table = [x y f y-f]

table =

0 0 0.0004 -0.0004
0.1000 0.1125 0.1119 0.0006
0.2000 0.2227 0.2223 0.0004
0.3000 0.3286 0.3287 -0.0001
0.4000 0.4284 0.4288 -0.0004
...
2.1000 0.9970 0.9969 0.0001
2.2000 0.9981 0.9982 -0.0001
2.3000 0.9989 0.9991 -0.0003
2.4000 0.9993 0.9995 -0.0002
2.5000 0.9996 0.9994 0.0002

2-3054



polyfit

So, on this interval, the fit is good to between three and four digits.
Beyond this interval the graph shows that the polynomial behavior
takes over and the approximation quickly deteriorates.

x = (0: 0.1: 5)';
y = erf(x);
f = polyval(p,x);
plot(x,y,'o',x,f,'-')
axis([0 5 0 2])

Algorithm The polyfit MATLAB file forms the Vandermonde matrix, V, whose

elements are powers of x. v xi j i
n j

, = −

2-3055



polyfit

It then uses the backslash operator, \, to solve the least squares
problem Vp y.

You can modify the MATLAB file to use other functions of x as the
basis functions.

See Also poly, polyval, roots, lscov, cov

2-3056

./arithmeticoperators.html


polyint

Purpose Integrate polynomial analytically

Syntax polyint(p,k)
polyint(p)

Description polyint(p,k) returns a polynomial representing the integral of
polynomial p, using a scalar constant of integration k.

polyint(p) assumes a constant of integration k=0.

See Also polyder, polyval, polyvalm, polyfit

2-3057



polyval

Purpose Polynomial evaluation

Syntax y = polyval(p,x)
[y,delta] = polyval(p,x,S)
y = polyval(p,x,[],mu)
[y,delta] = polyval(p,x,S,mu)

Description y = polyval(p,x) returns the value of a polynomial of degree n
evaluated at x. The input argument p is a vector of length n+1 whose
elements are the coefficients in descending powers of the polynomial
to be evaluated.

y p x p x p x pn n
n n= + + + +−

+1 2
1

1…

x can be a matrix or a vector. In either case, polyval evaluates p at
each element of x.

[y,delta] = polyval(p,x,S) uses the optional output structure S
generated by polyfit to generate error estimates delta. delta is an
estimate of the standard deviation of the error in predicting a future
observation at x by p(x). If the coefficients in p are least squares
estimates computed by polyfit, and the errors in the data input to
polyfit are independent, normal, and have constant variance, then
y±delta contains at least 50% of the predictions of future observations
at x.

y = polyval(p,x,[],mu) or [y,delta] = polyval(p,x,S,mu) use

ˆ ( ) /x x= −  1 2 in place of x. In this equation, 1 = mean( )x and

2 = std( )x . The centering and scaling parameters mu = [ , ] 1 2 are
optional output computed by polyfit.

Remarks The polyvalm(p,x) function, with x a matrix, evaluates the polynomial
in a matrix sense. See polyvalm for more information.

2-3058



polyval

Examples The polynomial p x x x( ) = + +3 2 12 is evaluated at x = 5, 7, and 9 with

p = [3 2 1];
polyval(p,[5 7 9])

which results in

ans =

86 162 262

For another example, see polyfit.

See Also polyfit, polyvalm, polyder, polyint

2-3059



polyvalm

Purpose Matrix polynomial evaluation

Syntax Y = polyvalm(p,X)

Description Y = polyvalm(p,X) evaluates a polynomial in a matrix sense. This is
the same as substituting matrix X in the polynomial p.

Polynomial p is a vector whose elements are the coefficients of a
polynomial in descending powers, and X must be a square matrix.

Examples The Pascal matrices are formed from Pascal’s triangle of binomial
coefficients. Here is the Pascal matrix of order 4.

X = pascal(4)
X =

1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

Its characteristic polynomial can be generated with the poly function.

p = poly(X)
p =

1 -29 72 -29 1

This represents the polynomial .

Pascal matrices have the curious property that the vector of coefficients
of the characteristic polynomial is palindromic; it is the same forward
and backward.

Evaluating this polynomial at each element is not very interesting.

polyval(p,X)
ans =

16 16 16 16
16 15 -140 -563
16 -140 -2549 -12089

2-3060



polyvalm

16 -563 -12089 -43779

But evaluating it in a matrix sense is interesting.

polyvalm(p,X)
ans =

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

The result is the zero matrix. This is an instance of the Cayley-Hamilton
theorem: a matrix satisfies its own characteristic equation.

See Also polyfit, polyval

2-3061



pow2

Purpose Base 2 power and scale floating-point numbers

Syntax X = pow2(Y)
X = pow2(F,E)

Description X = pow2(Y) returns an array X whose elements are 2 raised to the
power Y.

X = pow2(F,E) computes for corresponding elements
of F and E. The result is computed quickly by simply adding E to the
floating-point exponent of F. Arguments F and E are real and integer
arrays, respectively.

Remarks This function corresponds to the ANSI C function ldexp() and the
IEEE floating-point standard function scalbn().

Examples For IEEE arithmetic, the statement X = pow2(F,E) yields the values:

F E X
1/2 1 1
pi/4 2 pi
-3/4 2 -3
1/2 -51 eps
1-eps/2 1024 realmax
1/2 -1021 realmin

See Also log2, exp, hex2num, realmax, realmin

The arithmetic operators ^ and .^

2-3062



power

Purpose Array power

Syntax Z = X.^Y

Description Z = X.^Y denotes element-by-element powers. X and Y must have the
same dimensions unless one is a scalar. A scalar is expanded to an
array of the same size as the other input.

C = power(A,B) is called for the syntax 'A .^ B' when A or B is an
object.

Note that for a negative value X and a non-integer value Y, if the abs(Y)
is less than one, the power function returns the complex roots. To obtain
the remaining real roots, use the nthroot function.

See Also nthroot, realpow

2-3063



ppval

Purpose Evaluate piecewise polynomial

Syntax v = ppval(pp,xx)

Description v = ppval(pp,xx) returns the value of the piecewise polynomial f,
contained in pp, at the entries of xx. You can construct pp using the
functions interp1, pchip, spline, or the spline utility mkpp.

v is obtained by replacing each entry of xx by the value of f there. If f is
scalar-valued, v is of the same size as xx. xx may be N-dimensional.

If pp was constructed by pchip, spline, or mkpp using the orientation of
non-scalar function values specified for those functions, then:

If f is [D1,..,Dr]-valued, and xx is a vector of length N, then V has size
[D1,...,Dr, N], with V(:,...,:,J) the value of f at xx(J).

If f is [D1,..,Dr]-valued, and xx has size [N1,...,Ns], then V has size
[D1,...,Dr, N1,...,Ns], with V(:,...,:, J1,...,Js) the value of f
at xx(J1,...,Js).

If pp was constructed by interp1 using the orienatation of non-scalar
function values specified for that function, then:

If f is [D1,..,Dr]-valued, and xx is a vector of length N, then V has size
[N,D1,...,Dr], with V(J,:,...,:) the value of f at xx(J).

If f is [D1,..,Dr]-valued, and xx has size [N1,...,Ns], then V has size
[N1,...,Ns,D1,...,Dr], with V(J1,...,Js,:,...,:) the value of f
at xx(J1,...,Js).

Examples Compare the results of integrating the function cos

a = 0; b = 10;
int1 = quad(@cos,a,b)

int1 =
-0.5440

2-3064



ppval

with the results of integrating the piecewise polynomial pp that
approximates the cosine function by interpolating the computed values
x and y.

x = a:b;
y = cos(x);
pp = spline(x,y);
int2 = quad(@(x)ppval(pp,x),a,b)

int2 =
-0.5485

int1 provides the integral of the cosine function over the interval
[a,b], while int2 provides the integral over the same interval of the
piecewise polynomial pp.

See Also mkpp, spline, unmkpp

2-3065



prefdir

Purpose Folder containing preferences, history, and layout files

Syntax prefdir
f = prefdir
f = prefdir(1)

Description prefdir returns the folder that contains

• Preferences for MATLAB and related products (matlab.prf)

• Command history file (history.m)

• MATLAB shortcuts (shortcuts.xml)

• MATLAB desktop layout files (MATLABDesktop.xml and
Your_Saved_LayoutMATLABLayout.xml)

• Other related files

f = prefdir assigns to f the name of the folder containing preferences
and related files.

f = prefdir(1) creates a folder for preferences and related files if one
does not exist. If the folder does exist, the name is assigned to f.

Remarks You must have write access to the preferences folder, or MATLAB
generates an error in the Command Window when you try to change
preferences.

The folder might be a hidden folder, for example,
myname/.matlab/R2009a. For more information, see “Viewing Hidden
Files and Folders”.

The preferences folder MATLAB uses and how preferences migrate
when you use a new version of MATLAB depend on the version. In
R14SP3, there was a change to the way that the preference folders
were named and how they migrated, affecting R13 through R14SP2.
The differences are relevant if you run multiple versions of MATLAB
and one version is prior to R14SP3:

2-3066



prefdir

• For R2009b back through and including R2006a, and R14SP3,
MATLAB uses the name of the release for the preference folder. For
example, R2009b, R2009a, ... through R14SP3. When you install
R2009b, MATLAB migrates the files in the R2009a preferences folder
to the R2009b preferences folder. While running R2009b through
R14SP3, any changes made to files in those preferences folders
(R2009b through R14SP3) are used only in their respective versions.
As an example, commands you run in R2009b will not appear in the
Command History when you run R2009a, and so on. The converse
is also true.

Upon startup, MATLAB 7.9 (R2009b) looks for, and if found uses, the
R2009b preferences folder. If not found, MATLAB creates an R2009b
preferences folder. This happens when the R2009b preferences
folder is deleted or does not exist for some other reason. MATLAB
then looks for the R2009a preferences folder, and if found, migrates
the R2009a preferences to the R2009b preferences. If it does not
find the R2009a preferences folder, it uses the default preferences
for R2009b. This process also applies when starting MATLAB 7.8
(R2009a) through 7.1 (R14SP3).

If you want to use default preferences for R2009b, and do not
want MATLAB to migrate preferences from R2009a, the R2009b
preferences folder must exist but be empty when you start MATLAB.
If you want to maintain some of your R2009b customizations, but
restore the defaults for others, in the R2009b preferences folder,
delete the files for which you want the defaults to be restored.
One file you might want to maintain is history.m—for more
information about the file, see “Viewing Statements in the Command
History Window” in the MATLAB Desktop Tools and Development
Environment documentation.

• The R14 through R14SP2 releases all share the R14 preferences
folder. While running R14SP1, for example, any changes made to
files in the preferences folder, R14, are used when you run R14SP2
and R14. As another example, commands you run in R14 appear
in the Command History when you run R14SP2, and the converse
is also true. The preferences are not used when you run R14SP3 or

2-3067



prefdir

later versions because those versions each use their own preferences
folders.

• All R13 releases use the R13 preferences folder. While running
R13SP1, for example, any changes made to files in the preferences
folder, R13, are used when you run R13. As an example, commands
you run in R13 will appear in the Command History when you run
R13SP1, and the converse is true. The preferences are not used when
you run any R14 or later releases because R14 and later releases use
different preferences folders, and the converse is true.

Examples View the location of the preferences folder:

prefdir

MATLAB returns:

ans =

C:\WINNT\Profiles\my_user_name\MATHWORKS\Application Data\MathWorks\MATLAB\R2009a

Run dir for the folder to see the files for customizing MathWorks
products:

. history.m

.. matlab.prf
cwdhistory.m MATLABDesktop.xml
shortcuts.xml MATLAB EditorDesktop.xml
...

In MATLAB, run cd(prefdir) to make the preferences folder become
the current folder.

On Windows platforms, go directly to the preferences folder in Microsoft
Windows Explorer by running winopen(prefdir).

See Also preferences, winopen

2-3068



prefdir

“Specifying Options for MATLAB Using Preferences” in the MATLAB
Desktop Tools and Development Environment documentation

2-3069



preferences

Purpose Open Preferences dialog box

GUI
Alternatives

As an alternative to the preferences function, select
File > Preferences in the MATLAB desktop or any desktop tool.

Syntax preferences

Description preferences displays the Preferences dialog box, from which you can
make changes to options for MATLAB and related products.

See Also prefdir

“Specifying Options for MATLAB Using Preferences” in the MATLAB
Desktop Tools and Development Environment documentation

2-3070



primes

Purpose Generate list of prime numbers

Syntax p = primes(n)

Description p = primes(n) returns a row vector of the prime numbers less than
or equal to n. A prime number is one that has no factors other than
1 and itself.

Examples p = primes(37)

p = 2 3 5 7 11 13 17 19 23 29 31 37

See Also factor

2-3071



print, printopt

Purpose Print figure or save to file and configure printer defaults

Contents

“GUI Alternative” on page 2-3072

“Syntax”

“Description” on page 2-3072

“Printer Drivers” on page 2-3074

“Graphics Format Files” on page 2-3079

“Printing Options” on page 2-3083

“Paper Sizes” on page 2-3086

“Printing Tips” on page 2-3087

“Examples” on page 2-3090

“See Also” on page 2-3092

GUI
Alternative

Select File > Print from the figure window to open the Print dialog box
and File > Print Preview to open the Print Preview GUI. For details,
see “How to Print or Export” in the MATLAB Graphics documentation.

Syntax print
print('argument1','argument2',...)
print(handle,'filename')
print argument1 argument2 ... argumentn
[pcmd,dev] = printopt

Description print and printopt produce hard-copy output. All arguments to the
print command are optional. You can use them in any combination
or order.

print sends the contents of the current figure, including bitmap
representations of any user interface controls, to the printer using the
device and system printing command defined by printopt.

2-3072



print, printopt

print('argument1','argument2',...) is the function form of
print. It enables you to pass variables for any input arguments.
This form is useful for passing file names and handles (for example,
print(handle,'filename'). See “Batch Processing” on page 2-3091
for an example. Also see “Specifying the Figure to Print” on page 2-3090
for further examples.

print argument1 argument2 ... argumentn prints the figure using
the specified arguments.

The following arguments apply to both the function and the command
form:

Argument Description

handle Print the specified object.

filename Direct the output to the PostScript file designated
by filename. If filename does not include an
extension, print appends an appropriate extension.

-ddriver Print the figure using the specified printer driver,
(such as color PostScript). If you omit -ddriver,
print uses the default value stored in printopt.m.
The table in “Printer Drivers” on page 2-3074 lists
all supported device types.

-dformat Copy the figure to the system Clipboard (Microsoft
Windows platforms only). To be valid, the format
for this operation must be either -dmeta (Windows
Enhanced Metafile) or -dbitmap (Windows
Bitmap).

-dformat
filename

Export the figure to the specified file using the
specified graphics format (such as TIFF). The table
of “Graphics Format Files” on page 2-3079 lists all
supported graphics file formats.

2-3073



print, printopt

Argument Description

-smodelname Print the current Simulink model modelname.

-options Specify print options that modify the action of the
print command. (For example, the -noui option
suppresses printing of user interface controls.)
“Printing Options” on page 2-3083 lists available
options.

[pcmd,dev] = printopt returns strings containing the current
system-dependent printing command and output device. printopt is a
file used by print to produce the hard-copy output. You can edit the file
printopt.m to set your default printer type and destination.

pcmd and dev are platform-dependent strings. pcmd contains the
command that print uses to send a file to the printer. dev contains the
printer driver or graphics format option for the print command. Their
defaults are platform dependent.

Platform Print Command Driver or Format

Mac and
UNIX

lpr -r -dps2

Windows COPY /B %s LPT1: -dwin

Printer
Drivers

The following table shows the more widely used printer drivers
supported by MATLAB software. If you do not specify a driver, the
default setting shown in the previous table is used. For a list of all
supported printer drivers, type print -d at the MATLAB prompt.
Some things to remember:

• As indicated in “Description” on page 2-3072 the -d switch specifies a
printer driver or a graphics file format:

- Specifying a printer driver without a file name or printer name
(the -P option) sends the output formatted by the specified driver
to your default printer, which may not be what you want to do.

2-3074



print, printopt

Note OnWindows systems, when you use the -P option to identify
a printer to use, if you specify any driver other than -dwin or
-dwinc, MATLAB writes the output to a file with an appropriate
extension but does not send it to the printer. You can then copy
that file to a printer.

- Specifying a -dmeta or a -dbitmap graphics format without a
file name places the graphic on the system Clipboard, if possible
(Windows platforms only).

- Specifying any other graphics format without a file name creates a
file in the current folder with a name such as figureN.fmt, where
N is 1, 2, 3, ... and fmt indicates the format type, for example, eps
or png.

• Several drivers come from a product called Ghostscript, which is
shipped with MATLAB software. The last column indicates when
Ghostscript is used.

• Not all drivers are supported on all platforms. Non support is noted
in the first column of the table.

• If you specify a particular printer with the -P option and do not
specify a driver, a default driver for that printer is selected, either by
the operating system or by MATLAB , depending on the platform:

- On Windows, the driver associated with this particular printing
device is used.

- On Macintosh and UNIX platforms, the driver specified in
printopt.m is used

See Selecting the Printer in the Graphics documentation for more
information.

2-3075



print, printopt

Note The MathWorks™ is planning to leverage existing operating
system (OS) support for printer drivers and devices. As a result, the
ability to specify certain print devices using the print -d command,
and certain graphics formats using the print -d command and/or the
saveas command, will be removed in a future release. In the following
table, the affected formats have an asterisk (*) next to the print
command option string. The asterisks provide a link to the Web site
which supplies a form for users to give feedback about these changes.

Printer Driver Print Command Option
String

Ghostscript

Canon BubbleJet BJ10e -dbj10e * Yes

Canon BubbleJet BJ200
color

-dbj200 * Yes

Canon Color BubbleJet
BJC-70/BJC-600/BJC-4000

-dbjc600 * Yes

Canon Color BubbleJet
BJC-800

-dbjc800 * Yes

Epson and compatible 9-
or 24-pin dot matrix print
drivers

-depson * Yes

Epson and compatible
9-pin with interleaved
lines (triple resolution)

-deps9high * Yes

Epson LQ-2550 and
compatible; color (not
supported on HP-700)

-depsonc * Yes

Fujitsu 3400/2400/1200 -depsonc * Yes

2-3076

http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html


print, printopt

Printer Driver Print Command Option
String

Ghostscript

HP DesignJet 650C
color (not supported on
Windows )

-ddnj650c * Yes

HP DeskJet 500 -ddjet500 * Yes

HP DeskJet 500C
(creates black and white
output)

-dcdjmono * Yes

HP DeskJet 500C
(with 24 bit/pixel
color and high-quality
Floyd-Steinberg color
dithering) (not supported
on Windows )

-dcdjcolor * Yes

HP DeskJet 500C/540C
color (not supported on
Windows )

-dcdj500 * Yes

HP Deskjet 550C
color (not supported
on Windows )

-dcdj550 * Yes

HP DeskJet and
DeskJet Plus

-ddeskjet * Yes

HP LaserJet -dlaserjet * Yes

HP LaserJet+ -dljetplus * Yes

HP LaserJet IIP -dljet2p * Yes

HP LaserJet III -dljet3 * Yes

HP LaserJet 4, 5L and
5P

-dljet4 * Yes

HP LaserJet 5 and 6 -dpxlmono * Yes

2-3077

http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html


print, printopt

Printer Driver Print Command Option
String

Ghostscript

HP PaintJet color -dpaintjet * Yes

HP PaintJet XL color -dpjxl * Yes

HP PaintJet XL color -dpjetxl * Yes

HP PaintJet XL300
color (not supported on
Windows )

-dpjxl300 * Yes

HPGL for HP 7475A and
other compatible plotters.
(Renderer cannot be set to
Z-buffer.)

-dhpgl * No

IBM 9-pin Proprinter -dibmpro * Yes

PostScript black and
white

-dps No

PostScript color -dpsc No

PostScript Level 2 black
and white

-dps2 No

PostScript Level 2 color -dpsc2 No

Windows color
(Windows only)

-dwinc No

Windows monochrome
(Windows only)

-dwin No

2-3078

http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html


print, printopt

Tip Generally, Level 2 PostScript files are smaller and are rendered
more quickly when printing than Level 1 PostScript files. However, not
all PostScript printers support Level 2, so determine the capabilities of
your printer before using those drivers. Level 2 PostScript printing is
the default for UNIX platforms. You can change this default by editing
the printopt.m file. Likewise, if you want color PostScript printing
to be the default instead of black-and-white PostScript printing, edit
the line in the printopt.m file that reads dev = '-dps2'; to be
dev = '-dpsc2';.

Graphics
Format
Files

To save your figure as a graphics format file, specify a format switch
and file name. To set the resolution of the output file for a built-in
MATLAB format, use the -r switch. (For example, -r300 sets the
output resolution to 300 dots per inch.) The -r switch is also supported
for Windows Enhanced Metafiles, JPEG, TIFF and PNG files, but is
not supported for Ghostscript raster formats. For more information,
see “Printing and Exporting without a Display” on page 2-3082 and
“Resolution Considerations” on page 2-3085.

Note When you print to a file, the file name must have fewer than
128 characters, including path name. When you print to a file in your
current folder, the filename must have fewer than 126 characters,
because MATLAB places './' or '.\'’ at the beginning of the filename
when referring to it.

The following table shows the supported output formats for exporting
from figures and the switch settings to use. In some cases, a format is
available both as a MATLAB output filter and as a Ghostscript output
filter. All formats except for EMF are supported on both PC and UNIX
platforms.

2-3079



print, printopt

Graphics Format

Bitmap
or
Vector

Print Command
Option String

MATLAB or
Ghostscript

BMP monochrome
BMP

Bitmap -dbmpmono Ghostscript

BMP 24-bit BMP Bitmap -dbmp16m Ghostscript

BMP 8-bit
(256-color) BMP
(this format uses a
fixed colormap)

Bitmap -dbmp256 Ghostscript

BMP 24-bit Bitmap -dbmp MATLAB

EMF Vector -dmeta MATLAB

EPS black and
white

Vector -deps MATLAB

EPS color Vector -depsc MATLAB

EPS Level 2 black
and white

Vector -deps2 MATLAB

EPS Level 2 color Vector -depsc2 MATLAB

HDF 24-bit Bitmap -dhdf MATLAB

ILL (Adobe
Illustrator)

Vector -dill MATLAB

JPEG 24-bit Bitmap -djpeg MATLAB

PBM (plain format)
1-bit

Bitmap -dpbm Ghostscript

PBM (raw format)
1-bit

Bitmap -dpbmraw Ghostscript

PCX 1-bit Bitmap -dpcxmono Ghostscript

2-3080



print, printopt

Graphics Format

Bitmap
or
Vector

Print Command
Option String

MATLAB or
Ghostscript

PCX 24-bit color
PCX file format,
three 8-bit planes

Bitmap -dpcx24b Ghostscript

PCX 8-bit newer
color PCX file
format (256-color)

Bitmap -dpcx256 Ghostscript

PCX Older color
PCX file format
(EGA/VGA,
16-color)

Bitmap -dpcx16 Ghostscript

PDF Color PDF file
format

Vector -dpdf Ghostscript

PGM Portable
Graymap (plain
format)

Bitmap -dpgm Ghostscript

PGM Portable
Graymap (raw
format)

Bitmap -dpgmraw Ghostscript

PNG 24-bit Bitmap -dpng MATLAB

PPM Portable
Pixmap (plain
format)

Bitmap -dppm Ghostscript

PPM Portable
Pixmap (raw
format)

Bitmap -dppmraw Ghostscript

SVG Scalable
Vector Graphics

Vector -dsvg MATLAB

2-3081



print, printopt

Graphics Format

Bitmap
or
Vector

Print Command
Option String

MATLAB or
Ghostscript

TIFF 24-bit Bitmap -dtiff or -dtiffn MATLAB

TIFF preview for
EPS files

Bitmap -tiff

The TIFF image format is supported on all platforms by almost all
word processors for importing images. The -dtiffn variant writes an
uncompressed TIFF. JPEG is a lossy, highly compressed format that
is supported on all platforms for image processing and for inclusion
into HTML documents on the Web. To create these formats, MATLAB
renders the figure using the Z-buffer rendering method and the
resulting bitmap is then saved to the specified file.

Printing and Exporting without a Display

On a UNIX platform (including Macintosh), where you can start in
MATLAB nodisplay mode (matlab -nodisplay), you can print using
most of the drivers you can use with a display and export to most of the
same file formats. The PostScript and Ghostscript devices all function
in nodisplay mode on UNIX platforms. The graphic devices -djpeg,
-dpng, -dtiff (compressed TIFF bitmaps), and -tiff (EPS with TIFF
preview) work as well, but under nodisplay they use Ghostscript
to generate output instead of using the drivers built into MATLAB.
However, Ghostscript ignores the -r option when generating -djpeg,
-dpng, -dtiff, and -tiff image files. This means that you cannot vary
the resolution of image files when running in nodisplay mode.

Naturally, the Windows only -dwin and -dwinc output formats cannot
be used on UNIX or Mac platforms with or without a display.

The same holds true on Windows platforms with the -noFigureWindows
startup option. The -dwin, -dwinc, and -dsetup options operate as
usual under -noFigureWindows. However, the printpreview GUI does
not function in this mode.

2-3082



print, printopt

The formats which you cannot generate in nodisplay mode on UNIX
and Mac platforms are:

• bitmap (-dbitmap) — Windows bitmap file (except for Simulink
models)

• bmp (-dbmp...) — Monochrome and color bitmaps

• hdf (-dhdf) — Hierarchical Data Format

• svg (-dsvg) — Scalable Vector Graphics file (except for Simulink
models)

• tiffn (-dtiffn) — TIFF image file, no compression

In addition, uicontrols do not print or export in nodisplay mode.

Printing
Options

This table summarizes options that you can specify for print. The
second column links to tutorials in “Printing and Exporting” in the
MATLAB Graphics documentation that provide operational details.
Also see “Resolution Considerations” on page 2-3085 for information
on controlling output resolution.

Option Description

-adobecset PostScript devices only. Use PostScript default
character set encoding. See “Early PostScript 1
Printers”.

-append PostScript devices only. Append figure to existing
PostScript file. See “Settings That Are Driver
Specific”.

-cmyk PostScript devices only. Print with CMYK colors
instead of RGB. See “Setting CMYK Color”.

-ddriver Printing only. Printer driver to use. See “Printer
Drivers” on page 2-3074 table.

-dformat Exporting only. Graphics format to use. See
“Graphics Format Files” table.

2-3083



print, printopt

Option Description

-dsetup Windows printing only. Display the
(platform-specific) Print Setup dialog. Settings
you make in it are saved, but nothing is printed.

-fhandle Handle of figure to print. Note that you cannot
specify both this option and the -swindowtitle
option. See “Which Figure Is Printed”.

-loose PostScript and Ghostscript printing only. Use
loose bounding box for PostScript output. See
“Producing Uncropped Figures”.

-noui Suppress printing of user interface controls. See
“Excluding User Interface Controls”.

-opengl Render using the OpenGL algorithm. Note that
you cannot specify this method in conjunction
with -zbuffer or -painters. See “Selecting a
Renderer”.

-painters Render using the Painter’s algorithm. Note that
you cannot specify this method in conjunction
with -zbuffer or -opengl. See “Selecting a
Renderer”.

-Pprinter Specify name of printer to use. See “Selecting
the Printer”.

-rnumber PostScript and built-in raster formats, and
Ghostscript vector format only. Specify resolution
in dots per inch. Defaults to 90 for Simulink, 150
for figures in image formats and when printing in
Z-buffer or OpenGL mode, screen resolution for
metafiles, and 864 otherwise. Use -r0 to specify
screen resolution. For details, see “Resolution
Considerations” on page 2-3085 and “Setting the
Resolution”.

2-3084



print, printopt

Option Description

-swindowtitle Specify name of Simulink system window to
print. Note that you cannot specify both this
option and the -fhandle option. See “Which
Figure Is Printed”.

-v Windows printing only. Display the Windows
Print dialog box. The v stands for “verbose mode.”

-zbuffer Render using the Z-buffer algorithm. Note that
you cannot specify this method in conjunction
with -opengl or -painters. See “Selecting a
Renderer”.

Resolution Considerations

Use -rnumber to specify the resolution of the generated output. In
general, using a higher value will yield higher quality output but at the
cost of larger output files. It affects the resolution and output size of all
MATLAB built-in raster formats (which are identified in column four of
the table in “Graphics Format Files” on page 2-3079).

Note Built-in graphics formats are generated directly from MATLAB
without conversion through the Ghostscript library. Also, in headless
(nodisplay) mode, writing to certain image formats is not done by
built-in drivers, as it is when a display is being used. These formats are
-djpeg, -dtiff, and -dpng. Furthermore, the -dhdf and -dbmp formats
cannot be generated in headless mode (but you can substitute -dbmp16m
for -dbmp). See “Printing and Exporting without a Display” on page
2-3082 for details on printing when not using a display.

Unlike the built-in MATLAB formats, graphic output generated via
Ghostscript does not directly obey -r option settings. However, the
intermediate PostScript file generated by MATLAB as input for
the Ghostscript processor is affected by the -r setting and thus can

2-3085



print, printopt

indirectly influence the quality of the final Ghostscript generated
output.

The effect of the -r option on output quality can be subtle at ordinary
magnification when using the OpenGL or ZBuffer renderers and writing
to one of the MATLAB built-in raster formats, or when generating vector
output that contains an embedded raster image (for example, PostScript
or PDF). The effect of specifying higher resolution is more apparent
when viewing the output at higher magnification or when printed, since
a larger -r setting provides more data to use when scaling the image.

When generating fully vectorized output (as when using the Painters
renderer to output a vector format such as PostScript or PDF), the
resolution setting affects the degree of detail of the output; setting
resolution higher generates crisper output (but small changes in the
resolution may have no observable effect). For example, the gap widths
of lines that do not use a solid ('-') linestyle can be affected.

Paper
Sizes

MATLAB printing supports a number of standard paper sizes. You can
select from the following list by setting the PaperType property of the
figure or selecting a supported paper size from the Print dialog box.

Property Value Size (Width by Height)

usletter 8.5 by 11 inches

uslegal 8.5 by 14 inches

tabloid 11 by 17 inches

A0 841 by 1189 mm

A1 594 by 841 mm

A2 420 by 594 mm

A3 297 by 420 mm

A4 210 by 297 mm

A5 148 by 210 mm

B0 1029 by 1456 mm

2-3086



print, printopt

Property Value Size (Width by Height)

B1 728 by 1028 mm

B2 514 by 728 mm

B3 364 by 514 mm

B4 257 by 364 mm

B5 182 by 257 mm

arch-A 9 by 12 inches

arch-B 12 by 18 inches

arch-C 18 by 24 inches

arch-D 24 by 36 inches

arch-E 36 by 48 inches

A 8.5 by 11 inches

B 11 by 17 inches

C 17 by 22 inches

D 22 by 34 inches

E 34 by 43 inches

Printing
Tips

Figures with Resize Functions

The print command produces a warning when you print a figure
having a callback routine defined for the figure ResizeFcn. To avoid the
warning, set the figure PaperPositionModeproperty to auto or select
Match Figure Screen Size in the File > Page Setup dialog box.

Troubleshooting Microsoft Windows Printing

If you encounter problems such as segmentation violations, general
protection faults, or application errors, or the output does not appear as
you expect when using Microsoft printer drivers, try the following:

2-3087

../ref/figure_props.html#ResizeFcn
../ref/figure_props.html#PaperPositionMode


print, printopt

• If your printer is PostScript compatible, print with one of the
MATLAB built-in PostScript drivers. There are various PostScript
device options that you can use with print , which all start with -dps.

• The behavior you are experiencing might occur only with certain
versions of the print driver. Contact the print driver vendor for
information on how to obtain and install a different driver.

• Try printing with one of the MATLAB built-in Ghostscript devices.
These devices use Ghostscript to convert PostScript files into other
formats, such as HP LaserJet, PCX, Canon BubbleJet, and so on.

• Copy the figure as a Windows Enhanced Metafile using the Edit >
Copy Figure menu item on the figure window menu or the print
-dmeta option at the command line. You can then import the file into
another application for printing.

You can set copy options in the figure’s File > Preferences >
Copying Options dialog box. The Windows Enhanced Metafile
Clipboard format produces a better quality image than Windows
Bitmap.

Printing MATLAB GUIs

You can generally obtain better results when printing a figure window
that contains MATLAB uicontrols by setting these key properties:

• Set the figure PaperPositionMode property to auto. This ensures
that the printed version is the same size as the on-screen version.
With PaperPositionMode set to auto MATLAB, does not resize
the figure to fit the current value of the PaperPosition. This is
particularly important if you have specified a figure ResizeFcn,
because if MATLAB resizes the figure during the print operation,
ResizeFcn is automatically called.

To set PaperPositionMode on the current figure, use the command:

set(gcf,'PaperPositionMode','auto')

• Set the figure InvertHardcopy property to off. By default, MATLAB
changes the figure background color of printed output to white,

2-3088



print, printopt

but does not change the color of uicontrols. If you have set the
background color, for example, to match the gray of the GUI devices,
you must set InvertHardcopy to off to preserve the color scheme.

To set InvertHardcopy on the current figure, use the command:

set(gcf,'InvertHardcopy','off')

• Use a color device if you want lines and text that are in color on the
screen to be written to the output file as colored objects. Black and
white devices convert colored lines and text to black or white to
provide the best contrast with the background and to avoid dithering.

• Use the print command’s -loose option to keep a bounding box from
being too tightly wrapped around objects contained in the figure.
This is important if you have intentionally used space between
uicontrols or axes and the edge of the figure and you want to
maintain this appearance in the printed output.

If you print or export in nodisplay mode, none of the uicontrols the
figure has will be visible. If you run code that adds uicontrols to a
figure when the figure is invisible, the controls will not print until the
figure is made visible.

Printing Interpolated Shading with PostScript Drivers

You can print MATLAB surface objects (such as graphs created with
surf or mesh) using interpolated colors. However, only patch objects
that are composed of triangular faces can be printed using interpolated
shading.

Printed output is always interpolated in RGB space, not in the colormap
colors. This means that if you are using indexed color and interpolated
face coloring, the printed output can look different from what is
displayed on screen.

PostScript files generated for interpolated shading contain the color
information of the graphics object’s vertices and require the printer
to perform the interpolation calculations. This can take an excessive
amount of time and in some cases, printers might time out before

2-3089



print, printopt

finishing the print job. One solution to this problem is to interpolate
the data and generate a greater number of faces, which can then be
flat shaded.

To ensure that the printed output matches what you see on the screen,
print using the -zbuffer option. To obtain higher resolution (for
example, to make text look better), use the -r option to increase the
resolution. There is, however, a tradeoff between the resolution and the
size of the created PostScript file, which can be quite large at higher
resolutions. The default resolution of 150 dpi generally produces good
results. You can reduce the size of the output file by making the figure
smaller before printing it and setting the figure PaperPositionMode to
auto, or by just setting the PaperPosition property to a smaller size.

Examples Specifying the Figure to Print

Pass a figure handle as a variable to the function form of print. For
example:

h = figure;
plot(1:4,5:8)
print(h)

Save the figure with the handle h to a PostScript file named Figure2,
which can be printed later:

print(h,'-dps','Figure2.ps')

Pass in a file name as a variable:

filename = 'mydata';
print(h, '-dpsc', filename);

(Because a file name is specified, the figure will be printed to a file.)

Specifying the Model to Print

Print a noncurrent Simulink model using the -s option with the title
of the window (in this case, f14):

2-3090



print, printopt

print('-sf14')

If the window title includes any spaces, you must call the function form
rather than the command form of print. For example, this command
saves the Simulink window title Thruster Control:

print('-sThruster Control')

To print the current system, use:

print('-s')

For information about issues specific to printing Simulink windows,
see the Simulink documentation.

Printing Figures at Screen Size

This example prints a surface plot with interpolated shading. Setting
the current figure’s (gcf) PaperPositionMode to auto enables you to
resize the figure window and print it at the size you see on the screen.
See “Printing Options” on page 2-3083 and “Printing Interpolated
Shading with PostScript Drivers” on page 2-3089 for information on
the -zbuffer and -r200 options.

surf(peaks)
shading interp
set(gcf,'PaperPositionMode','auto')
print('-dpsc2','-zbuffer','-r200')

For additional details, see “Printing Images” in the MATLAB Graphics
documentation.

Batch Processing

You can use the function form of print to pass variables containing
file names. For example, this for loop uses file names stored in a cell
array to create a series of graphs and prints each one with a different
file name:

fnames = {'file1', 'file2', 'file3'};

2-3091



print, printopt

for k=1:length(fnames)
surf(peaks)
print('-dtiff','-r200',fnames{k})

end

Tiff Preview

The command

print('-depsc','-tiff','-r300','picture1')

saves the current figure at 300 dpi, in a color Encapsulated PostScript
file named picture1.eps. The -tiff option creates a 72 dpi TIFF
preview, which many word processor applications can display on screen
after you import the EPS file. This enables you to view the picture
on screen within your word processor and print the document to a
PostScript printer using a resolution of 300 dpi.

See Also figure, hgsave, imwrite, orient, printdlg, printopt, saveas

2-3092



printdlg

Purpose Print dialog box

Syntax printdlg
printdlg(fig)
printdlg('-crossplatform',fig)
printdlg('-setup',fig)

Description printdlg prints the current figure.

printdlg(fig) creates a modal dialog box from which you can print
the figure window identified by the handle fig. Note that uimenus
do not print.

printdlg('-crossplatform',fig) displays the standard
cross-platform MATLAB printing dialog rather than the built-in
printing dialog box for Microsoft Windows computers. Insert this option
before the fig argument.

printdlg('-setup',fig) forces the printing dialog to appear in a
setup mode. Here one can set the default printing options without
actually printing.

Note A modal dialog box prevents the user from interacting with other
windows before responding. For more information, see WindowStyle in
the MATLAB Figure Properties.

See Also pagesetupdlg, printpreview

2-3093



printpreview

Purpose Preview figure to print

Contents

“GUI Alternative” on page 2-3094

“Description” on page 2-3094

“Right Pane Controls” on page 2-3095

“The Layout Tab” on page 2-3096

“The Lines/Text Tab” on page 2-3097

“The Color Tab” on page 2-3099

“The Advanced Tab” on page 2-3101

“See Also” on page 2-3102

GUI
Alternative

Use File > Print Preview on the figure window menu to access the
Print Preview dialog box, described below. For details, see “Using Print
Preview” in the MATLAB Graphics documentation.

Syntax printpreview
printpreview(f)

Description printpreview displays a dialog box showing the figure in the currently
active figure window as it will print. A scaled version of the figure
displays in the right-hand pane of the GUI.

printpreview(f) displays a dialog box showing the figure having the
handle f as it will print.

Use the Print Preview dialog box, shown below, to control the layout
and appearance of figures before sending them to a printer or print file.
Controls are grouped into four tabbed panes: Layout, Lines/Text,
Color, and Advanced.

2-3094



printpreview

Right Pane Controls

You can position and scale plots on the printed page using the rulers in
the right-hand pane of the Print Preview dialog. Use the outer ruler
handlebars to change margins. Moving them changes plot proportions.
Use the center ruler handlebars to change the position of the plot on
the page. Plot proportions do not change, but you can move portions of

2-3095



printpreview

the plot off the paper. The buttons on that pane let you refresh the
plot, close the dialog (preserving all current settings), print the page
immediately, or obtain context-sensitive help. Use the Zoom box and
scroll bars to view and position page elements more precisely.

The Layout Tab

Use the Layout tab, shown above, to control the paper format and
placement of the plot on printed pages. The following table summarizes
the Layout options:

Group Option Description

Placement Auto Let MATLAB decide placement of
plot on page

Use manual... Specify position parameters for
plot on page

Top, Left, Width,
Height

Standard position parameters in
current units

Use defaults Revert to default position

Fill page Expand figure to fill printable area
(see note below)

Fix aspect ratio Correct height/width ratio

Center Center plot on printed page

Paper Format U.S. and ISO® sheet size selector

Width, Height Sheet size in current units

Units Inches Use inches as units for dimensions
and positions

Centimeters Use centimeters as units for
dimensions and positions

Points Use points as units for dimensions
and positions

Orientation Portrait Upright paper orientation

2-3096



printpreview

Group Option Description

Landscape Sideways paper orientation

Rotated Currently the same as Landscape

Note Selecting the Fill page option changes the PaperPosition
property to fill the page, allowing objects in normalized units to expand
to fill the space. If an object within the figure has an absolute size, for
example a table, it can overflow the page when objects with normalized
units expand. To avoid having objects fall off the page, do not use Fill
page under such circumstances.

The Lines/Text Tab

Use the Lines/Text tab, shown below, to control the line weights, font
characteristics, and headers for printed pages. The following table
summarizes the Lines/Text options:

2-3097



printpreview

Group Option Description

Lines Line
Width

Scale all lines by a percentage from 0
upward (100 being no change), print lines
at a specified point size, or default line
widths used on the plot

Min Width Smallest line width (in points) to use when
printing; defaults to 0.5 point

Text Font
Name

Select a system font for all text on plot, or
default to fonts currently used on the plot

2-3098



printpreview

Group Option Description

Font Size Scale all text by a percentage from 0
upward (100 being no change), print text
at a specified point size, or default to this
used on the plotFont

Weight
Select Normal ... Bold font styling for all
text from drop-down menu or default to the
font weights used on the plot

Font
Angle

Select Normal, Italic or Oblique font
styling for all text from drop-down menu or
default to the font angles used on the plot

Header Header
Text

Type the text to appear on the header at
the upper left of printed pages, or leave
blank for no header

Date Style Select a date format to have today’s date
appear at the upper left of printed pages,
or none for no date

The Color Tab

Use the Color tab, shown below, to control how colors are printed for
lines and backgrounds. The following table summarizes the Color
options:

2-3099



printpreview

Group Option Description

Color Scale Black and
White

Select to print lines and text in black
and white, but use color for patches
and other objects

Gray Scale Convert colors to shades of gray on
printed pages

2-3100



printpreview

Group Option Description

Color Print everything in color, matching
colors on plot; select RGB (default) or
CMYK color model for printing

Background
Color

Same as
figure

Print the figure’s background color
as it is

Custom Select a color name, or type a
colorspec for the background; white
(default) implies no background
color, even on colored paper.

The Advanced Tab

Use the Advanced tab, shown below, to control finer details of printing,
such as limits and ticks, renderer, resolution, and the printing of
UIControls. The following table summarizes the Advanced options:

2-3101



printpreview

Group Option Description

Axes limits
and ticks

Recompute
limits and ticks

Redraw x- and y-axes ticks and
limits based on printed plot size
(default)

Keep limits and
ticks

Use the x- and y-axes ticks and
limits shown on the plot when
printing the previewed figure

Miscellaneous Renderer Select a rendering algorithm for
printing: painters, zbuffer,
opengl, or auto (default)

Resolution Select resolution to print at in
dots per inch: 150, 300, 600, or
auto (default), or type in any
other positive value

Print
UIControls

Print all visible UIControls in
the figure (default), or uncheck
to exclude them from being
printed

See Also printdlg, pagesetupdlg

For more information, see How to Print or Export in the MATLAB
Graphics documentation.

2-3102



prod

Purpose Product of array elements

Syntax B = prod(A)
B = prod(A,dim)

Description B = prod(A) returns the products along different dimensions of an
array.

If A is a vector, prod(A) returns the product of the elements.

If A is a matrix, prod(A) treats the columns of A as vectors, returning
a row vector of the products of each column.

If A is a multidimensional array, prod(A) treats the values along the
first non-singleton dimension as vectors, returning an array of row
vectors.

B = prod(A,dim) takes the products along the dimension of A specified
by scalar dim.

Examples The magic square of order 3 is

M = magic(3)

M =
8 1 6
3 5 7
4 9 2

The product of the elements in each column is

prod(M) =

96 45 84

The product of the elements in each row can be obtained by:

prod(M,2) =

48

2-3103



prod

105
72

See Also cumprod, diff, sum

2-3104



profile

Purpose Profile execution time for function

GUI
Alternatives

As an alternative to the profile function, select Desktop > Profiler
to open the Profiler.

Syntax profile on
profile -history
profile -nohistory
profile -history -historysize integer
profile -timer clock
profile -history -historysize integer -timer clock
profile off
profile resume
profile clear
profile viewer
S = profile( status')
stats = profile('info')

Description The profile function helps you debug and optimize MATLAB code files
by tracking their execution time. For each MATLAB function, MATLAB
subfunction, or MEX-function in the file, profile records information
about execution time, number of calls, parent functions, child functions,
code line hit count, and code line execution time. Some people use
profile simply to see the child functions; see also depfun for that
purpose. To open the Profiler graphical user interface, use the profile
viewer syntax. By default, Profiler time is CPU time. The total time
reported by the Profiler is not the same as the time reported using the
tic and toc functions or the time you would observe using a stopwatch.

2-3105



profile

Note If your system uses Intel multi-core chips, you may want to
restrict the active number of CPUs to 1 for the most accurate and
efficient profiling. See “Intel Multi-Core Processors — Setting for
Most Accurate Profiling on Windows Systems” or “Intel Multi-Core
Processors — Setting for Most Accurate Profiling on Linux Systems” for
details on how to do this.

profile on starts the Profiler, clearing previously recorded profile
statistics. Note the following:

• You can specify all, none, or a subset, of the history, historysize
and timer options with the profile on syntax.

• You can specify options in any order, including before or after on.

• If the Profiler is currently on and you specify profile with one of the
options, MATLAB software returns an error message and the option
has no effect. For example, if you specify profile timer real,
MATLAB returns the following error: The profiler has already
been started. TIMER cannot be changed.

• To change options, first specify profile off, and then specify
profile on or profile resume with new options.

profile -history records the exact sequence of function calls. The
profile function records, by default, up to 1,000,000 function entry
and exit events. For more than 1,000,000 events, profile continues to
record other profile statistics, but not the sequence of calls. To change
the number of function entry and exit events that the profile function
records, use the historysize option. By default, the history option
is not enabled.

profile -nohistory disables further recording of the history (exact
sequence of function calls). Use the -nohistory option after having
previously set the -history option. All other profiling statistics
continue to be collected.

2-3106



profile

profile -history -historysize integer specifies the number of
function entry and exit events to record. By default, historysize
is set to 1,000,000.

profile -timer clock specifies the type of time to use. Valid values
for clock are:

• 'cpu'— The Profiler uses computer time (the default).

• 'real' — The Profiler uses wall-clock time.

For example, cpu time for the pause function is typically small, but real
time accounts for the actual time paused, and therefore would be larger.

profile -history -historysize integer -timer clock specifies all
of the options. Any order is acceptable, as is a subset.

profile off stops the Profiler.

profile resume restarts the Profiler without clearing previously
recorded statistics.

profile clear clears the statistics recorded by profile.

profile viewer stops the Profiler and displays the results in the
Profiler window. For more information, see Profiling for Improving
Performance in the Desktop Tools and Development Environment
documentation.

S = profile( status') returns a structure containing information
about the current status of the Profiler. The table lists the fields in the
order that they appear in the structure.

Field Values
Default
Value

ProfilerStatus 'on' or 'off' off

DetailLevel 'mmex' ’mmex’

Timer 'cpu' or 'real' ’cpu’

2-3107



profile

Field Values
Default
Value

HistoryTracking'on' or 'off' ’off’

HistorySize integer 1000000

stats = profile('info') displays a structure containing the results.
Use this function to access the data generated by profile. The table
lists the fields in the order that they appear in the structure.

Field Description

FunctionTable Structure array containing statistics
about each function called

FunctionHistory Array containing function call history

ClockPrecision Precision of the profile function’s time
measurement

ClockSpeed Estimated clock speed of the CPU

Name Name of the profiler

The FunctionTable field is an array of structures, where each structure
contains information about one of the functions or subfunctions called
during execution. The following table lists these fields in the order
that they appear in the structure.

Field Description

CompleteName Full path to FunctionName, including
subfunctions

FunctionName Function name; includes subfunctions

FileName Full path to FunctionName, with file extension,
excluding subfunctions

2-3108



profile

Field Description

Type MATLAB functions, MEX-functions, and
many other types of functions including
MATLABsubfunctions, nested functions, and
anonymous functions

NumCalls Number of times the function was called

TotalTime Total time spent in the function and its child
functions

TotalRecursiveTime No longer used.

Children FunctionTable indices to child functions

Parents FunctionTable indices to parent functions

ExecutedLines Array containing line-by-line details for the
function being profiled.

Column 1: Number of the line that executed.
If a line was not executed, it does not appear
in this matrix.

Column 2: Number of times the line was
executed

Column 3: Total time spent on that line.
Note: The sum of Column 3 entries does not
necessarily add up to the function’s TotalTime.

IsRecursive BOOLEAN value: Logical 1 (true) if recursive,
otherwise logical 0 (false)

PartialData BOOLEAN value: Logical 1 (true) if function
was modified during profiling, for example by
being edited or cleared. In that event, data
was collected only up until the point when the
function was modified.

2-3109



profile

Examples Profile and Display Results

This example profiles the MATLAB magic command and then displays
the results in the Profiler window. The example then retrieves the
profile data on which the HTML display is based and uses the profsave
command to save the profile data in HTML form.

profile on
plot(magic(35))
profile viewer
p = profile('info');
profsave(p,'profile_results')

Profile and Save Results

Another way to save profile data is to store it in a MAT-file. This
example stores the profile data in a MAT-file, clears the profile data
from memory, and then loads the profile data from the MAT-file. This
example also shows a way to bring the reloaded profile data into the
Profiler graphical interface as live profile data, not as a static HTML
page.

p = profile('info');
save myprofiledata p
clear p
load myprofiledata
profview(0,p)

Profile and Show Results Including History

This example illustrates an effective way to view the results of profiling
when the history option is enabled. The history data describes the
sequence of functions entered and exited during execution. The profile
command returns history data in the FunctionHistory field of the
structure it returns. The history data is a 2-by-n array. The first row
contains Boolean values, where 0 means entrance into a function and
1 means exit from a function. The second row identifies the function
being entered or exited by its index in the FunctionTable field.

2-3110



profile

This example reads the history data and displays it in the MATLAB
Command Window.

profile on -history

plot(magic(4));

p = profile('info');

for n = 1:size(p.FunctionHistory,2)

if p.FunctionHistory(1,n)==0

str = 'entering function: ';

else

str = 'exiting function: ';

end

disp([str p.FunctionTable(p.FunctionHistory(2,n)).FunctionName])

end

See Also depdir, depfun, mlint, profsave

Profiling for Improving Performance in the MATLAB Desktop Tools
and Development Environment documentation

“Using the Parallel Profiler” in the Parallel Computing Toolbox
documentation

2-3111



profsave

Purpose Save profile report in HTML format

Syntax profsave
profsave(profinfo)
profsave(profinfo,dirname)

Description profsave executes the profile('info') function and saves the results
in HTML format. profsave creates a separate HTML file for each
function listed in the FunctionTable field of the structure returned by
profile. By default, profsave stores the HTML files in a subfolder of
the current folder named profile_results.

profsave(profinfo) saves the profiling results, profinfo, in HTML
format. profinfo is a structure of profiling information returned by the
profile('info') function.

profsave(profinfo,dirname) saves the profiling results, profinfo,
in HTML format. profsave creates a separate HTML file for each
function listed in the FunctionTable field of profinfo and stores them
in the folder specified by dirname.

Examples Run profile and save the results.

profile on
plot(magic(5))
profile off
profsave(profile('info'),'myprofile_results')

See Also profile

Profiling for Improving Performance in the MATLAB Desktop Tools
and Development Environment documentation

2-3112



propedit

Purpose Open Property Editor

Syntax propedit
propedit(handle_list)

Description propedit starts the Property Editor, a graphical user interface to the
properties of graphics objects. If no current figure exists, propedit
will create one.

propedit(handle_list) edits the properties for the object (or objects)
in handle_list.

Starting the Property Editor enables plot editing mode for the figure.

See Also inspect, plotedit, propertyeditor

2-3113



propedit (COM)

Purpose Open built-in property page for control

Syntax h.propedit
propedit(h)

Description h.propedit requests the control to display its built-in property page.
Note that some controls do not have a built-in property page. For those
controls, this command fails.

propedit(h) is an alternate syntax for the same operation.

Remarks COM functions are available on Microsoft Windows systems only.

Examples Create a Microsoft Calendar control and display its property page:

cal = actxcontrol('mscal.calendar', [0 0 500 500]);
cal.propedit

See Also inspect, get (COM)

2-3114



properties

Purpose Class property names

Syntax properties('classname')
properties(obj)
p = properties(...)

Description properties('classname') displays the names of the public properties
for the MATLAB class named by classname. The properties function
also displays inherited properties.

properties(obj) obj can be either a scalar object or an array of objects.
When obj is scalar, properties also returns dynamic properties.
See “Dynamic Properties — Adding Properties to an Instance” for
information on using dynamic properties.

p = properties(...) returns the property names in a cell array of
strings.

Definitions A property is public when its GetAccess attribute value is public and
its Hidden attribute value is false (default values for these attributes).
See “Property Attributes” for a complete list of attributes.

properties is also a MATLAB class-definition keyword. See classdef
for more information on class definition keywords.

Examples Retrieve the names of the public properties of class memmapfile and
store the result in a cell array of strings:

p = properties('memmapfile');
p
ans =

'writable'
'offset'
'format'
'repeat'
'filename'

2-3115



properties

Construct an instance of the MException class and get its properties
names:

me = MException('Msg:ID','MsgText');
properties(me)
Properties for class MException:

identifier
message
cause
stack

Alternatives You can use the Workspace browser to browse current property
values. See “MATLAB Workspace” for more information on using the
Workspace browser.

See Also fieldnames | events | methods

Tutorials • “Properties — Storing Class Data”

2-3116



propertyeditor

Purpose Show or hide property editor

GUI
Alternatives

Click the larger Plotting Tools icon on the figure toolbar to

collectively enable plotting tools, and the smaller icon to collectively
disable them. Open or close the Property Editor tool from the figure’s
View menu. For details, see “The Property Editor” in the MATLAB
Graphics documentation.

Syntax propertyeditor('on')
propertyeditor('off')
propertyeditor('toggle')
propertyeditor
propertyeditor(figure_handle,...)

Description propertyeditor('on') displays the Property Editor on the current
figure.

propertyeditor('off') hides the Property Editor on the current
figure.

propertyeditor('toggle') or propertyeditor toggles the visibility of
the property editor on the current figure.

propertyeditor(figure_handle,...) displays or hides the Property
Editor on the figure specified by figure_handle.

See Also plottools, plotbrowser, figurepalette, inspect

2-3117



psi

Purpose Psi (polygamma) function

Syntax Y = psi(X)
Y = psi(k,X)
Y = psi(k0:k1,X)

Description Y = psi(X) evaluates the ψ function for each element of array X. X
must be real and nonnegative. The ψ function, also known as the
digamma function, is the logarithmic derivative of the gamma function

 ( ) ( )
(log( ( )))

( ( )) /
( )

x x
d x

dx
d x dx

x

=

=

=

digamma
Γ

Γ
Γ

Y = psi(k,X) evaluates the kth derivative of ψ at the elements of X.
psi(0,X) is the digamma function, psi(1,X) is the trigamma function,
psi(2,X) is the tetragamma function, etc.

Y = psi(k0:k1,X) evaluates derivatives of order k0 through k1 at X.
Y(k,j) is the (k-1+k0)th derivative of ψ, evaluated at X(j).

Examples Example 1

Use the psi function to calculate Euler’s constant, γ.

format long
-psi(1)
ans =

0.57721566490153

-psi(0,1)
ans =

0.57721566490153

2-3118



psi

Example 2

The trigamma function of 2, psi(1,2), is the same as (π2/6) – 1.

format long
psi(1,2)
ans =

0.64493406684823

pi^2/6 - 1
ans =

0.64493406684823

Example 3

This code produces the first page of Table 6.1 in Abramowitz and
Stegun [1].

x = (1:.005:1.250)';
[x gamma(x) gammaln(x) psi(0:1,x)' x-1]

Example 4

This code produces a portion of Table 6.2 in [1].

psi(2:3,1:.01:2)'

See Also gamma, gammainc, gammaln

References [1] Abramowitz, M. and I. A. Stegun, Handbook of Mathematical
Functions, Dover Publications, 1965, Sections 6.3 and 6.4.

2-3119



publish

Purpose Publish MATLAB file with code cells, saving output to specified file type

Syntax publish('file')
publish('file','format')
publish('file', options)
my_doc = publish('file',...)

Description publish('file') publishes file.m by running it in the base
workspace, one cell at a time. It saves the code, comments, and results
to an HTML output file, file.html. The MATLAB software stores this
output file, along with other supporting output files, in a subfolder of
the folder containing file.m. The subfolder is named html.

publish('file','format') saves the code, comments, and results
to an output file, file.format. The output subfolder is named html,
regardless of the output file format.

publish('file', options) publishes file.m using the structure
options.

my_doc = publish('file',...) returns the output resulting from
publishing file.m to my_doc.

Input
Arguments

file

Specifies the file to publish.

format

Specifies the format to which you want to publish the file. Valid
formats appear in the “Options for the publish Function” table
under options.

options

A structure with the fields listed in the following table.

2-3120



publish

Options for the publish Function

Field Values

format Specifies the output format for the published document:
• 'doc' — Microsoft Word output format.

• 'latex' — LaTeX output format.

• 'ppt' — Microsoft PowerPoint output format.

• 'xml' — Extensible Markup Language output format.

• 'pdf' — Portable Document Format output format.

If you specify 'pdf', then specify imageFormat as '.bmp' (the
default) or '.jpg'.

• 'html' (default )— Hypertext Markup Language output format.

If you specify html, MATLAB includes the code at the end of the
published HTML file as comments, even when you set the showCode
option to false. Because MATLAB includes the code as comments,
the code does not display in a Web browser. Use the grabcode
function to extract the MATLAB code from the HTML file.

stylesheet Specifies the Extensible Stylesheet Language (XSL) file that you
want MATLAB to use when you specify a format of 'html', 'xml',
or 'latex':

• '' (default) — The MATLAB default stylesheet

• XSL file name — The full path of the XSL file

outputDir Specifies the folder to which you want MATLAB to publish the output
document and its associated image files:

• '' (default) — MATLAB places output in the html subfolder of the
current folder, which MATLAB creates.

• full path— MATLAB places output in the folder you specify.

2-3121



publish

Options for the publish Function (Continued)

Field Values

imageFormat Specifies the file type for images that MATLAB produces when
publishing files:

• 'png' (default unless format is latex or pdf)

• 'epsc2' (default when format is latex)

• 'bmp' (default when format is 'pdf')

Alternatively, '.jpg' when the format is 'pdf'

• Any format supported by print when figureSnapMethod is print,
unless format is pdf

• Any format supported by imwrite when figureSnapMethod is
getframe, entireFigureWindow, or entireGUIWindow, unless
format is pdf

figureSnapMethod Specifies how figure windows and GUI dialog boxes that the code
creates appear in published documents. Window decorations are the
title bar, toolbar, menu bar, and window border.

Values

Window
Decorations for
...

Background
Color for ...

GUIs Figures GUIs Figures

'entireGUIWindow'
(default)

Included Excluded Match
screen

White

'print' Excluded Excluded White White

'getframe' Excluded Excluded Match
screen

Match
screen

'entireFigureWindow' Included Included Match
screen

Match
screen

2-3122



publish

Options for the publish Function (Continued)

Field Values

useNewFigure A logical value that specifies whether MATLAB creates a Figure
window for figures that the code generates:

• true (default) — If the code generates a figure, then MATLAB
creates a Figure window with a white background, and at the
default size before publishing.

• false — MATLAB does not create a figure window.

This value enables you to use a figure with different properties
for publishing. Open a Figure window, change the size and
background color, for example, and then publish. Figures in your
published document use the characteristics of the figure you
opened before publishing.

maxHeight Specifies the maximum height, in pixels, for an image that the code
generates:
• [] (default) — Height is unrestricted. Always used when the

format is pdf.

• Any positive integer — Height is the specified value.

maxWidth Specifies the maximum width, in pixels, for an image that the code
generates:
• [] (default) — Width is unrestricted. Always used when the

format is pdf.

• Any positive integer — Width is the specified value.

showCode Logical value that specifies whether MATLAB includes the code in
the published document:

• true (default)

• false

2-3123



publish

Options for the publish Function (Continued)

Field Values

evalCode Logical value that specifies whether MATLAB runs the code that
it is publishing:

• true (default)

Use this option if you want to run the code. If set to true and you
are publishing a function file that requires inputs, specify the
codeToEvaluate option too.

• false

Use this option if you do not want to run the code, but do want
to present it (without output) in the published document. If you
use the publish command to publish the file that contains the
command, set this option to false. Otherwise, MATLAB attempts
to publish the file recursively.

catchError Logical value that specifies what MATLAB does if there is an error
in the code that it is publishing:

• true (default) — MATLAB continues publishing and includes the
error in the published file.

• false— MATLAB displays the error and publishing ends.

codeToEvaluate Specifies the code that MATLAB is to evaluate. By default, MATLAB
evaluates the code in the file you are publishing.

2-3124



publish

Options for the publish Function (Continued)

Field Values

createThumbnail Logical value that specifies whether MATLAB creates a thumbnail
image of the published document:

• true (default)

• false

maxOutputLines Value that specifies the maximum number of output lines per cell
that you want to publish before truncating the output:
• Inf (default) — MATLAB includes all output lines.

• Nonnegative integer — MATLAB includes, at most, the number
of lines you specify.

Examples Copy sine_wave.m, publish the file to HTML, and then view the
published document:

copyfile(fullfile(docroot,'techdoc','matlab_env','examples', ...
'sine_wave.m'),'.','f')

% When you run the command that follows, MATLAB runs sine_wave.m,
% and saves the code, comments, and results to
% /html/sine_wave.html:

publish('sine_wave.m', 'html')

% View the published output file in the Web browser:
web('html/sine_wave.html')

Copy sine_wave.m, publish the file to Microsoft Word format by using a
structure, and then view the published document:

copyfile(fullfile(docroot,'techdoc','matlab_env','examples', ...

2-3125



publish

'sine_wave.m'),'.','f')

% Define the structure, options_doc_nocode,
% to exclude code from the output
% and publish to Microsoft Word format:
options_doc_nocode.format='doc'
options_doc_nocode.showCode=false

% Publish sine_wave.m:
publish('sine_wave.m',options_doc_nocode)

% View the published output file in Microsoft Word:
winopen('html/sine_wave.doc')

Copy collatz.m, create a structure to specify the input values, publish
the file to HTML, and then view the published document:

copyfile(fullfile(docroot,'techdoc','matlab_env','examples', ...
'collatz.m'),'.','f')

% Create a structure, opts, that contains the code that you
% want collatz.m to evaluate when it runs:
opts.codeToEvaluate = 'n = 3; collatz(n)';

% In the MATLAB Web browser, display the results of
% publishing collatz.m when it runs with the values
% specified in opts:
web(publish('collatz',opts))

Copy sine_wave.m, publish the file capturing window decorations, and
then view the published document:

copyfile(fullfile(docroot,'techdoc','matlab_env','examples', ...
'sine_wave.m'),'.','f')

% Create an options file that causes the published document
% to capture window decorations:

2-3126



publish

function_options.format='html';
function_options.figureSnapMethod='entireGUIWindow';

% Publish the script using the options file:
publish('sine_wave.m',function_options);

% View the output in the MATLAB Web browser
web('html/sine_wave.html')

Publish a demo file to PDF, and then open the published document:

open(publish('sparsity',struct('format','pdf','outputDir',tempname)

Alternatives To publish a file from the desktop:

1 Open the MATLAB code file that you want to publish in the Editor.

2 Choose one of the following:

• Publish with default options by choosing File > Publish
filename.

• Publish with customized options by choosing File > Publish
Configuration for filename > Edit Publish Configurations
for filename, and then adjust the Publish settings.

See Also grabcode | notebook

How To • “Publishing MATLAB Code Files”

• “Defining Code Cells”

2-3127



PutCharArray

Purpose Store character array in Automation server

Syntax MATLAB Client
h.PutCharArray('varname', 'workspace', 'string')
PutCharArray(h, 'varname', 'workspace', 'string')
invoke(h, 'PutCharArray', 'varname', 'workspace', 'string')

IDL Method Signature
PutCharArray([in] BSTR varname, [in] BSTR workspace,
[in] BSTR string)

Microsoft Visual Basic Client
PutCharArray(varname As String, workspace As String,
string As String)

Description PutCharArray stores the character array in string in the specified
workspace of the server attached to handle h, assigning to it the variable
varname. The workspace argument can be either base or global.

Remarks The character array specified in the string argument can have any
dimensions. However, PutCharArray changes the dimensions to a
1–by-n column-wise representation, where n is the number of characters
in the array. Executing the following commands in MATLAB illustrates
this behavior:

h = actxserver('matlab.application');
chArr = ['abc'; 'def'; 'ghk']
chArr =
abc
def
ghk

h.PutCharArray('Foo', 'base', chArr)
tstArr = h.GetCharArray('Foo', 'base')
tstArr =
adgbehcfk

2-3128



PutCharArray

Server function names, like PutCharArray, are case sensitive when
using the dot notation syntax shown in the Syntax section.

There is no difference in the operation of the three syntaxes shown
above for the MATLAB client.

Examples Store string str in the base workspace of the server using
PutCharArray.

MATLAB Client

h = actxserver('matlab.application');
h.PutCharArray('str', 'base', ...

'He jests at scars that never felt a wound.')

S = h.GetCharArray('str', 'base')
S =

He jests at scars that never felt a wound.

Visual Basic .NET Client

This example uses the Visual Basic MsgBox command to control flow
between MATLAB and the Visual Basic Client.

Dim Matlab As Object
Try

Matlab = GetObject(, "matlab.application")
Catch e As Exception

Matlab = CreateObject("matlab.application")
End Try
MsgBox("MATLAB window created; now open it...")

Open the MATLAB window, then click Ok.

Matlab.PutCharArray("str", "base", _
"He jests at scars that never felt a wound.")

MsgBox("In MATLAB, type" & vbCrLf _
& "str")

2-3129



PutCharArray

In the MATLAB window type str; MATLAB displays:

str =
He jests at scars that never felt a wound.

Click Ok.

MsgBox("closing MATLAB window...")

Click Ok to close and terminate MATLAB.

Matlab.Quit()

See Also GetCharArray, PutWorkspaceData, GetWorkspaceData, Execute

2-3130



PutFullMatrix

Purpose Matrix in Automation server workspace

Syntax MATLAB Client
h.PutFullMatrix('varname', 'workspace', xreal, ximag)
PutFullMatrix(h, 'varname', 'workspace', xreal, ximag)

IDL Method Signature

PutFullMatrix([in] BSTR varname, [in] BSTR
workspace, [in] SAFEARRAY(double) xreal, [in]
SAFEARRAY(double) ximag)

Microsoft Visual Basic Client

PutFullMatrix([in] varname As String, [in] workspace As
String, [in] xreal As Double, [in] ximag As Double)

Description h.PutFullMatrix('varname', 'workspace', xreal, ximag) stores
a matrix in the specified workspace of the server attached to handle h
and assigns it to variable varname. Use xreal and ximag for the real
and imaginary parts of the matrix. The matrix cannot be a scalar,
an empty array, or have more than two dimensions. The values for
workspace are base or global.

PutFullMatrix(h, 'varname', 'workspace', xreal, ximag) is an
alternate syntax.

For VBScript clients, use the GetWorkspaceData and PutWorkspaceData
functions to pass numeric data to and from the MATLAB workspace.
These functions use the variant data type instead of safearray which
is not supported by VBScript.

Examples Use a MATLAB client to write a matrix to the base workspace of the
server:

h = actxserver('matlab.application');
h.PutFullMatrix('M', 'base', rand(5), zeros(5))
%Use one output for real values only
xreal = h.GetFullMatrix('M', 'base', zeros(5), zeros(5))

2-3131



PutFullMatrix

Use a Visual Basic .NET client to write a matrix to the base workspace
of the server:

Dim MatLab As Object
Dim XReal(4, 4) As Double
Dim XImag(4, 4) As Double
Dim ZReal(4, 4) As Double
Dim ZImag(4, 4) As Double
Dim i, j As Integer

For i = 0 To 4
For j = 0 To 4
XReal(i, j) = Rnd() * 6
XImag(i, j) = 0
Next j

Next i

Matlab = CreateObject("matlab.application")
MatLab.PutFullMatrix("M", "base", XReal, XImag)
MatLab.GetFullMatrix("M", "base", ZReal, ZImag)

Use a MATLAB client to write a matrix to the global workspace of the
server:

h = actxserver('matlab.application');
h.PutFullMatrix('X', 'global', [1 3 5; 2 4 6], ...

[1 1 1; 1 1 1])
h.invoke('Execute', 'whos global')

Use a Visual Basic .NET client to write a matrix to the global workspace
of the server:

2-3132



PutFullMatrix

Dim MatLab As Object
Dim XReal(1, 2) As Double
Dim XImag(1, 2) As Double
Dim result As String
Dim i, j As Integer

For i = 0 To 1
For j = 0 To 2
XReal(i, j) = (j * 2 + 1) + i
XImag(i, j) = 1

Next j
Next i

Matlab = CreateObject("matlab.application")
MatLab.PutFullMatrix("X", "global", XReal, XImag)
result = Matlab.Execute("whos global")
MsgBox(result)

See Also GetFullMatrix | PutWorkspaceData | Execute

How To • “MATLAB COM Automation Server Support”

• “Exchanging Data with the Server”

2-3133



PutWorkspaceData

Purpose Data in Automation server workspace

Syntax MATLAB Client
h.PutWorkspaceData('varname', 'workspace', data)
PutWorkspaceData(h, 'varname', 'workspace', data)

IDL Method Signature

PutWorkspaceData([in] BSTR varname, [in] BSTR
workspace, [in] VARIANT data)

Microsoft Visual Basic Client

PutWorkspaceData(varname As String, workspace
As String, data As Object)

Description h.PutWorkspaceData('varname', 'workspace', data) stores data
in the workspace of the server attached to handle h and assigns it to
varname. The values for workspace are base or global.

PutWorkspaceData(h, 'varname', 'workspace', data) is an
alternate syntax.

Use PutWorkspaceData to pass numeric and character array data
respectively to the server. Do not use PutWorkspaceData on sparse
arrays, structures, or function handles. Use the Execute method for
these data types.

The GetWorkspaceData and PutWorkspaceData functions pass numeric
data as a variant data type. These functions are especially useful for
VBScript clients as VBScript does not support the safearray data type
used by GetFullMatrix and PutFullMatrix.

Examples Create an array in a MATLAB client and put it in the base workspace of
the MATLAB Automation server:

h = actxserver('matlab.application');
for i = 0:6

data(i+1) = i * 15;
end

2-3134



PutWorkspaceData

h.PutWorkspaceData('A', 'base', data)

Create an array in a Visual Basic client and put it in the base workspace
of the MATLAB Automation server:

1 Create the Visual Basic application. Use the MsgBox command to
control flow between MATLAB and the application:

Dim Matlab As Object
Dim data(6) As Double
Dim i As Integer
MatLab = CreateObject("matlab.application")
For i = 0 To 6

data(i) = i * 15
Next i
MatLab.PutWorkspaceData("A", "base", data)
MsgBox("In MATLAB, type" & vbCrLf & "A")

2 Open the MATLAB window and type A. MATLAB displays:

A =
0 15 30 45 60 75 90

3 Click Ok to close and terminate MATLAB.

See Also GetWorkspaceData | PutFullMatrix | PutCharArray | Execute

How To • “Executing Commands in the MATLAB Server”

• “Exchanging Data with the Server”

2-3135



pwd

Purpose Identify current folder

Syntax pwd
currentFolder = pwd

Description pwd displays the MATLAB current folder.

currentFolder = pwd returns the current folder as a string to
currentFolder.

Alternatives • Use the Current Folder field in the MATLAB desktop toolbar.

• Use address bar in the Current Folder browser.

See Also cd | dir

How To • “Tools for Managing Files”

2-3136



qmr

Purpose Quasi-minimal residual method

Syntax x = qmr(A,b)
qmr(A,b,tol)
qmr(A,b,tol,maxit)
qmr(A,b,tol,maxit,M)
qmr(A,b,tol,maxit,M1,M2)
qmr(A,b,tol,maxit,M1,M2,x0)
[x,flag] = qmr(A,b,...)
[x,flag,relres] = qmr(A,b,...)
[x,flag,relres,iter] = qmr(A,b,...)
[x,flag,relres,iter,resvec] = qmr(A,b,...)

Description x = qmr(A,b) attempts to solve the system of linear equations A*x=b
for x. The n-by-n coefficient matrix A must be square and should be
large and sparse. The column vector b must have length n. A can be
a function handle afun such that afun(x,'notransp') returns A*x
and afun(x,'transp') returns A'*x. See “Function Handles” in the
MATLAB Programming documentation for more information.

“Parameterizing Functions”, in the MATLAB Mathematics
documentation, explains how to provide additional parameters to the
function afun, as well as the preconditioner function mfun described
below, if necessary.

If qmr converges, a message to that effect is displayed. If qmr fails to
converge after the maximum number of iterations or halts for any
reason, a warning message is printed displaying the relative residual
norm(b-A*x)/norm(b) and the iteration number at which the method
stopped or failed.

qmr(A,b,tol) specifies the tolerance of the method. If tol is [], then
qmr uses the default, 1e-6.

qmr(A,b,tol,maxit) specifies the maximum number of iterations. If
maxit is [], then qmr uses the default, min(n,20).

qmr(A,b,tol,maxit,M) and qmr(A,b,tol,maxit,M1,M2) use
preconditioners M or M = M1*M2 and effectively solve the system

2-3137



qmr

inv(M)*A*x = inv(M)*b for x. If M is [] then qmr applies no
preconditioner. M can be a function handle mfun such that
mfun(x,'notransp') returns M\x and mfun(x,'transp') returns M'\x.

qmr(A,b,tol,maxit,M1,M2,x0) specifies the initial guess. If x0 is [],
then qmr uses the default, an all zero vector.

[x,flag] = qmr(A,b,...) also returns a convergence flag.

Flag Convergence

0 qmr converged to the desired tolerance tol within maxit
iterations.

1 qmr iterated maxit times but did not converge.

2 Preconditioner M was ill-conditioned.

3 The method stagnated. (Two consecutive iterates were
the same.)

4 One of the scalar quantities calculated during qmr became
too small or too large to continue computing.

Whenever flag is not 0, the solution x returned is that with minimal
norm residual computed over all the iterations. No messages are
displayed if the flag output is specified.

[x,flag,relres] = qmr(A,b,...) also returns the relative residual
norm(b-A*x)/norm(b). If flag is 0, relres <= tol.

[x,flag,relres,iter] = qmr(A,b,...) also returns the iteration
number at which x was computed, where 0 <= iter <= maxit.

[x,flag,relres,iter,resvec] = qmr(A,b,...) also returns a vector
of the residual norms at each iteration, including norm(b-A*x0).

Examples Example 1

n = 100;
on = ones(n,1);

2-3138



qmr

A = spdiags([-2*on 4*on -on],-1:1,n,n);
b = sum(A,2);
tol = 1e-8; maxit = 15;
M1 = spdiags([on/(-2) on],-1:0,n,n);
M2 = spdiags([4*on -on],0:1,n,n);
x = qmr(A,b,tol,maxit,M1,M2);

displays the message

qmr converged at iteration 9 to a solution...
with relative residual
5.6e-009

Example 2

This example replaces the matrix A in Example 1 with a handle to a
matrix-vector product function afun. The example is contained in an
M-file run_qmr that

• Calls qmr with the function handle @afun as its first argument.

• Contains afun as a nested function, so that all variables in run_qmr
are available to afun.

The following shows the code for run_qmr:

function x1 = run_qmr
n = 100;
on = ones(n,1);
A = spdiags([-2*on 4*on -on],-1:1,n,n);
b = sum(A,2);
tol = 1e-8;
maxit = 15;
M1 = spdiags([on/(-2) on],-1:0,n,n);
M2 = spdiags([4*on -on],0:1,n,n);
x1 = qmr(@afun,b,tol,maxit,M1,M2);

function y = afun(x,transp_flag)
if strcmp(transp_flag,'transp') % y = A'*x

2-3139



qmr

y = 4 * x;
y(1:n-1) = y(1:n-1) - 2 * x(2:n);
y(2:n) = y(2:n) - x(1:n-1);

elseif strcmp(transp_flag,'notransp') % y = A*x
y = 4 * x;
y(2:n) = y(2:n) - 2 * x(1:n-1);
y(1:n-1) = y(1:n-1) - x(2:n);

end
end

end

When you enter

x1=run_qmr;

MATLAB software displays the message

qmr converged at iteration 9 to a solution with relative residual
5.6e-009

Example 3

load west0479;
A = west0479;
b = sum(A,2);
[x,flag] = qmr(A,b)

flag is 1 because qmr does not converge to the default tolerance 1e-6
within the default 20 iterations.

[L1,U1] = luinc(A,1e-5);
[x1,flag1] = qmr(A,b,1e-6,20,L1,U1)

flag1 is 2 because the upper triangular U1 has a zero on its diagonal,
and qmr fails in the first iteration when it tries to solve a system such as
U1*y = r for y using backslash.

[L2,U2] = luinc(A,1e-6);
[x2,flag2,relres2,iter2,resvec2] = qmr(A,b,1e-15,10,L2,U2)

2-3140



qmr

flag2 is 0 because qmr converges to the tolerance of 1.6571e-016 (the
value of relres2) at the eighth iteration (the value of iter2) when
preconditioned by the incomplete LU factorization with a drop tolerance
of 1e-6. resvec2(1) = norm(b) and resvec2(9) = norm(b-A*x2).
You can follow the progress of qmr by plotting the relative residuals at
each iteration starting from the initial estimate (iterate number 0).

semilogy(0:iter2,resvec2/norm(b),'-o')
xlabel('iteration number')
ylabel('relative residual')

See Also bicg, bicgstab, cgs, gmres, lsqr, luinc, minres, pcg, symmlq,
function_handle (@), mldivide (\)

2-3141



qmr

References [1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods, SIAM,
Philadelphia, 1994.

[2] Freund, Roland W. and Nöel M. Nachtigal, “QMR: A quasi-minimal
residual method for non-Hermitian linear systems,” SIAM Journal:
Numer. Math. 60, 1991, pp. 315-339.

2-3142



qr

Purpose Orthogonal-triangular decomposition

Syntax [Q,R] = qr(A)
[Q,R] = qr(A,0)
[Q,R,E] = qr(A)
[Q,R,E] = qr(A,0)
X = qr(A)
X = qr(A,0)
R = qr(A)
[C,R] = qr(A,B)
[C,R,E] = qr(A,B)
[C,R] = qr(A,B,0)
[C,R,E] = qr(A,B,0)

Description [Q,R] = qr(A), where A is m-by-n, produces an m-by-n upper triangular
matrix R and an m-by-m unitary matrix Q so that A = Q*R.

[Q,R] = qr(A,0) produces the economy-size decomposition. If m > n,
only the first n columns of Q and the first n rows of R are computed. If
m<=n, this is the same as [Q,R] = qr(A).

If A is full:

[Q,R,E] = qr(A) produces unitary Q, upper triangular R and a
permutation matrix E so that A*E = Q*R. The column permutation E
is chosen so that abs(diag(R)) is decreasing.

[Q,R,E] = qr(A,0) produces an economy-size decomposition in which
E is a permutation vector, so that A(:,E) = Q*R.

X = qr(A) and X = qr(A,0) return a matrix X such that triu(X) is the
upper triangular factor R.

If A is sparse:

R = qr(A) computes a Q-less QR decomposition and returns the upper
triangular factor R. Note that R = CHOL(A'*A). Since Q is often nearly
full, this is preferred to [Q,R] = QR(A).

R = qr(A,0) produces economy-size R. If m>n, R has only n rows. If
m<=n, this is the same as R = qr(A).

2-3143



qr

[Q,R,E] = qr(A) produces unitary Q, upper triangular R and a
permutation matrix E so that A*E = Q*R. The column permutation E is
chosen to reduce fill-in in R.

[Q,R,E] = qr(A,0) produces an economy-size decomposition in which
E is a permutation vector, so that A(:,E) = Q*R.

[C,R] = qr(A,B), where B has as many rows as A, returns C = Q'*B.
The least-squares solution to A*X = B is X = R\C.

[C,R,E] = qr(A,B), also returns a fill-reducing ordering. The
least-squares solution to A*X = B is X = E*(R\C).

[C,R] = qr(A,B,0) produces economy-size results. If m>n, C and R have
only n rows. If m<=n, this is the same as [C,R] = qr(A,B).

[C,R,E] = qr(A,B,0) additionally produces a fill-reducing
permutation vector E. In this case, the least-squares solution to A*X =
B is X(E,:) = R\C.

Examples Find the least squares approximate solution to A*x = b with the Q-less
QR decomposition and one step of iterative refinement:

if issparse(A), R = qr(A);
else R = triu(qr(A)); end
x = R\(R'\(A'*b));
r = b - A*x;
e = R\(R'\(A'*r));
x = x + e;

See Also lu | ldl

2-3144



qrdelete

Purpose Remove column or row from QR factorization

Syntax [Q1,R1] = qrdelete(Q,R,j)
[Q1,R1] = qrdelete(Q,R,j,'col')
[Q1,R1] = qrdelete(Q,R,j,'row')

Description [Q1,R1] = qrdelete(Q,R,j) returns the QR factorization of the
matrix A1, where A1 is A with the column A(:,j) removed and [Q,R] =
qr(A) is the QR factorization of A.

[Q1,R1] = qrdelete(Q,R,j,'col') is the same as qrdelete(Q,R,j).

[Q1,R1] = qrdelete(Q,R,j,'row') returns the QR factorization of
the matrix A1, where A1 is A with the row A(j,:) removed and [Q,R] =
qr(A) is the QR factorization of A.

Examples A = magic(5);
[Q,R] = qr(A);
j = 3;
[Q1,R1] = qrdelete(Q,R,j,'row');

Q1 =
0.5274 -0.5197 -0.6697 -0.0578
0.7135 0.6911 0.0158 0.1142
0.3102 -0.1982 0.4675 -0.8037
0.3413 -0.4616 0.5768 0.5811

R1 =
32.2335 26.0908 19.9482 21.4063 23.3297

0 -19.7045 -10.9891 0.4318 -1.4873
0 0 22.7444 5.8357 -3.1977
0 0 0 -14.5784 3.7796

returns a valid QR factorization, although possibly different from

A2 = A;
A2(j,:) = [];
[Q2,R2] = qr(A2)

2-3145



qrdelete

Q2 =
-0.5274 0.5197 0.6697 -0.0578
-0.7135 -0.6911 -0.0158 0.1142
-0.3102 0.1982 -0.4675 -0.8037
-0.3413 0.4616 -0.5768 0.5811

R2 =
-32.2335 -26.0908 -19.9482 -21.4063 -23.3297

0 19.7045 10.9891 -0.4318 1.4873
0 0 -22.7444 -5.8357 3.1977
0 0 0 -14.5784 3.7796

Algorithm The qrdelete function uses a series of Givens rotations to zero out the
appropriate elements of the factorization.

See Also planerot, qr, qrinsert

2-3146



qrinsert

Purpose Insert column or row into QR factorization

Syntax [Q1,R1] = qrinsert(Q,R,j,x)
[Q1,R1] = qrinsert(Q,R,j,x,'col')
[Q1,R1] = qrinsert(Q,R,j,x,'row')

Description [Q1,R1] = qrinsert(Q,R,j,x) returns the QR factorization of the
matrix A1, where A1 is A = Q*R with the column x inserted before
A(:,j). If A has n columns and j = n+1, then x is inserted after the
last column of A.

[Q1,R1] = qrinsert(Q,R,j,x,'col') is the same as
qrinsert(Q,R,j,x).

[Q1,R1] = qrinsert(Q,R,j,x,'row') returns the QR factorization
of the matrix A1, where A1 is A = Q*R with an extra row, x, inserted
before A(j,:).

Examples A = magic(5);
[Q,R] = qr(A);
j = 3;
x = 1:5;
[Q1,R1] = qrinsert(Q,R,j,x,'row')

Q1 =
0.5231 0.5039 -0.6750 0.1205 0.0411 0.0225
0.7078 -0.6966 0.0190 -0.0788 0.0833 -0.0150
0.0308 0.0592 0.0656 0.1169 0.1527 -0.9769
0.1231 0.1363 0.3542 0.6222 0.6398 0.2104
0.3077 0.1902 0.4100 0.4161 -0.7264 -0.0150
0.3385 0.4500 0.4961 -0.6366 0.1761 0.0225

R1 =
32.4962 26.6801 21.4795 23.8182 26.0031

0 19.9292 12.4403 2.1340 4.3271
0 0 24.4514 11.8132 3.9931
0 0 0 20.2382 10.3392

2-3147



qrinsert

0 0 0 0 16.1948
0 0 0 0 0

returns a valid QR factorization, although possibly different from

A2 = [A(1:j-1,:); x; A(j:end,:)];
[Q2,R2] = qr(A2)

Q2 =
-0.5231 0.5039 0.6750 -0.1205 0.0411 0.0225
-0.7078 -0.6966 -0.0190 0.0788 0.0833 -0.0150
-0.0308 0.0592 -0.0656 -0.1169 0.1527 -0.9769
-0.1231 0.1363 -0.3542 -0.6222 0.6398 0.2104
-0.3077 0.1902 -0.4100 -0.4161 -0.7264 -0.0150
-0.3385 0.4500 -0.4961 0.6366 0.1761 0.0225

R2 =
-32.4962 -26.6801 -21.4795 -23.8182 -26.0031

0 19.9292 12.4403 2.1340 4.3271
0 0 -24.4514 -11.8132 -3.9931
0 0 0 -20.2382 -10.3392
0 0 0 0 16.1948
0 0 0 0 0

Algorithm The qrinsert function inserts the values of x into the jth column (row)
of R. It then uses a series of Givens rotations to zero out the nonzero
elements of R on and below the diagonal in the jth column (row).

See Also planerot, qr, qrdelete

2-3148



qrupdate

Description Rank 1 update to QR factorization

Syntax [Q1,R1] = qrupdate(Q,R,u,v)

Description [Q1,R1] = qrupdate(Q,R,u,v) when [Q,R] = qr(A) is the original
QR factorization of A, returns the QR factorization of A + u*v', where u
and v are column vectors of appropriate lengths.

Remarks qrupdate works only for full matrices.

Examples The matrix

mu = sqrt(eps)

mu =

1.4901e-08

A = [ones(1,4); mu*eye(4)];

is a well-known example in least squares that indicates the dangers of
forming A'*A. Instead, we work with the QR factorization – orthonormal
Q and upper triangular R.

[Q,R] = qr(A);

As we expect, R is upper triangular.

R =

-1.0000 -1.0000 -1.0000 -1.0000
0 0.0000 0.0000 0.0000
0 0 0.0000 0.0000
0 0 0 0.0000
0 0 0 0

2-3149



qrupdate

In this case, the upper triangular entries of R, excluding the first row,
are on the order of sqrt(eps).

Consider the update vectors

u = [-1 0 0 0 0]'; v = ones(4,1);

Instead of computing the rather trivial QR factorization of this rank
one update to A from scratch with

[QT,RT] = qr(A + u*v')

QT =

0 0 0 0 1
-1 0 0 0 0
0 -1 0 0 0
0 0 -1 0 0
0 0 0 -1 0

RT =

1.0e-007 *

-0.1490 0 0 0
0 -0.1490 0 0
0 0 -0.1490 0
0 0 0 -0.1490
0 0 0 0

we may use qrupdate.

[Q1,R1] = qrupdate(Q,R,u,v)

Q1 =

-0.0000 -0.0000 -0.0000 -0.0000 1.0000
1.0000 -0.0000 -0.0000 -0.0000 0.0000

2-3150



qrupdate

0.0000 1.0000 -0.0000 -0.0000 0.0000
0.0000 0.0000 1.0000 -0.0000 0.0000

-0.0000 -0.0000 -0.0000 1.0000 0.0000

R1 =

1.0e-007 *
0.1490 0.0000 0.0000 0.0000

0 0.1490 0.0000 0.0000
0 0 0.1490 0.0000
0 0 0 0.1490
0 0 0 0

Note that both factorizations are correct, even though they are different.

Algorithm qrupdate uses the algorithm in section 12.5.1 of the third edition of
Matrix Computations by Golub and van Loan. qrupdate is useful since,
if we take N = max(m,n), then computing the new QR factorization

from scratch is roughly an algorithm, while simply updating the

existing factors in this way is an algorithm.

References [1] Golub, Gene H. and Charles Van Loan, Matrix Computations, Third
Edition, Johns Hopkins University Press, Baltimore, 1996

See Also cholupdate, qr

2-3151



quad

Purpose Numerically evaluate integral, adaptive Simpson quadrature

Syntax q = quad(fun,a,b)
q = quad(fun,a,b,tol)
q = quad(fun,a,b,tol,trace)
[q,fcnt] = quad(...)

Description Quadrature is a numerical method used to find the area under the
graph of a function, that is, to compute a definite integral.

q = quad(fun,a,b) tries to approximate the integral of function fun
from a to b to within an error of 1e-6 using recursive adaptive Simpson
quadrature. fun is a function handle. See “Function Handles” in the
MATLAB Programming documentation for more information. Limits a
and b must be finite. The function y = fun(x) should accept a vector
argument x and return a vector result y, the integrand evaluated at
each element of x.

“Parameterizing Functions”, in the MATLAB Mathematics
documentation, explains how to provide additional parameters to the
function fun, if necessary.

q = quad(fun,a,b,tol) uses an absolute error tolerance tol instead
of the default which is 1.0e-6. Larger values of tol result in fewer
function evaluations and faster computation, but less accurate results.
In MATLAB version 5.3 and earlier, the quad function used a less
reliable algorithm and a default relative tolerance of 1.0e-3.

q = quad(fun,a,b,tol,trace) with non-zero trace shows the values
of [fcnt a b-a Q] during the recursion.

[q,fcnt] = quad(...) returns the number of function evaluations.

The function quadl may be more efficient with high accuracies and
smooth integrands.

2-3152



quad

The list below contains information to help you determine which
quadrature function in MATLAB to use:

• The quad function may be most efficient for low accuracies with
nonsmooth integrands.

• The quadl function may be more efficient than quad at higher
accuracies with smooth integrands.

• The quadgk function may be most efficient for high accuracies and
oscillatory integrands. It supports infinite intervals and can handle
moderate singularities at the endpoints. It also supports contour
integration along piecewise linear paths.

• The quadv function vectorizes quad for an array-valued fun.

• If the interval is infinite, [a,Inf), then for the integral of fun(x)
to exist, fun(x) must decay as x approaches infinity, and quadgk
requires it to decay rapidly. Special methods should be used for
oscillatory functions on infinite intervals, but quadgk can be used if
fun(x) decays fast enough.

• The quadgk function will integrate functions that are singular at
finite endpoints if the singularities are not too strong. For example,
it will integrate functions that behave at an endpoint c like log|x-c|
or |x-c|p for p >= -1/2. If the function is singular at points inside
(a,b), write the integral as a sum of integrals over subintervals
with the singular points as endpoints, compute them with quadgk,
and add the results.

Example To compute the integral

write an M-file function myfun that computes the integrand:

function y = myfun(x)
y = 1./(x.^3-2*x-5);

2-3153



quad

Then pass @myfun, a function handle to myfun, to quad, along with the
limits of integration, 0 to 2:

Q = quad(@myfun,0,2)

Q =

-0.4605

Alternatively, you can pass the integrand to quad as an anonymous
function handle F:

F = @(x)1./(x.^3-2*x-5);
Q = quad(F,0,2);

Algorithm quad implements a low order method using an adaptive recursive
Simpson’s rule.

Diagnostics quad may issue one of the following warnings:

'Minimum step size reached' indicates that the recursive interval
subdivision has produced a subinterval whose length is on the order of
roundoff error in the length of the original interval. A nonintegrable
singularity is possible.

'Maximum function count exceeded' indicates that the integrand
has been evaluated more than 10,000 times. A nonintegrable
singularity is likely.

'Infinite or Not-a-Number function value encountered'
indicates a floating point overflow or division by zero during the
evaluation of the integrand in the interior of the interval.

See Also quad2d, dblquad, quadgk, quadl, quadv, trapz, triplequad,
function_handle (@), “Anonymous Functions”

References [1] Gander, W. and W. Gautschi, “Adaptive Quadrature – Revisited,”
BIT, Vol. 40, 2000, pp. 84-101. This document is also available at
http://www.inf.ethz.ch/personal/gander.

2-3154

http://www.inf.ethz.ch/personal/gander


quad2d

Purpose Numerically evaluate double integral over planar region

Syntax q = quad2d(fun,a,b,c,d)
[q,errbnd] = quad2d(...)
q = quad2d(fun,a,b,c,d,param1,val1,param2,val2,...)

Description q = quad2d(fun,a,b,c,d) approximates the integral of fun(x,y)

over the planar region a x b≤ ≤ and c x y d x( ) ( )≤ ≤ . fun is a function
handle, c and d may each be a scalar or a function handle.

All input functions must be vectorized. The function Z=fun(X,Y) must
accept 2-D matrices X and Y of the same size and return a matrix Z of
corresponding values. The functions ymin=c(X) and ymax=d(X) must
accept matrices and return matrices of the same size with corresponding
values.

[q,errbnd] = quad2d(...). errbnd is an approximate upper bound
on the absolute error, |Q - I|, where I denotes the exact value of the
integral.

q = quad2d(fun,a,b,c,d,param1,val1,param2,val2,...) performs
the integration as above with specified values of optional parameters:

AbsTol absolute error tolerance

RelTol relative error tolerance

quad2d attempts to satisfy ERRBND <= max(AbsTol,RelTol*|Q|). This
is absolute error control when |Q| is sufficiently small and relative
error control when |Q| is larger. A default tolerance value is used
when a tolerance is not specified. The default value of AbsTol is 1e-5.
The default value of RelTol is 100*eps(class(Q)). This is also the
minimum value of RelTol. Smaller RelTol values are automatically
increased to the default value.

MaxFunEvals Maximum allowed number of evaluations of fun
reached.

2-3155



quad2d

The MaxFunEvals parameter limits the number of vectorized calls to
fun. The default is 2000.

FailurePlot Generate a plot if MaxFunEvals is reached.

Setting FailurePlot to true generates a graphical representation
of the regions needing further refinement when MaxFunEvals is
reached. No plot is generated if the integration succeeds before
reaching MaxFunEvals. These (generally) 4-sided regions are mapped
to rectangles internally. Clusters of small regions indicate the areas of
difficulty. The default is false.

Singular Problem may have boundary singularities

With Singular set to true, quad2d will employ transformations to
weaken boundary singularities for better performance. The default is
true. Setting Singular to false will turn these transformations off,
which may provide a performance benefit on some smooth problems.

Examples Example 1

Integrate y x x ysin( ) cos( )+ over  ≤ ≤x 2 , 0 ≤ ≤y  . The true value

of the integral is − 2 .

Q = quad2d(@(x,y) y.*sin(x)+x.*cos(y),pi,2*pi,0,pi)

Example 2

Integrate [( ) ( ) ]/x y x y+ + + −1 2 2 11 over the triangle 0 1≤ ≤x and

0 1≤ ≤ −y x . The integrand is infinite at (0,0). The true value of the
integral is  / /4 1 2− .

fun = @(x,y) 1./(sqrt(x + y) .* (1 + x + y).^2 )

In Cartesian coordinates:

ymax = @(x) 1 - x;

2-3156



quad2d

Q = quad2d(fun,0,1,0,ymax)

In polar coordinates:

polarfun = @(theta,r) fun(r.*cos(theta),r.*sin(theta)).*r;
rmax = @(theta) 1./(sin(theta) + cos(theta));
Q = quad2d(polarfun,0,pi/2,0,rmax)

Limitations quad2d begins by mapping the region of integration to a rectangle.
Consequently, it may have trouble integrating over a region that does
not have four sides or has a side that cannot be mapped smoothly to a
straight line. If the integration is unsuccessful, some helpful tactics are
leaving Singular set to its default value of true, changing between
Cartesian and polar coordinates, or breaking the region of integration
into pieces and adding the results of integration over the pieces.

For example:

fun = @(x,y)abs(x.^2 + y.^2 - 0.25);
c = @(x)-sqrt(1 - x.^2);
d = @(x)sqrt(1 - x.^2);
quad2d(fun,-1,1,c,d,'AbsTol',1e-8,...

'FailurePlot',true,'Singular',false)
Warning: Reached the maximum number of function ...

evaluations (2000). The result fails the ...
global error test.

The failure plot shows two areas of difficulty, near the points (-1,0)

and (1,0) and near the circle x y2 2 0 25+ = . :

2-3157



quad2d

Changing the value of Singular to true will cope with the geometric
singularities at (-1,0) and (1,0). The larger shaded areas may need
refinement but are probably not areas of difficulty.

Q = quad2d(fun,-1,1,c,d,'AbsTol',1e-8, ...
'FailurePlot',true,'Singular',true)

Warning: Reached the maximum number of function ...
evaluations (2000). The result passes the ...
global error test.

2-3158



quad2d

From here you can take advantage of symmetry:

Q = 4*quad2d(fun,0,1,0,d,'Abstol',1e-8,...
'Singular',true, 'FailurePlot',true)

However, the code is still working very hard near the singularity. It
may not be able to provide higher accuracy:

Q = 4*quad2d(fun,0,1,0,d,'Abstol',1e-10,...
'Singular',true,'FailurePlot',true)

Warning: Reached the maximum number of function ...
evaluations (2000). The result passes the ...
global error test.

2-3159



quad2d

At higher accuracy, a change in coordinates may work better.

polarfun = @(theta,r) fun(r.*cos(theta),r.*sin(theta)).*r;
Q = 4*quad2d(polarfun,0,pi/2,0,1,'AbsTol',1e-10)

It is best to put the singularity on the boundary by splitting the region
of integration into two parts:

Q1 = 4*quad2d(polarfun,0,pi/2,0,0.5,'AbsTol',5e-11);
Q2 = 4*quad2d(polarfun,0,pi/2,0.5,1,'AbsTol',5e-11);
Q = Q1 + Q2

References [1] L.F. Shampine “Vectorized Adaptive Quadrature in MATLAB,”
Journal of Computational and Applied Mathematics, 211, 2008,
pp.131–140.

See Also dblquad, quad, quadl, quadv, quadgk, triplequad, function_handle
(@), “Anonymous Functions”

2-3160



quadgk

Purpose Numerically evaluate integral, adaptive Gauss-Kronrod quadrature

Syntax q = quadgk(fun,a,b)
[q,errbnd] = quadgk(fun,a,b)
[q,errbnd] = quadgk(fun,a,b,param1,val1,param2,val2,...)

Description q = quadgk(fun,a,b) attempts to approximate the integral of a
scalar-valued function fun from a to b using high-order global adaptive
quadrature and default error tolerances. The function y = fun(x)
should accept a vector argument x and return a vector result y, where
y is the integrand evaluated at each element of x. fun must be a
function handle. See “Function Handles” in the MATLAB Programming
documentation for more information. Limits a and b can be -Inf or
Inf. If both are finite, they can be complex. If at least one is complex,
the integral is approximated over a straight line path from a to b in
the complex plane.

“Parameterizing Functions”, in the MATLAB Mathematics
documentation, explains how to provide additional parameters to the
function fun, if necessary.

[q,errbnd] = quadgk(fun,a,b) returns an approximate upper bound
on the absolute error, |Q - I|, where I denotes the exact value of the
integral.

[q,errbnd] = quadgk(fun,a,b,param1,val1,param2,val2,...)
performs the integration with specified values of optional parameters.
The available parameters are

2-3161



quadgk

Parameter Description

'AbsTol' Absolute error
tolerance.

The default value of
'AbsTol' is 1.e-10
(double), 1.e-5
(single).

'RelTol' Relative error
tolerance.

The default value of
'RelTol' is 1.e-6
(double), 1.e-4
(single).

quadgk attempts
to satisfy
errbnd <= max(AbsTol,RelTol*|Q|).
This is absolute error
control when |Q| is
sufficiently small and
relative error control
when |Q| is larger. For
pure absolute error
control use 'AbsTol'
> 0 and'RelTol'= 0.
For pure relative error
control use 'AbsTol' =
0. Except when using
pure absolute error
control, the minimum
relative tolerance is
'RelTol' >= 100*eps(class(Q)).

'Waypoints' Vector of integration
waypoints.

If fun(x) has
discontinuities in the
interval of integration,
the locations should be
supplied as a Waypoints
vector. When a, b, and
the waypoints are all
real, only the waypoints
between a and b are
used, and they are
used in sorted order.
Note that waypoints
are not intended for
singularities in fun(x).
Singular points should be
handled by making them
endpoints of separate

2-3162



quadgk

Parameter Description

integrations and adding
the results.

If a, b, or any entry of
the waypoints vector is
complex, the integration
is performed over a
sequence of straight line
paths in the complex
plane, from a to the first
waypoint, from the first
waypoint to the second,
and so forth, and finally
from the last waypoint to
b.

'MaxIntervalCount'Maximum number of
intervals allowed.

The default value is
650.

The
'MaxIntervalCount'
parameter limits the
number of intervals
that quadgk uses at any
one time after the first
iteration. A warning
is issued if quadgk
returns early because
of this limit. Routinely
increasing this value is
not recommended, but
it may be appropriate
when errbnd is small
enough that the desired
accuracy has nearly been
achieved.

The list below contains information to help you determine which
quadrature function in MATLAB to use:

2-3163



quadgk

• The quad function may be most efficient for low accuracies with
nonsmooth integrands.

• The quadl function may be more efficient than quad at higher
accuracies with smooth integrands.

• The quadgk function may be most efficient for high accuracies and
oscillatory integrands. It supports infinite intervals and can handle
moderate singularities at the endpoints. It also supports contour
integration along piecewise linear paths.

• The quadv function vectorizes quad for an array-valued fun.

• If the interval is infinite, [a,Inf), then for the integral of fun(x)
to exist, fun(x) must decay as x approaches infinity, and quadgk
requires it to decay rapidly. Special methods should be used for
oscillatory functions on infinite intervals, but quadgk can be used if
fun(x) decays fast enough.

• The quadgk function will integrate functions that are singular at
finite endpoints if the singularities are not too strong. For example,
it will integrate functions that behave at an endpoint c like log|x-c|
or |x-c|p for p >= -1/2. If the function is singular at points inside
(a,b), write the integral as a sum of integrals over subintervals
with the singular points as endpoints, compute them with quadgk,
and add the results.

Examples Integrand with a singularity at an integration end point

Write an function myfun that computes the integrand:

function y = myfun(x)
y = exp(x).*log(x);

Then pass @myfun, a function handle to myfun, to quadgk, along with
the limits of integration, 0 to 1:

Q = quadgk(@myfun,0,1)

Q =

2-3164



quadgk

-1.3179

Alternatively, you can pass the integrand to quadgk as an anonymous
function handle F:

F = (@(x)exp(x).*log(x));
Q = quadgk(F,0,1);

Oscillatory integrand on a semi-infinite interval

Integrate over a semi-infinite interval with specified tolerances, and
return the approximate error bound:

[q,errbnd] = quadgk(@(x)x.^5.*exp(-x).*sin(x),0,inf,'RelTol',1e-8,'

q =

-15.0000

errbnd =

9.4386e-009

Contour integration around a pole

Use Waypoints to integrate around a pole using a piecewise linear
contour:

Q = quadgk(@(z)1./(2*z - 1),-1-i,-1-i,'Waypoints',[1-i,1+i,-1+i])

Q =

0.0000 + 3.1416i

Algorithm quadgk implements adaptive quadrature based on a Gauss-Kronrod
pair (15th and 7th order formulas).

2-3165



quadgk

Diagnostics quadgk may issue one of the following warnings:

'Minimum step size reached' indicates that interval subdivision
has produced a subinterval whose length is on the order of roundoff
error in the length of the original interval. A nonintegrable singularity
is possible.

'Reached the limit on the maximum number of intervals in
use' indicates that the integration was terminated before meeting the
tolerance requirements and that continuing the integration would
require more than MaxIntervalCount subintervals. The integral may
not exist, or it may be difficult to approximate numerically. Increasing
MaxIntervalCount usually does not help unless the tolerance
requirements were nearly met when the integration was previously
terminated.

'Infinite or Not-a-Number function value encountered'
indicates a floating point overflow or division by zero during the
evaluation of the integrand in the interior of the interval.

References [1] L.F. Shampine “Vectorized Adaptive Quadrature in MATLAB,”
Journal of Computational and Applied Mathematics, 211, 2008,
pp.131–140.

See Also quad2d, dblquad, quad, quadl, quadv, triplequad, function_handle
(@), “Anonymous Functions”

2-3166



quadl

Purpose Numerically evaluate integral, adaptive Lobatto quadrature

Syntax q = quadl(fun,a,b)
q = quadl(fun,a,b,tol)
quadl(fun,a,b,tol,trace)
[q,fcnt] = quadl(...)

Description q = quadl(fun,a,b) approximates the integral of function fun from
a to b, to within an error of 10-6 using recursive adaptive Lobatto
quadrature. fun is a function handle. See “Function Handles” in the
MATLAB Programming documentation for more information. fun
accepts a vector x and returns a vector y, the function fun evaluated at
each element of x. Limits a and b must be finite.

“Parameterizing Functions”, in the MATLAB Mathematics
documentation, explains how to provide additional parameters to the
function fun, if necessary.

q = quadl(fun,a,b,tol) uses an absolute error tolerance of tol
instead of the default, which is 1.0e-6. Larger values of tol result in
fewer function evaluations and faster computation, but less accurate
results.

quadl(fun,a,b,tol,trace) with non-zero trace shows the values of
[fcnt a b-a q] during the recursion.

[q,fcnt] = quadl(...) returns the number of function evaluations.

Use array operators .*, ./ and .^ in the definition of fun so that it can
be evaluated with a vector argument.

The function quad may be more efficient with low accuracies or
nonsmooth integrands.

The list below contains information to help you determine which
quadrature function in MATLAB to use:

• The quad function may be most efficient for low accuracies with
nonsmooth integrands.

2-3167



quadl

• The quadl function may be more efficient than quad at higher
accuracies with smooth integrands.

• The quadgk function may be most efficient for high accuracies and
oscillatory integrands. It supports infinite intervals and can handle
moderate singularities at the endpoints. It also supports contour
integration along piecewise linear paths.

• The quadv function vectorizes quad for an array-valued fun.

• If the interval is infinite, [a,Inf), then for the integral of fun(x)
to exist, fun(x) must decay as x approaches infinity, and quadgk
requires it to decay rapidly. Special methods should be used for
oscillatory functions on infinite intervals, but quadgk can be used if
fun(x) decays fast enough.

• The quadgk function will integrate functions that are singular at
finite endpoints if the singularities are not too strong. For example,
it will integrate functions that behave at an endpoint c like log|x-c|
or |x-c|p for p >= -1/2. If the function is singular at points inside
(a,b), write the integral as a sum of integrals over subintervals
with the singular points as endpoints, compute them with quadgk,
and add the results.

Examples Pass M-file function handle @myfun to quadl:

Q = quadl(@myfun,0,2);

where the M-file myfun.m is

function y = myfun(x)
y = 1./(x.^3-2*x-5);

Pass anonymous function handle F to quadl:

F = @(x) 1./(x.^3-2*x-5);
Q = quadl(F,0,2);

Algorithm quadl implements a high order method using an adaptive Gauss/Lobatto
quadrature rule.

2-3168



quadl

Diagnostics quadl may issue one of the following warnings:

'Minimum step size reached' indicates that the recursive interval
subdivision has produced a subinterval whose length is on the order of
roundoff error in the length of the original interval. A nonintegrable
singularity is possible.

'Maximum function count exceeded' indicates that the integrand
has been evaluated more than 10,000 times. A nonintegrable
singularity is likely.

'Infinite or Not-a-Number function value encountered'
indicates a floating point overflow or division by zero during the
evaluation of the integrand in the interior of the interval.

See Also quad2d, dblquad, quad, quadgk, triplequad, function_handle (@),
“Anonymous Functions”

References [1] Gander, W. and W. Gautschi, “Adaptive Quadrature – Revisited,”
BIT, Vol. 40, 2000, pp. 84-101. This document is also available at
http://www.inf.ethz.ch/personal/gander.

2-3169

http://www.inf.ethz.ch/personal/gander


quadv

Purpose Vectorized quadrature

Syntax Q = quadv(fun,a,b)
Q = quadv(fun,a,b,tol)
Q = quadv(fun,a,b,tol,trace)
[Q,fcnt] = quadv(...)

Description Q = quadv(fun,a,b) approximates the integral of the complex
array-valued function fun from a to b to within an error of 1.e-6 using
recursive adaptive Simpson quadrature. fun is a function handle. See
“Function Handles” in the MATLAB Programming documentation for
more information. The function Y = fun(x) should accept a scalar
argument x and return an array result Y, whose components are the
integrands evaluated at x. Limits a and b must be finite.

“Parameterizing Functions”, in the MATLAB Mathematics
documentation, explains how to provide addition parameters to the
function fun, if necessary.

Q = quadv(fun,a,b,tol) uses the absolute error tolerance tol for all
the integrals instead of the default, which is 1.e-6.

Note The same tolerance is used for all components, so the results
obtained with quadv are usually not the same as those obtained with
quad on the individual components.

Q = quadv(fun,a,b,tol,trace) with non-zero trace shows the values
of [fcnt a b-a Q(1)] during the recursion.

[Q,fcnt] = quadv(...) returns the number of function evaluations.

The list below contains information to help you determine which
quadrature function in MATLAB to use:

• The quad function may be most efficient for low accuracies with
nonsmooth integrands.

2-3170



quadv

• The quadl function may be more efficient than quad at higher
accuracies with smooth integrands.

• The quadgk function may be most efficient for high accuracies and
oscillatory integrands. It supports infinite intervals and can handle
moderate singularities at the endpoints. It also supports contour
integration along piecewise linear paths.

• The quadv function vectorizes quad for an array-valued fun.

• If the interval is infinite, [a,Inf), then for the integral of fun(x)
to exist, fun(x) must decay as x approaches infinity, and quadgk
requires it to decay rapidly. Special methods should be used for
oscillatory functions on infinite intervals, but quadgk can be used if
fun(x) decays fast enough.

• The quadgk function will integrate functions that are singular at
finite endpoints if the singularities are not too strong. For example,
it will integrate functions that behave at an endpoint c like log|x-c|
or |x-c|p for p >= -1/2. If the function is singular at points inside
(a,b), write the integral as a sum of integrals over subintervals
with the singular points as endpoints, compute them with quadgk,
and add the results.

Example For the parameterized array-valued function myarrayfun, defined by

function Y = myarrayfun(x,n)
Y = 1./((1:n)+x);

the following command integrates myarrayfun, for the parameter value
n = 10 between a = 0 and b = 1:

Qv = quadv(@(x)myarrayfun(x,10),0,1);

The resulting array Qv has 10 elements estimating Q(k) =
log((k+1)./(k)), for k = 1:10.

The entries in Qv are slightly different than if you compute the integrals
using quad in a loop:

2-3171



quadv

for k = 1:10
Qs(k) = quadv(@(x)myscalarfun(x,k),0,1);

end

where myscalarfun is:

function y = myscalarfun(x,k)
y = 1./(k+x);

See Also quad, quad2d, quadgk, quadl, dblquad, triplequad, function_handle
(@)

2-3172



questdlg

Purpose Create and open question dialog box

Syntax button = questdlg('qstring')
button = questdlg('qstring','title')
button = questdlg('qstring','title',default)
button = questdlg('qstring','title','str1','str2',default)
button = questdlg('qstring','title','str1','str2','str3',

default)
button = questdlg('qstring','title', ..., options)

Description button = questdlg('qstring') displays a modal dialog box
presenting the question 'qstring'. The dialog has three default
buttons, Yes, No, and Cancel. If the user presses one of these three
buttons, button is set to the name of the button pressed. If the user
presses the close button on the dialog without making a choice, button
is set to the empty string. If the user presses the Return key, button is
set to 'Yes'. 'qstring' is a cell array or a string that automatically
wraps to fit within the dialog box.

Note A modal dialog box prevents the user from interacting with other
windows before responding. For more information, see WindowStyle in
the MATLAB Figure Properties.

button = questdlg('qstring','title') displays a question dialog
with 'title' displayed in the dialog’s title bar.

button = questdlg('qstring','title',default) specifies which
push button is the default in the event that the Return key is pressed.
'default' must be 'Yes', 'No', or 'Cancel'.

button = questdlg('qstring','title','str1','str2',default)
creates a question dialog box with two push buttons labeled 'str1'
and 'str2'. default specifies the default button selection and must
be 'str1' or 'str2'.

2-3173



questdlg

button =
questdlg('qstring','title','str1','str2','str3',default)
creates a question dialog box with three push buttons labeled 'str1',
'str2', and 'str3'. default specifies the default button selection and
must be 'str1', 'str2', or 'str3'.

When default is specified, but is not set to one of the button names,
pressing the Enter key displays a warning and the dialog remains open.

button = questdlg('qstring','title', ..., options) replaces
the string default with a structure, options. The structure specifies
which button string is the default answer, and whether to use TeX to
interpret the question string, qstring. Button strings and dialog titles
cannot use TeX interpretation. The options structure must include the
fields Default and Interpreter, both strings. It can include other
fields, but questdlg does not use them. You can set Interpreter to
'none' or 'tex'. If the Default field does not contain a valid button
name, a command window warning is issued and the dialog box does
not respond to pressing the Enter key.

Examples Example 1

Create a dialog that requests a dessert preference and encode the
resulting choice as an integer.

% Construct a questdlg with three options
choice = questdlg('Please choose a dessert:', ...
'Dessert Menu', ...
'Ice cream','Cake','No thank you','No thank you');

% Handle response
switch choice

case 'Ice cream'
disp([choice ' coming right up.'])
dessert = 1;
break

case 'Cake'
disp([choice ' coming right up.'])
dessert = 2;

break

2-3174



questdlg

case 'No thank you'
disp('I''ll bring you your check.')
dessert = 0;

end

The case statements can contain white space but are case-sensitive.

Example 2

Specify an options structure to use the TeX interpreter to format a
question.

options.Interpreter = 'tex';
% Include the desired Default answer
options.Default = 'Don''t know';
% Create a TeX string for the question
qstring = 'Is \Sigma(\alpha - \beta) < 0?';
choice = questdlg(qstring,'Boundary Condition',...

'Yes','No','Don''t know',options)

2-3175



questdlg

See Also dialog, errordlg, helpdlg, inputdlg, listdlg, msgbox, warndlg

figure, textwrap, uiwait, uiresume

Predefined Dialog Boxes for related functions

2-3176



quit

Purpose Terminate MATLAB program

GUI
Alternatives

As an alternative to the quit function, use the Close box or select File
> Exit MATLAB in the MATLAB desktop.

Syntax quit
quit cancel
quit force

Description quit displays a confirmation dialog box if the confirm upon quitting
preference is selected, and if confirmed or if the confirmation preference
is not selected, terminates MATLAB after running finish.m, if
finish.m exists. The workspace is not automatically saved by quit. To
save the workspace or perform other actions when quitting, create a
finish.m file to perform those actions. For example, you can display a
custom dialog box to confirm quitting using a finish.m file—see the
following examples for details. If an error occurs while finish.m is
running, quit is canceled so that you can correct your finish.m file
without losing your workspace.

quit cancel is for use in finish.m and cancels quitting. It has no effect
anywhere else.

quit force bypasses finish.m and terminates MATLAB. Use this to
override finish.m, for example, if an errant finish.m will not let you
quit.

Remarks When using Handle Graphics objects in finish.m, use uiwait, waitfor,
or drawnow so that figures are visible. See the reference pages for these
functions for more information.

If you want MATLAB to display the following
confirmation dialog box after running quit, select
File > Preferences > General > Confirmation Dialogs. Then select
the check box for Confirm before exiting MATLAB, and click OK.

2-3177



quit

Examples Two sample finish.m files are included with MATLAB. Use them
to help you create your own finish.m, or rename one of the files to
finish.m to use it.

• finishsav.m—Saves the workspace to a MAT-file when MATLAB
quits.

• finishdlg.m—Displays a dialog allowing you to cancel quitting; it
uses quit cancel and contains the following code:

button = questdlg('Ready to quit?', ...
'Exit Dialog','Yes','No','No');

switch button
case 'Yes',

disp('Exiting MATLAB');
%Save variables to matlab.mat
save

case 'No',
quit cancel;

end

See Also exit, finish, save, startup

2-3178



Quit (COM)

Purpose Terminate MATLAB Automation server

Syntax MATLAB Client
h.Quit
Quit(h)
invoke(h, 'Quit')

IDL Method Signature
void Quit(void)

Microsoft Visual Basic Client
Quit

Description Quit terminates the MATLAB server session attached to handle h.

Remarks Server function names, like Quit, are case sensitive when using the
first syntax shown.

There is no difference in the operation of the three syntaxes shown
above for the MATLAB client.

2-3179



quiver

Purpose Quiver or velocity plot

GUI
Alternatives

To graph selected variables, use the Plot Selector in the
Workspace Browser, or use the Figure Palette Plot Catalog. Manipulate
graphs in plot edit mode with the Property Editor. For details, see
Plotting Tools — Interactive Plotting in the MATLAB Graphics
documentation and Creating Graphics from the Workspace Browser in
the MATLAB Desktop Tools documentation.

Syntax quiver(x,y,u,v)
quiver(u,v)
quiver(...,scale)
quiver(...,LineSpec)
quiver(...,LineSpec,'filled')
quiver(axes_handle,...)
h = quiver(...)

Description A quiver plot displays velocity vectors as arrows with components (u,v)
at the points (x,y).

For example, the first vector is defined by components u(1),v(1) and is
displayed at the point x(1),y(1).

quiver(x,y,u,v) plots vectors as arrows at the coordinates specified in
each corresponding pair of elements in x and y. The matrices x, y, u,
and v must all be the same size and contain corresponding position and
velocity components. However, x and y can also be vectors, as explained
in the next section. By default, the arrows are scaled to just not overlap,
but you can scale them to be longer or shorter if you want.

Expanding x- and y-Coordinates

MATLAB expands x and y if they are not matrices. This expansion is
equivalent to calling meshgrid to generate matrices from vectors:

2-3180



quiver

[x,y] = meshgrid(x,y);
quiver(x,y,u,v)

In this case, the following must be true:

length(x) = n and length(y) = m, where [m,n] = size(u) = size(v).

The vector x corresponds to the columns of u and v, and vector y
corresponds to the rows of u and v.

quiver(u,v) draws vectors specified by u and v at equally spaced
points in the x-y plane.

quiver(...,scale) automatically scales the arrows to fit within the
grid and then stretches them by the factor scale. scale = 2 doubles
their relative length, and scale = 0.5 halves the length. Use scale = 0
to plot the velocity vectors without automatic scaling. You can also tune
the length of arrows after they have been drawn by choosing the Plot

Edit tool, selecting the quivergroup object, opening the Property
Editor, and adjusting the Length slider.

quiver(...,LineSpec) specifies line style, marker symbol, and color
using any valid LineSpec. quiver draws the markers at the origin
of the vectors.

quiver(...,LineSpec,'filled') fills markers specified by LineSpec.

quiver(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

h = quiver(...) returns the handle to the quivergroup object.

Examples Showing the Gradient with Quiver Plots

Plot the gradient field of the function :

[X,Y] = meshgrid(-2:.2:2);
Z = X.*exp(-X.^2 - Y.^2);
[DX,DY] = gradient(Z,.2,.2);
contour(X,Y,Z)
hold on

2-3181



quiver

quiver(X,Y,DX,DY)
colormap hsv
hold off

See Also contour, LineSpec, plot, quiver3

“Direction and Velocity Plots” on page 1-99 for related functions

Two-Dimensional Quiver Plots for more examples

Quivergroup Properties for property descriptions

2-3182



quiver3

Purpose 3-D quiver or velocity plot

GUI
Alternatives

To graph selected variables, use the Plot Selector in the
Workspace Browser, or use the Figure Palette Plot Catalog. Manipulate
graphs in plot edit mode with the Property Editor. For details, see
Plotting Tools — Interactive Plotting in the MATLAB Graphics
documentation and Creating Graphics from the Workspace Browser in
the MATLAB Desktop Tools documentation.

Syntax quiver3(x,y,z,u,v,w)
quiver3(z,u,v,w)
quiver3(...,scale)
quiver3(...,LineSpec)
quiver3(...,LineSpec,'filled')
quiver3(axes_handle,...)
h = quiver3(...)

Description A three-dimensional quiver plot displays vectors with components
(u,v,w) at the points (x,y,z), where u,v,w,x,y, and z all have real
(non-complex) values.

quiver3(x,y,z,u,v,w) plots vectors with components (u,v,w) at the
points (x,y,z). The matrices x,y,z,u,v,w must all be the same size and
contain the corresponding position and vector components.

quiver3(z,u,v,w) plots the vectors at the equally spaced surface
points specified by matrix z. quiver3 automatically scales the vectors
based on the distance between them to prevent them from overlapping.

quiver3(...,scale) automatically scales the vectors to prevent them
from overlapping, and then multiplies them by scale. scale = 2 doubles
their relative length, and scale = 0.5 halves them. Use scale = 0 to
plot the vectors without the automatic scaling.

2-3183



quiver3

quiver3(...,LineSpec) specifies line type and color using any valid
LineSpec.

quiver3(...,LineSpec,'filled') fills markers specified by LineSpec.

quiver3(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

h = quiver3(...) returns a vector of line handles.

Examples Plot the surface normals of the function .

[X,Y] = meshgrid(-2:0.25:2,-1:0.2:1);
Z = X.* exp(-X.^2 - Y.^2);
[U,V,W] = surfnorm(X,Y,Z);
quiver3(X,Y,Z,U,V,W,0.5);
hold on
surf(X,Y,Z);
colormap hsv
view(-35,45)
axis ([-2 2 -1 1 -.6 .6])
hold off

2-3184



quiver3

See Also axis, contour, LineSpec, plot, plot3, quiver, surfnorm, view

“Direction and Velocity Plots” on page 1-99 for related functions

Three-Dimensional Quiver Plots for more examples

2-3185



Quivergroup Properties

Purpose Define quivergroup properties

Modifying
Properties

You can set and query graphics object properties using the set and get
commands or the Property Editor (propertyeditor).

Note that you cannot define default properties for areaseries objects.

See Plot Objects for more information on quivergroup objects.

Quivergroup
Property
Descriptions

This section provides a description of properties. Curly braces { } enclose
default values.

Annotation
hg.Annotation object Read Only

Control the display of quivergroup objects in legends. The
Annotation property enables you to specify whether this
quivergroup object is represented in a figure legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Once you have obtained the hg.LegendEntry object, you can
set its IconDisplayStyle property to control whether the
quivergroup object is displayed in a figure legend:

IconDisplayStyle
Value

Purpose

on Include the quivergroup object in a legend as
one entry, but not its children objects

off Do not include the quivergroup or its
children in a legend (default)

children Include only the children of the quivergroup
as separate entries in the legend

2-3186



Quivergroup Properties

Setting the IconDisplayStyle Property

These commands set the IconDisplayStyle of a graphics object
with handle hobj to children, which causes each child object
to have an entry in the legend:

hAnnotation = get(hobj,'Annotation');
hLegendEntry = get(hAnnotation,'LegendInformation');
set(hLegendEntry,'IconDisplayStyle','children')

Using the IconDisplayStyle Property

See “Controlling Legends” for more information and examples.

AutoScale
{on} | off

Autoscale arrow length. Based on average spacing in the
x and y directions, AutoScale scales the arrow length to
fit within the grid-defined coordinate data and keeps the
arrows from overlapping. After autoscaling, quiver applies the
AutoScaleFactor to the arrow length.

AutoScaleFactor
scalar (default = 0.9)

User-specified scale factor. When AutoScale is on, the quiver
function applies this user-specified autoscale factor to the arrow
length. A value of 2 doubles the length of the arrows; 0.5 halves
the length.

BeingDeleted
on | {off} Read Only

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in
the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called

2-3187



Quivergroup Properties

(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions
that act on a number of different objects. These functions might
not need to perform actions on objects if the objects are going to
be deleted, and therefore, can check the object’s BeingDeleted
property before acting.

BusyAction
cancel | {queue}

Callback routine interruption. The BusyAction property enables
you to control how MATLAB handles events that potentially
interrupt executing callbacks. If there is a callback function
executing, callbacks invoked subsequently always attempt to
interrupt it.

If the Interruptible property of the object whose callback is
executing is set to on (the default), then interruption occurs
at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the
object owning the executing callback) determines how MATLAB
handles the event. The choices are

• cancel— Discard the event that attempted to execute a second
callback routine.

• queue — Queue the event that attempted to execute a second
callback routine until the current callback finishes.

ButtonDownFcn
string or function handle

Button press callback function. A callback that executes whenever
you press a mouse button while the pointer is over this object, but
not over another graphics object. See the HitTestArea property
for information about selecting objects of this type.

2-3188



Quivergroup Properties

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

This property can be

• A string that is a valid MATLAB expression

• The name of a MATLAB file

• A function handle

Set this property to a function handle that references the callback.
The expressions execute in the MATLAB workspace.

See “Function Handle Callbacks” for information on how to use
function handles to define the callbacks.

Children
array of graphics object handles

Children of the quivergroup object. An array containing the
handles of all line objects parented to this object (whether visible
or not).

If a child object’s HandleVisibility property is callback or off,
its handle does not show up in this object’s Children property.
If you want the handle in the Children property, set the root
ShowHiddenHandles property to on. For example:

set(0,'ShowHiddenHandles','on')

Clipping
{on} | off

Clipping mode. MATLAB clips graphs to the axes plot box by
default. If you set Clipping to off, portions of graphs can be
displayed outside the axes plot box. This can occur if you create a
plot object, set hold to on, freeze axis scaling (axis manual), and
then create a larger plot object.

2-3189



Quivergroup Properties

Color
ColorSpec

Color of the object. A three-element RGB vector or one of the
MATLAB predefined names, specifying the object’s color.

See the ColorSpec reference page for more information on
specifying color.

CreateFcn
string or function handle

Callback routine executed during object creation. This property
defines a callback that executes when MATLAB creates an object.
You must specify the callback during the creation of the object.
For example,

graphicfcn(y,'CreateFcn',@CallbackFcn)

where @CallbackFcn is a function handle that references the
callback function and graphicfcn is the plotting function which
creates this object.

MATLAB executes this routine after setting all other object
properties. Setting this property on an existing object has no
effect.

The handle of the object whose CreateFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

DeleteFcn
string or function handle

2-3190



Quivergroup Properties

Callback executed during object deletion. A callback that executes
when this object is deleted (e.g., this might happen when you issue
a delete command on the object, its parent axes, or the figure
containing it). MATLAB executes the callback before destroying
the object’s properties so the callback routine can query these
values.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
can be queried using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

See the BeingDeleted property for related information.

DisplayName
string (default is empty string)

String used by legend for this quivergroup object. The legend
function uses the string defined by the DisplayName property to
label this quivergroup object in the legend.

• If you specify string arguments with the legend function,
DisplayName is set to this quivergroup object’s corresponding
string and that string is used for the legend.

• If DisplayName is empty, legend creates a string of the form,
['data' n], where n is the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

• If you edit the string directly in an existing legend, DisplayName
is set to the edited string.

• If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

2-3191



Quivergroup Properties

• To add programmatically a legend that uses the DisplayName
string, call legend with the toggle or show option.

See “Controlling Legends” for more examples.

EraseMode
{normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses
to draw and erase objects and their children. Alternative erase
modes are useful for creating animated sequences, where control
of the way individual objects are redrawn is necessary to improve
performance and obtain the desired effect.

• normal— Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all
objects are rendered correctly. This mode produces the most
accurate picture, but is the slowest. The other modes are faster,
but do not perform a complete redraw and are therefore less
accurate.

• none— Do not erase objects when they are moved or destroyed.
While the objects are still visible on the screen after erasing
with EraseMode none, you cannot print these objects because
MATLAB stores no information about their former locations.

• xor — Draw and erase the object by performing an exclusive
OR (XOR) with each pixel index of the screen behind it. Erasing
the object does not damage the color of the objects behind it.
However, the color of the erased object depends on the color of
the screen behind it and it is correctly colored only when it is
over the axes background color (or the figure background color
if the axes Color property is set to none). That is, it isn’t erased
correctly if there are objects behind it.

• background — Erase the graphics objects by redrawing them
in the axes background color, (or the figure background color
if the axes Color property is set to none). This damages other

2-3192



Quivergroup Properties

graphics objects that are behind the erased object, but the
erased object is always properly colored.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB can mathematically combine
layers of colors (e.g., performing an XOR on a pixel color with that
of the pixel behind it) and ignore three-dimensional sorting to
obtain greater rendering speed. However, these techniques are
not applied to the printed output.

Set the axes background color with the axes Color property. Set
the figure background color with the figure Color property.

You can use the MATLAB getframe command or other screen
capture applications to create an image of a figure containing
nonnormal mode objects.

HandleVisibility
{on} | callback | off

Control access to object’s handle by command-line users and GUIs.
This property determines when an object’s handle is visible in
its parent’s list of children. HandleVisibility is useful for
preventing command-line users from accidentally accessing
objects that you need to protect for some reason.

• on—Handles are always visible when HandleVisibility is on.

• callback — Setting HandleVisibility to callback causes
handles to be visible from within callback routines or functions
invoked by callback routines, but not from within functions
invoked from the command line. This provides a means to
protect GUIs from command-line users, while allowing callback
routines to have access to object handles.

2-3193



Quivergroup Properties

• off — Setting HandleVisibility to off makes handles
invisible at all times. This might be necessary when a callback
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string) and so temporarily
hides its own handles during the execution of that function.

Functions Affected by Handle Visibility

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

Properties Affected by Handle Visibility

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

Overriding Handle Visibility

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties). See also findall.

Handle Validity

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties and pass it to any
function that operates on handles.

2-3194



Quivergroup Properties

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

HitTest
{on} | off

Selectable by mouse click. HitTest determines whether this object
can become the current object (as returned by the gco command
and the figure CurrentObject property) as a result of a mouse
click on the objects that compose the area graph. If HitTest
is off, clicking this object selects the object below it (which is
usually the axes containing it).

HitTestArea
on | {off}

Select the object by clicking lines or area of extent. This property
enables you to select plot objects in two ways:

• Select by clicking lines or markers (default).

• Select by clicking anywhere in the extent of the plot.

When HitTestArea is off, you must click the object’s lines or
markers (excluding the baseline, if any) to select the object. When
HitTestArea is on, you can select this object by clicking anywhere
within the extent of the plot (i.e., anywhere within a rectangle
that encloses it).

Interruptible
{on} | off

Callback routine interruption mode. The Interruptible property
controls whether an object’s callback can be interrupted by
callbacks invoked subsequently.

2-3195



Quivergroup Properties

Only callbacks defined for the ButtonDownFcn property are
affected by the Interruptible property. MATLAB checks for
events that can interrupt a callback only when it encounters a
drawnow, figure, getframe, or pause command in the routine.
See the BusyAction property for related information.

Setting Interruptible to on allows any graphics object’s callback
to interrupt callback routines originating from a bar property.
Note that MATLAB does not save the state of variables or the
display (e.g., the handle returned by the gca or gcf command)
when an interruption occurs.

LineStyle
{-} | -- | : | -. | none

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

Specifier
String Line Style

- Solid line (default)

-- Dashed line

: Dotted line

-. Dash-dot line

none No line

You can use LineStyle none when you want to place a marker
at each point but do not want the points connected with a line
(see the Marker property).

LineWidth
scalar

2-3196



Quivergroup Properties

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = 1/72 inch). The default LineWidth is 0.5
points.

Marker
character (see table)

Marker symbol. The Marker property specifies the type of markers
that are displayed at plot vertices. You can set values for the
Marker property independently from the LineStyle property.
Supported markers include those shown in the following table.

Marker Specifier Description

+ Plus sign

o Circle

* Asterisk

. Point

x Cross

s Square

d Diamond

^ Upward-pointing triangle

v Downward-pointing triangle

> Right-pointing triangle

< Left-pointing triangle

p Five-pointed star (pentagram)

h Six-pointed star (hexagram)

none No marker (default)

MarkerEdgeColor
ColorSpec | none | {auto}

2-3197



Quivergroup Properties

Marker edge color. The color of the marker or the edge color for
filled markers (circle, square, diamond, pentagram, hexagram,
and the four triangles). ColorSpec defines the color to use. none
specifies no color, which makes nonfilled markers invisible. auto
sets MarkerEdgeColor to the same color as the Color property.

MarkerFaceColor
ColorSpec | {none} | auto

Marker face color. The fill color for markers that are closed shapes
(circle, square, diamond, pentagram, hexagram, and the four
triangles). ColorSpec defines the color to use. none makes the
interior of the marker transparent, allowing the background to
show through. auto sets the fill color to the axes color, or to the
figure color if the axes Color property is set to none (which is the
factory default for axes objects).

MarkerSize
size in points

Marker size. A scalar specifying the size of the marker in points.
The default value for MarkerSize is 6 points (1 point = 1/72 inch).
Note that MATLAB draws the point marker (specified by the '.'
symbol) at one-third the specified size.

MaxHeadSize
scalar (default = 0.2

Maximum size of arrowhead. A value determining the maximum
size of the arrowhead relative to the length of the arrow.

Parent
handle of parent axes, hggroup, or hgtransform

Parent of this object. This property contains the handle of the
object’s parent. The parent is normally the axes, hggroup, or
hgtransform object that contains the object.

2-3198



Quivergroup Properties

See “Objects That Can Contain Other Objects” for more
information on parenting graphics objects.

Selected
on | {off}

Is object selected? When you set this property to on, MATLAB
displays selection "handles" at the corners and midpoints if the
SelectionHighlight property is also on (the default). You
can, for example, define the ButtonDownFcn callback to set this
property to on, thereby indicating that this particular object
is selected. This property is also set to on when an object is
manually selected in plot edit mode.

SelectionHighlight
{on} | off

Objects are highlighted when selected. When the Selected
property is on, MATLAB indicates the selected state by
drawing four edge handles and four corner handles. When
SelectionHighlight is off, MATLAB does not draw the handles
except when in plot edit mode and objects are selected manually.

ShowArrowHead
{on} | off

Display arrowheads on vectors. When this property is on,
MATLAB draws arrowheads on the vectors displayed by quiver.
When you set this property to off, quiver draws the vectors as
lines without arrowheads.

Tag
string

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This is
particularly useful when you are constructing interactive graphics
programs that would otherwise need to define object handles as

2-3199



Quivergroup Properties

global variables or pass them as arguments between callbacks.
You can define Tag as any string.

For example, you might create an areaseries object and set the
Tag property.

t = area(Y,'Tag','area1')

When you want to access objects of a given type, you can use
findobj to find the object’s handle. The following statement
changes the FaceColor property of the object whose Tag is area1.

set(findobj('Tag','area1'),'FaceColor','red')

Type
string (read only)

Type of graphics object. This property contains a string that
identifies the class of the graphics object. For stem objects, Type
is 'hggroup'. This statement finds all the hggroup objects in
the current axes.

t = findobj(gca,'Type','hggroup');

UIContextMenu
handle of a uicontextmenu object

Associate a context menu with this object. Assign this property
the handle of a uicontextmenu object created in the object’s
parent figure. Use the uicontextmenu function to create the
context menu. MATLAB displays the context menu whenever
you right-click over the object.

UserData
array

User-specified data. This property can be any data you want to
associate with this object (including cell arrays and structures).

2-3200



Quivergroup Properties

The object does not set values for this property, but you can access
it using the set and get functions.

Visible
{on} | off

Visibility of this object and its children. By default, a new object’s
visibility is on. This means all children of the object are visible
unless the child object’s Visible property is set to off. Setting an
object’s Visible property to off prevents the object from being
displayed. However, the object still exists and you can set and
query its properties.

UData
matrix

One dimension of 2-D or 3-D vector components. UData, VData, and
WData, together specify the components of the vectors displayed
as arrows in the quiver graph. For example, the first vector is
defined by components UData(1),VData(1),WData(1).

UDataSource
string (MATLAB variable)

Link UData to MATLAB variable. Set this property to a MATLAB
variable that, by default, is evaluated in the base workspace to
generate the UData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change UData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

2-3201



Quivergroup Properties

Note If you change one data source property to return data of a
different dimension, you might cause the function to generate a
warning and not render the graph until you have changed all data
source properties to appropriate values.

VData
matrix

One dimension of 2-D or 3-D vector components. UData, VData and
WData (for 3-D) together specify the components of the vectors
displayed as arrows in the quiver graph. For example, the first
vector is defined by components UData(1),VData(1),WData(1).

VDataSource
string (MATLAB variable)

Link VData to MATLAB variable. Set this property to a MATLAB
variable that, by default, is evaluated in the base workspace to
generate the VData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change VData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

2-3202



Quivergroup Properties

Note If you change one data source property to return data of a
different dimension, you might cause the function to generate a
warning and not render the graph until you have changed all data
source properties to appropriate values.

WData
matrix

One dimension of 2-D or 3-D vector components. UData, VData and
WData (for 3-D) together specify the components of the vectors
displayed as arrows in the quiver graph. For example, the first
vector is defined by components UData(1),VData(1),WData(1).

WDataSource
string (MATLAB variable)

Link WData to MATLAB variable. Set this property to a MATLAB
variable that, by default, is evaluated in the base workspace to
generate the WData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change WData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

2-3203



Quivergroup Properties

Note If you change one data source property to return data of a
different dimension, you might cause the function to generate a
warning and not render the graph until you have changed all data
source properties to appropriate values.

XData
vector or matrix

X-axis coordinates of arrows. The quiver function draws an
individual arrow at each x-axis location in the XData array.XData
can be either a matrix equal in size to all other data properties
or for 2-D, a vector equal in length to the number of columns in
UData or VData. That is, length(XData) == size(UData,2).

If you do not specify XData (i.e., the input argument X), the quiver
function uses the indices of UData to create the quiver graph. See
the XDataMode property for related information.

XDataMode
{auto} | manual

Use automatic or user-specified x-axis values. If you specify XData
(by setting the XData property or specifying the input argument
X), the quiver function sets this property to manual.

If you set XDataMode to auto after having specified XData, the
quiver function resets the x tick-mark labels to the indices of the
U, V, and W data, overwriting any previous values.

XDataSource
string (MATLAB variable)

Link XData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
XData.

2-3204



Quivergroup Properties

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change XData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

YData
vector or matrix

Y-axis coordinates of arrows. The quiver function draws an
individual arrow at each y-axis location in the YData array. YData
can be either a matrix equal in size to all other data properties or
for 2-D, a vector equal in length to the number of rows in UData or
VData. That is, length(YData) == size(UData,1).

If you do not specify YData (i.e., the input argument Y), the quiver
function uses the indices of VData to create the quiver graph. See
the YDataMode property for related information.

The input argument y in the quiver function calling syntax
assigns values to YData.

YDataMode
{auto} | manual

2-3205



Quivergroup Properties

Use automatic or user-specified y-axis values. If you specify YData
(by setting the YData property or specifying the input argument
Y), MATLAB sets this property to manual.

If you set YDataMode to auto after having specified YData,
MATLAB resets the y tick-mark labels to the indices of the U, V,
and W data, overwriting any previous values.

YDataSource
string (MATLAB variable)

Link YData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
YData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change YData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

ZData
vector or matrix

2-3206



Quivergroup Properties

Z-axis coordinates of arrows. The quiver function draws an
individual arrow at each z-axis location in the ZData array. ZData
must be a matrix equal in size to XData and YData.

The input argument z in the quiver3 function calling syntax
assigns values to ZData.

2-3207



qz

Purpose QZ factorization for generalized eigenvalues

Syntax [AA,BB,Q,Z] = qz(A,B)
[AA,BB,Q,Z,V,W] = qz(A,B)
qz(A,B,flag)

Description The qz function gives access to intermediate results in the computation
of generalized eigenvalues.

[AA,BB,Q,Z] = qz(A,B) for square matrices A and B, produces upper
quasitriangular matrices AA and BB, and unitary matrices Q and Z such
that Q*A*Z = AA, and Q*B*Z = BB. For complex matrices, AA and BB
are triangular.

[AA,BB,Q,Z,V,W] = qz(A,B) also produces matrices V and W whose
columns are generalized eigenvectors.

qz(A,B,flag) for real matrices A and B, produces one of two
decompositions depending on the value of flag:

'complex' Produces a possibly complex decomposition
with a triangular AA. For compatibility with
earlier versions, 'complex' is the default.

'real' Produces a real decomposition with a
quasitriangular AA, containing 1-by-1 and
2-by-2 blocks on its diagonal.

If AA is triangular, the diagonal elements of AA and BB,  = diag( )AA

and  = diag( )BB , are the generalized eigenvalues that satisfy

A V B V
W A W B

* * * *
* * * *

 
 

=
′ = ′

The eigenvalues produced by

 = eig( , )A B

2-3208



qz

are the ratios of the αs and βs.

  = . /

If AA is not triangular, it is necessary to further reduce the 2-by-2 blocks
to obtain the eigenvalues of the full system.

See Also eig

2-3209



rand

Purpose Uniformly distributed pseudorandom numbers

Syntax r = rand(n)
rand(m,n)
rand([m,n])
rand(m,n,p,...)
rand([m,n,p,...])
rand
rand(size(A))
r = rand(..., 'double')
r = rand(..., 'single')

Description r = rand(n) returns an n-by-n matrix containing pseudorandom values
drawn from the standard uniform distribution on the open interval (0,1).
rand(m,n) or rand([m,n]) returns an m-by-n matrix. rand(m,n,p,...)
or rand([m,n,p,...]) returns an m-by-n-by-p-by-... array. rand
returns a scalar. rand(size(A)) returns an array the same size as A.

r = rand(..., 'double') or r = rand(..., 'single') returns an
array of uniform values of the specified class.

Note Note: The size inputs m, n, p, ... should be nonnegative integers.
Negative integers are treated as 0.

The sequence of numbers produced by rand is determined by the
internal state of the uniform pseudorandom number generator that
underlies rand, randi, and randn. The default random number stream
properties can be set using @RandStream methods. See @RandStream for
details about controlling the default stream.

Resetting the default stream to the same fixed state allows computations
to be repeated. Setting the stream to different states leads to unique
computations, however, it does not improve any statistical properties.
Since the random number generator is initialized to the same state
every time MATLAB software starts up, rand, randn, and randi will

2-3210



rand

generate the same sequence of numbers in each session until the state
is changed.

Note In versions of MATLAB prior to 7.7, you controlled the internal
state of the random number stream used by rand by calling rand
directly with the 'seed', 'state', or 'twister' keywords. That syntax
is still supported for backwards compatibility, but is deprecated. For
version 7.7, use the default stream as described in the @RandStream
reference documentation.

Examples Generate values from the uniform distribution on the interval [a, b].

r = a + (b-a).*rand(100,1);

Replace the default stream at MATLAB startup, using a stream whose
seed is based on clock, so that rand will return different values in
different MATLAB sessions. It is usually not desirable to do this more
than once per MATLAB session.

RandStream.setDefaultStream ...
(RandStream('mt19937ar','seed',sum(100*clock)));

rand(1,5)

Save the current state of the default stream, generate 5 values, restore
the state, and repeat the sequence.

defaultStream = RandStream.getDefaultStream;
savedState = defaultStream.State;
u1 = rand(1,5)
defaultStream.State = savedState;
u2 = rand(1,5) % contains exactly the same values as u1

See Also randi, randn, @RandStream, rand (RandStream), getDefaultStream
(RandStream), sprand, sprandn, randperm

2-3211



rand (RandStream)

Purpose Uniformly distributed random numbers

Class @RandStream

Syntax r = rand(s,n)
rand(s,m,n)
rand(s,[m,n])
rand(s,m,n,p,...)
rand(s,[m,n,p,...])
rand(s)
rand(s,size(A))
r = rand(..., 'double')
r = rand(..., 'single')

Description r = rand(s,n) returns an n-by-n matrix containing pseudorandom
values drawn from the standard uniform distribution on the
open interval (0,1). The values are drawn from the random
stream s. rand(s,m,n) or rand(s,[m,n]) returns an m-by-n
matrix. rand(s,m,n,p,...) or rand(s,[m,n,p,...]) returns an
m-by-n-by-p-by-... array. rand(s) returns a scalar. rand(s,size(A))
returns an array the same size as A.

r = rand(..., 'double') or r = rand(..., 'single') returns an
array of uniform values of the specified class.

Note The size inputs m, n, p, ... should be nonnegative integers.
Negative integers are treated as 0.

The sequence of numbers produced by rand is determined by the
internal state of the random number stream s. Resetting that stream
to the same fixed state allows computations to be repeated. Setting
the stream to different states leads to unique computations, however,
it does not improve any statistical properties.

2-3212



rand (RandStream)

See Also rand, @RandStream, randi (RandStream), randn (RandStream),
randperm (RandStream)

2-3213



randi

Purpose Uniformly distributed pseudorandom integers

Syntax randi(imax)
r = randi(imax,n)
randi(imax,m,n)
randi(imax,[m,n])
randi(imax,m,n,p,...)
randi(imax,[m,n,p,...])
randi(imax,size(A))
r = randi([imin,imax],...)
r = randi(..., classname)

Description randi(imax) returns a random integer on the interval1:imax. r =
randi(imax,n) returns an n-by-n matrix containing pseudorandom
integer values drawn from the discrete uniform distribution on 1:imax.
randi(imax,m,n) or randi(imax,[m,n]) returns an m-by-n matrix.
randi(imax,m,n,p,...) or randi(imax,[m,n,p,...]) returns an
m-by-n-by-p-by-... array. randi(imax,size(A)) returns an array the
same size as A.

r = randi([imin,imax],...) returns an array containing integer
values drawn from the discrete uniform distribution on imin:imax.

r = randi(..., classname) returns an array of integer values of
class classname. classname does not support 64-bit integers.

Note Note: The size inputs m, n, p, ... should be nonnegative integers.
Negative integers are treated as 0.

The sequence of numbers produced by randi is determined by the
internal state of the uniform pseudorandom number generator that
underlies rand, randi, and randn. randi uses one uniform value from
that default stream to generate each integer value. Control the default
stream using its properties and methods. See @RandStream for details
about the default stream.

2-3214



randi

Resetting the default stream to the same fixed state allows computations
to be repeated. Setting the stream to different states leads to unique
computations, however, it does not improve any statistical properties.
Since the random number generator is initialized to the same state
every time MATLAB software starts up, rand, randn, and randi will
generate the same sequence of numbers in each session until the state
is changed.

Examples Generate integer values from the uniform distribution on the set 1:10.

r = randi(10,100,1);

Generate an integer array of integers drawn uniformly from 1:10.

r = randi(10,100,1,'uint32');

Generate integer values drawn uniformly from -10:10.

r = randi([-10 10],100,1);

Replace the default stream at MATLAB startup, using a stream whose
seed is based on clock, so that randi will return different values in
different MATLAB sessions. It is usually not desirable to do this more
than once per MATLAB session.

RandStream.setDefaultStream ...
(RandStream('mt19937ar','seed',sum(100*clock)));

randi(100,1,5)

Save the current state of the default stream, generate 5 integer values,
restore the state, and repeat the sequence.

defaultStream = RandStream.getDefaultStream;
savedState = defaultStream.State;
i1 = randi(10,1,5)
defaultStream.State = savedState;
i2 = randi(10,1,5) %contains exactly the same values as i1

2-3215



randi

See Also rand, randn, @RandStream, randi (RandStream), getDefaultStream
(RandStream)

2-3216



randi (RandStream)

Purpose Uniformly distributed pseudorandom integers

Class @RandStream

Syntax r = randi(s,imax,n)
randi(s,imax,m,n)
randi(s,imax,[m,n])
randi(s,imax,m,n,p,...)
randi(s,imax,[m,n,p,...])
randi(s,imax)
randi(s,imax,size(A))
r = randi(s,[imin,imax],...)
r = randi(..., classname)

Description r = randi(s,imax,n) returns an n-by-n matrix containing
pseudorandom integer values drawn from the discrete uniform
distribution on 1:imax. randi draws those values from the
random stream s. randi(s,imax,m,n) or randi(s,imax,[m,n])
returns an m-by-n matrix. randi(s,imax,m,n,p,...) or
randi(s,imax,[m,n,p,...]) returns an m-by-n-by-p-by-... array.
randi(s,imax) returns a scalar. randi(s,imax,size(A)) returns an
array the same size as A.

r = randi(s,[imin,imax],...) returns an array containing integer
values drawn from the discrete uniform distribution on imin:imax.

r = randi(..., classname) returns an array of integer values of
class classname. classname does not support 64-bit integers.

Note The size inputs m, n, p, ... should be nonnegative integers.
Negative integers are treated as 0.

The sequence of numbers produced by randi is determined by the
internal state of the random stream s. randi uses one uniform value
from s to generate each integer value. Resetting s to the same fixed

2-3217



randi (RandStream)

state allows computations to be repeated. Setting the stream to
different states leads to unique computations, however, it does not
improve any statistical properties.

See Also rand, @RandStream, rand (RandStream), randn (RandStream),
randperm (RandStream)

2-3218



randn

Purpose Normally distributed pseudorandom numbers

Syntax r = randn(n)
randn(m,n)
randn([m,n])
randn(m,n,p,...)
randn([m,n,p,...])
randn(size(A))
r = randn(..., 'double')
r = randn(..., 'single')

Description r = randn(n) returns an n-by-n matrix containing pseudorandom
values drawn from the standard normal distribution. randn(m,n)
or randn([m,n]) returns an m-by-n matrix. randn(m,n,p,...) or
randn([m,n,p,...]) returns an m-by-n-by-p-by-... array. randn
returns a scalar. randn(size(A)) returns an array the same size as A.

r = randn(..., 'double') or r = randn(..., 'single') returns
an array of normal values of the specified class.

Note The size inputs m, n, p, ... should be nonnegative integers.
Negative integers are treated as 0.

The sequence of numbers produced by randn is determined by the
internal state of the uniform pseudorandom number generator that
underlies rand, randi, and randn. randn uses one or more uniform
values from that default stream to generate each normal value. Control
the default stream using its properties and methods. See @RandStream
for details about the default stream.

Resetting the default stream to the same fixed state allows computations
to be repeated. Setting the stream to different states leads to unique
computations, however, it does not improve any statistical properties.
Since the random number generator is initialized to the same state
every time MATLAB software starts up, rand, randn, and randi will

2-3219



randn

generate the same sequence of numbers in each session until the state
is changed.

Note In versions of MATLAB prior to 7.7, you controlled the internal
state of the random number stream used by randn by calling randn
directly with the 'seed' or 'state' keywords. That syntax is still
supported for backwards compatibility, but is deprecated. For version
7.7, use the default stream as described in the @RandStream reference
documentation.

Examples Generate values from a normal distribution with mean 1 and standard
deviation 2.

r = 1 + 2.*randn(100,1);

Generate values from a bivariate normal distribution with specified
mean vector and covariance matrix.

mu = [1 2];
Sigma = [1 .5; .5 2]; R = chol(Sigma);
z = repmat(mu,100,1) + randn(100,2)*R;

Replace the default stream at MATLAB startup, using a stream whose
seed is based on clock, so that randn will return different values in
different MATLAB sessions. It is usually not desirable to do this more
than once per MATLAB session.

RandStream.setDefaultStream ...
(RandStream('mt19937ar','seed',sum(100*clock)));

randn(1,5)

Save the current state of the default stream, generate 5 values, restore
the state, and repeat the sequence.

defaultStream = RandStream.getDefaultStream;
savedState = defaultStream.State;

2-3220



randn

z1 = randn(1,5)
defaultStream.State = savedState;
z2 = randn(1,5) % contains exactly the same values as z1

See Also rand, randi, @RandStream, randn (RandStream), getDefaultStream
(RandStream)

2-3221



randn (RandStream)

Purpose Normally distributed pseudorandom numbers

Class @RandStream

Syntax randn(s,m,n)
randn(s,[m,n])
randn(s,m,n,p,...)
randn(s,[m,n,p,...])
randn(s)
randn(s,size(A))
r = randn(..., 'double')
r = randn(..., 'single')

Description r = randn(s,n) returns an n-by-n matrix containing pseudorandom
values drawn from the standard normal distribution. randn
draws those values from the random stream s. randn(s,m,n) or
randn(s,[m,n]) returns an m-by-n matrix. randn(s,m,n,p,...) or
randn(s,[m,n,p,...]) returns an m-by-n-by-p-by-... array. randn(s)
returns a scalar. randn(s,size(A)) returns an array the same size
as A.

r = randn(..., 'double') or r = randn(..., 'single') returns
an array of uniform values of the specified class.

Note The size inputs m, n, p, ... should be nonnegative integers.
Negative integers are treated as 0.

The sequence of numbers produced by randn is determined by the
internal state of the random stream s. randn uses one or more uniform
values from s to generate each normal value. Resetting that stream to
the same fixed state allows computations to be repeated. Setting the
stream to different states leads to unique computations, however, it
does not improve any statistical properties.

See Also randn, @RandStream, rand (RandStream), randi (RandStream)

2-3222



randperm

Purpose Random permutation

Syntax p = randperm(n)

Description p = randperm(n) returns a random permutation of the integers 1:n.

Remarks The randperm function calls rand and therefore changes the state of the
default random number stream.

Examples randperm(6) might be the vector

[3 2 6 4 1 5]

or it might be some other permutation of 1:6.

See Also permute

2-3223



randperm (RandStream)

Purpose Random permutation

Class @RandStream

Syntax randperm(s,n)

Description randperm(s,n) generates a random permutation of the integers
from 1 to n. For example, randperm(s,6) might be [2 4 5 6 1 3].
randperm(s,n) uses random values drawn from the random number
stream s.

See Also permute, @RandStream

2-3224



RandStream

Purpose Random number stream

Constructor RandStream (RandStream)

Description Pseudorandom numbers in MATLAB come from one or more random
number streams. The simplest way to generate arrays of random
numbers is to use rand, randn, or randi. These functions all rely on the
same stream of uniform random numbers, known as the default stream.
You can create other stream objects that act separately from the
default stream, and you can use their rand, randi, or randn methods
to generate arrays of random numbers. You can also create a random
number stream and make it the default stream.

To create a single random number stream, use either the
RandStream constructor or the RandStream.create factory method.
To create multiple independent random number streams, use
RandStream.create.

stream = RandStream.getDefaultStream returns the default random
number stream, that is, the one currently used by the rand, randi,
and randn functions.

prevstream = RandStream.setDefaultStream(stream) returns the
current default stream, and designates the random number stream
stream as the new default to be used by the rand, randi, and randn
functions.

A random number stream s has properties that control its behavior.
Access or assign to a property using p= s.Property or s.Property =
p. The following table lists defined properties:

2-3225



RandStream

Properties Property Description

Type (Read-only) Generator algorithm
used by the stream. The list of
possible generators is given by
RandStream.list.

Seed (Read-only) Seed value used to
create the stream.

NumStreams (Read-only) Number of streams
in the group in which the current
stream was created.

StreamIndex (Read-only) Index of the current
stream from among the group
of streams with which it was
created.

State Internal state of the generator.
You should not depend on the
format of this property. The
value you assign to S.State must
be a value read from S.State
previously. Use reset to return
a stream to a predictable state
without having previously read
from the State property.

Substream Index of the substream to
which the stream is currently
set. The default is 1. Multiple
substreams are not supported
by all generator types; the
multiplicative lagged Fibonacci
generator (mlfg6331_64) and
combined multiple recursive
generator (mrg32k3a) support
multiple streams.

2-3226



RandStream

Property Description

RandnAlg Algorithm used by randn(s,
...) to generate normal
pseudorandom values. Possible
values are 'Ziggurat', 'Polar',
or 'Inversion'.

Antithetic Logical value indicating
whether S generates antithetic
pseudorandom values. For
uniform values, these are the
usual values subtracted from 1.
The default is false.

FullPrecision Logical value indicating whether
S generates values using its full
precision. Some generators can
create pseudorandom values
faster, but with fewer random
bits, if FullPrecision is false.
The default is true.

Methods Method Description

RandStream Create a random number stream

RandStream.create Create multiple independent
random number streams

get Get the properties of a random
stream object

list List available random number
generator algorithms

set Set random stream property

2-3227



RandStream

Method Description

RandStream.getDefaultStream Get the default random number
stream

RandStream.setDefaultStream Set the default random number
stream

reset Reset a stream to its initial
internal state

rand Pseudorandom numbers from a
uniform distribution

randn Pseudorandom numbers from a
standard normal distribution

randi Pseudorandom integers from a
uniform discrete distribution

randperm Random permutation of a set of
values

See Also rand, randn, randi, rand (RandStream), randn (RandStream), randi
(RandStream)

2-3228



RandStream (RandStream)

Purpose Random number stream

Class @RandStream

Syntax s = RandStream('gentype')
s = RandStream('gentype','param1',val1,'param2',val2)

Description s = RandStream('gentype') creates a random number
stream that uses the uniform pseudorandom number
generator algorithm specified by gentype. The syntax s =
RandStream('gentype','param1',val1,'param2',val2) allows you
to specify optional parameter name/value pairs to control creation of the
stream. Options for gentype are given by RandStream.list.

Parameters are for RandStream are:

Parameter Description

Seed Nonnegative scalar integer with
which to initialize all streams.
Default is 0. Seed must be an

integer less than 232 .

RandnAlg Algorithm used by randn(s,
...) to generate normal
pseudorandom values. Possible
values are 'Ziggurat', 'Polar',
or 'Inversion'.

Examples Construct a random stream object using the combined multiple
recursive generator and generate 5 uniformly distributed values from
that stream.

stream = RandStream('mrg32k3a');
rand(stream,1,5)

2-3229



RandStream (RandStream)

Construct a random stream object using the multiplicative lagged
Fibonacci generator and generate 5 normally distributed values using
the polar algorithm.

stream = RandStream('mlfg6331_64','RandnAlg','Polar');
randn(stream,1,5)

See Also @RandStream, rand (RandStream), randn (RandStream), randi
(RandStream), getDefaultStream (RandStream)

2-3230



rank

Purpose Rank of matrix

Syntax k = rank(A)
k = rank(A,tol)

Description The rank function provides an estimate of the number of linearly
independent rows or columns of a full matrix.

k = rank(A) returns the number of singular values of A that are larger
than the default tolerance, max(size(A))*eps(norm(A)).

k = rank(A,tol) returns the number of singular values of A that are
larger than tol.

Remark Use sprank to determine the structural rank of a sparse matrix.

Algorithm There are a number of ways to compute the rank of a matrix. MATLAB
software uses the method based on the singular value decomposition,
or SVD. The SVD algorithm is the most time consuming, but also the
most reliable.

The rank algorithm is

s = svd(A);
tol = max(size(A))*eps(max(s));
r = sum(s > tol);

See Also sprank

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen, LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third
Edition, SIAM, Philadelphia, 1999.

2-3231

http://www.netlib.org/lapack/lug/lapack_lug.html


rat, rats

Purpose Rational fraction approximation

Syntax [N,D] = rat(X)
[N,D] = rat(X,tol)
rat(X)
S = rats(X,strlen)
S = rats(X)

Description Even though all floating-point numbers are rational numbers, it is
sometimes desirable to approximate them by simple rational numbers,
which are fractions whose numerator and denominator are small
integers. The rat function attempts to do this. Rational approximations
are generated by truncating continued fraction expansions. The rats
function calls rat, and returns strings.

[N,D] = rat(X) returns arrays N and D so that N./D approximates X to
within the default tolerance, 1.e-6*norm(X(:),1).

[N,D] = rat(X,tol) returns N./D approximating X to within tol.

rat(X), with no output arguments, simply displays the continued
fraction.

S = rats(X,strlen) returns a string containing simple rational
approximations to the elements of X. Asterisks are used for elements
that cannot be printed in the allotted space, but are not negligible
compared to the other elements in X. strlen is the length of each string
element returned by the rats function. The default is strlen = 13,
which allows 6 elements in 78 spaces.

S = rats(X) returns the same results as those printed by MATLAB
with format rat.

Examples Ordinarily, the statement

s = 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + 1/7

produces

s =

2-3232



rat, rats

0.7595

However, with

format rat

or with

rats(s)

the printed result is

s =
319/420

This is a simple rational number. Its denominator is 420, the least
common multiple of the denominators of the terms involved in the
original expression. Even though the quantity s is stored internally
as a binary floating-point number, the desired rational form can be
reconstructed.

To see how the rational approximation is generated, the statement
rat(s) produces

1 + 1/(-4 + 1/(-6 + 1/(-3 + 1/(-5))))

And the statement

[n,d] = rat(s)

produces

n = 319, d = 420

The mathematical quantity is certainly not a rational number, but
the MATLAB quantity pi that approximates it is a rational number. pi
is the ratio of a large integer and 252:

14148475504056880/4503599627370496

2-3233



rat, rats

However, this is not a simple rational number. The value printed for pi
with format rat, or with rats(pi), is

355/113

This approximation was known in Euclid’s time. Its decimal
representation is

3.14159292035398

and so it agrees with pi to seven significant figures. The statement

rat(pi)

produces

3 + 1/(7 + 1/(16))

This shows how the 355/113 was obtained. The less accurate, but more
familiar approximation 22/7 is obtained from the first two terms of this
continued fraction.

Algorithm The rat(X) function approximates each element of X by a continued
fraction of the form

The s are obtained by repeatedly picking off the integer part and
then taking the reciprocal of the fractional part. The accuracy of the
approximation increases exponentially with the number of terms
and is worst when X = sqrt(2). For x = sqrt(2) , the error with k
terms is about 2.68*(.173)^k, so each additional term increases the
accuracy by less than one decimal digit. It takes 21 terms to get full
floating-point accuracy.

2-3234



rat, rats

See Also format

2-3235



rbbox

Purpose Create rubberband box for area selection

Syntax rbbox
rbbox(initialRect)
rbbox(initialRect,fixedPoint)
rbbox(initialRect,fixedPoint,stepSize)
finalRect = rbbox(...)

Description rbbox initializes and tracks a rubberband box in the current figure. It
sets the initial rectangular size of the box to 0, anchors the box at the
figure’s CurrentPoint, and begins tracking from this point.

rbbox(initialRect) specifies the initial location and size of the
rubberband box as [x y width height], where x and y define the
lower left corner, and width and height define the size. initialRect
is in the units specified by the current figure’s Units property, and
measured from the lower left corner of the figure window. The corner of
the box closest to the pointer position follows the pointer until rbbox
receives a button-up event.

rbbox(initialRect,fixedPoint) specifies the corner of the box that
remains fixed. All arguments are in the units specified by the current
figure’s Units property, and measured from the lower left corner of
the figure window. fixedPoint is a two-element vector, [x y]. The
tracking point is the corner diametrically opposite the anchored corner
defined by fixedPoint.

rbbox(initialRect,fixedPoint,stepSize) specifies how frequently
the rubberband box is updated. When the tracking point exceeds
stepSize figure units, rbbox redraws the rubberband box. The default
stepsize is 1.

finalRect = rbbox(...) returns a four-element vector, [x y width
height], where x and y are the x and y components of the lower left
corner of the box, and width and height are the dimensions of the box.

Remarks rbbox is useful for defining and resizing a rectangular region:

2-3236



rbbox

• For box definition, initialRect is [x y 0 0], where (x,y) is the
figure’s CurrentPoint.

• For box resizing, initialRect defines the rectangular region that
you resize (e.g., a legend). fixedPoint is the corner diametrically
opposite the tracking point.

rbbox returns immediately if a button is not currently pressed.
Therefore, you use rbbox with waitforbuttonpress so that the mouse
button is down when rbbox is called. rbbox returns when you release
the mouse button.

Examples Assuming the current view is view(2), use the current axes’
CurrentPoint property to determine the extent of the rectangle in
dataspace units:

k = waitforbuttonpress;
point1 = get(gca,'CurrentPoint'); % button down detected
finalRect = rbbox; % return figure units
point2 = get(gca,'CurrentPoint'); % button up detected
point1 = point1(1,1:2); % extract x and y
point2 = point2(1,1:2);
p1 = min(point1,point2); % calculate locations
offset = abs(point1-point2); % and dimensions
x = [p1(1) p1(1)+offset(1) p1(1)+offset(1) p1(1) p1(1)];
y = [p1(2) p1(2) p1(2)+offset(2) p1(2)+offset(2) p1(2)];
hold on
axis manual
plot(x,y) % redraw in dataspace units

See Also axis, dragrect, waitforbuttonpress

“View Control” on page 1-109 for related functions

2-3237

../ref/axes_props.html#CurrentPoint


rcond

Purpose Matrix reciprocal condition number estimate

Syntax c = rcond(A)

Description c = rcond(A) returns an estimate for the reciprocal of the condition
of A in 1-norm using the LAPACK condition estimator. If A is well
conditioned, rcond(A) is near 1.0. If A is badly conditioned, rcond(A) is
near 0.0. Compared to cond, rcond is a more efficient, but less reliable,
method of estimating the condition of a matrix.

Algorithm For full matrices A, rcond uses the LAPACK routines listed in the
following table to compute the estimate of the reciprocal condition
number.

Real Complex

A double DLANGE, DGETRF,
DGECON

ZLANGE, ZGETRF,
ZGECON

A single SLANGE, SGETRF,
SGECON

CLANGE, CGETRF,
CGECON

See Also cond, condest, norm, normest, rank, svd

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen, LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third
Edition, SIAM, Philadelphia, 1999.

2-3238

http://www.netlib.org/lapack/lug/lapack_lug.html


mmreader.read

Purpose Read video frame data from multimedia reader object

Syntax video = read(obj)
video = read(obj, index)

Description video = read(obj) reads in all video frames from the file associated
with obj.

video = read(obj, index) reads only the specified frames. index
can be a single number or a two-element array representing an index
range of the video stream.

Input
Arguments

obj

Name of multimedia object created with mmreader.

index

Frames to read, where the first frame number is 1. Use Inf to
represent the last frame of the file.

For example:

video = read(obj, 1); % first frame only
video = read(obj, [1 10]); % first 10 frames
video = read(obj, Inf); % last frame only
video = read(obj, [50 Inf]); % frame 50 thru end

MATLAB cannot determine the number of frames in a variable
frame rate file until you read the last frame. If the requested
index extends beyond the end of the file, read returns either a
warning or an error. For more information, see “Reading Variable
Frame Rate Video” in the MATLAB Data Import and Export
documentation.

Default: [1 Inf]

2-3239



mmreader.read

Output
Arguments

video

Array of uint8 data representing RGB24 video frames. The
dimensions are H-by-W-by-B-by-F, where:

H Image frame height.

W Image frame width.

B Number of bands in the image (for example, 3 for
RGB).

F Number of frames read.

Example Read and play back the movie file xylophone.mpg:

xyloObj = mmreader('xylophone.mpg');

nFrames = xyloObj.NumberOfFrames;
vidHeight = xyloObj.Height;
vidWidth = xyloObj.Width;

% Preallocate movie structure.
mov(1:nFrames) = ...

struct('cdata', zeros(vidHeight, vidWidth, 3, 'uint8'),...
'colormap', []);

% Read one frame at a time.
for k = 1 : nFrames

mov(k).cdata = read(xyloObj, k);
end

% Size a figure based on the video's width and height.
hf = figure;
set(hf, 'position', [150 150 vidWidth vidHeight])

% Play back the movie once at the video's frame rate.
movie(hf, mov, 1, xyloObj.FrameRate);

2-3240



mmreader.read

See Also movie | mmreader

How To • “Reading Video Files”

2-3241



Tiff.read

Purpose Read entire image

Syntax imageData = tiffobj.read()
[Y,Cb,Cr] = tiffobj.read()

Description imageData = tiffobj.read() reads the image data from the current
image file directory (IFD) in the TIFF file associated with the Tiff
object, tiffobj.

[Y,Cb,Cr] = tiffobj.read()reads the YCbCr component data from
the current directory in the TIFF file. Depending upon the values of
the YCbCrSubSampling tag, the size of the Cb and Cr channels might
differ from the Y channel.

Examples Open a Tiff object and read data from the TIFF file:

t = Tiff('mytif.tif', 'r');
imageData = t.read();

See Also Tiff.write

Tutorials • “Exporting Image Data and Metadata to TIFF Files”

• “Reading Image Data and Metadata from TIFF Files”

2-3242



readasync

Purpose Read data asynchronously from device

Syntax readasync(obj)
readasync(obj,size)

Description readasync(obj) initiates an asynchronous read operation on the serial
port object, obj.

readasync(obj,size) asynchronously reads, at most, the number of
bytes given by size. If size is greater than the difference between the
InputBufferSize property value and the BytesAvailable property
value, an error is returned.

Remarks Before you can read data, you must connect obj to the device with the
fopen function. A connected serial port object has a Status property
value of open. An error is returned if you attempt to perform a read
operation while obj is not connected to the device.

You should use readasync only when you configure the ReadAsyncMode
property to manual. readasync is ignored if used when ReadAsyncMode
is continuous.

The TransferStatus property indicates if an asynchronous read
or write operation is in progress. You can write data while an
asynchronous read is in progress because serial ports have separate
read and write pins. You can stop asynchronous read and write
operations with the stopasync function.

You can monitor the amount of data stored in the input buffer
with the BytesAvailable property. Additionally, you can use the
BytesAvailableFcn property to execute a callback function when the
terminator or the specified amount of data is read.

Rules for Completing an Asynchronous Read Operation

An asynchronous read operation with readasync completes when one
of these conditions is met:

• The terminator specified by the Terminator property is read.

2-3243



readasync

• The time specified by the Timeout property passes.

• The specified number of bytes is read.

• The input buffer is filled (if size is not specified).

Because readasync checks for the terminator, this function can be
slow. To increase speed, you might want to configure ReadAsyncMode to
continuous and continuously return data to the input buffer as soon
as it is available from the device.

Example This example creates the serial port object s on a Windows platform.
It connects s to a Tektronix TDS 210 oscilloscope, configures s to read
data asynchronously only if readasync is issued, and configures the
instrument to return the peak-to-peak value of the signal on channel 1.

s = serial('COM1');
fopen(s)
s.ReadAsyncMode = 'manual';
fprintf(s,'Measurement:Meas1:Source CH1')
fprintf(s,'Measurement:Meas1:Type Pk2Pk')
fprintf(s,'Measurement:Meas1:Value?')

Begin reading data asynchronously from the instrument using
readasync. When the read operation is complete, return the data to the
MATLAB workspace using fscanf.

readasync(s)
s.BytesAvailable
ans =

15
out = fscanf(s)
out =
2.0399999619E0
fclose(s)

2-3244



readasync

See Also Functions

fopen, stopasync

Properties

BytesAvailable, BytesAvailableFcn, ReadAsyncMode, Status,
TransferStatus

2-3245



Tiff.readEncodedStrip

Purpose Read data from specified strip

Syntax stripData = tiffobj.readEncodedStrip(stripNumber)
[Y,Cb,Cr] = tiffobj.readEncodedStrip(stripNumber)

Description stripData = tiffobj.readEncodedStrip(stripNumber) reads data
from the strip specified by stripNumber. Strip numbers are one-based
numbers.

[Y,Cb,Cr] = tiffobj.readEncodedStrip(stripNumber) reads
YCbCr component data from the specified strip. The size of the
chrominance components Cb and Cr might differ from the size
of the luminance component Y depending on the value of the
YCbCrSubSampling tag.

readEncodeStrip clips the last strip, if the strip extends past the
ImageLength boundary.

Examples Open a Tiff object and read a strip of data. Replace myfile.tif with
the name of a TIFF file on your MATLAB path.

t = Tiff('myfile.tif', 'r');
%
% Check if image is tiled or stipped.
if ~t.isTiled()

data = t.readEncodedStrip(1);
end

References This method corresponds to the TIFFReadEncodedStrip function in the
LibTIFF C API. To use this method, you must be familiar with LibTIFF
version 3.7.1, as well as the TIFF specification and technical notes.
View this documentation at LibTIFF - TIFF Library and Utilities.

See Also Tiff.readEncodedTile | Tiff.isTiled

Tutorials • “Exporting Image Data and Metadata to TIFF Files”

• “Reading Image Data and Metadata from TIFF Files”

2-3246

http://www.remotesensing.org/libtiff/


Tiff.readEncodedTile

Purpose Read data from specified tile

Syntax tileData = tiffobj.readEncodedTile(tileNumber)
[Y,Cb,Cr] = tiffobj.readEncodedTile(tileNumber)

Description tileData = tiffobj.readEncodedTile(tileNumber) reads data from
the tile specified by tileNumber. Tile numbers are one-based numbers.

[Y,Cb,Cr] = tiffobj.readEncodedTile(tileNumber) reads YCbCr
component data from the specified tile. The size of the chrominance
components Cb and Cr might differ from the size of the luminance
component Y, depending on the value of the YCbCrSubSampling tag.

readEncodedTile clips tiles on the last row or right-most column of
an image if the tile extends past the ImageLength and ImageLength
boundaries.

Examples Open a Tiff object and read a tile of data. Replace myfile.tif with
the name of a TIFF file on your MATLAB path.

t = Tiff('myfile.tif', 'r');
%
% Check if image is tiled or stipped.
if t.isTiled()

data = t.readEncodedTile(1);
end

References

This method corresponds to the TIFFReadEncodedTile function in the
LibTIFF C API. To use this method, you must be familiar with LibTIFF
version 3.7.1, as well as the TIFF specification and technical notes.
View this documentation at LibTIFF - TIFF Library and Utilities.

See Also Tiff.readEncodedStrip | Tiff.isTiled

Tutorials • “Exporting Image Data and Metadata to TIFF Files”

2-3247

http://www.remotesensing.org/libtiff/


Tiff.readEncodedTile

• “Reading Image Data and Metadata from TIFF Files”

2-3248



real

Purpose Real part of complex number

Syntax X = real(Z)

Description X = real(Z) returns the real part of the elements of the complex array
Z.

Examples real(2+3*i) is 2.

See Also abs, angle, conj, i, j, imag

2-3249



reallog

Purpose Natural logarithm for nonnegative real arrays

Syntax Y = reallog(X)

Description Y = reallog(X) returns the natural logarithm of each element in array
X. Array X must contain only nonnegative real numbers. The size of Y is
the same as the size of X.

Examples M = magic(4)

M =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

reallog(M)

ans =
2.7726 0.6931 1.0986 2.5649
1.6094 2.3979 2.3026 2.0794
2.1972 1.9459 1.7918 2.4849
1.3863 2.6391 2.7081 0

See Also log, realpow, realsqrt

2-3250



realmax

Purpose Largest positive floating-point number

Syntax n = realmax

Description n = realmax returns the largest floating-point number representable
on your computer. Anything larger overflows.

realmax('double') is the same as realmax with no arguments.

realmax('single') is the largest single precision floating point
number representable on your computer. Anything larger overflows
to single(Inf).

Examples realmax is one bit less than 21024 or about 1.7977e+308.

Algorithm The realmax function is equivalent to pow2(2-eps,maxexp), where
maxexp is the largest possible floating-point exponent.

Execute type realmax to see maxexp for various computers.

See Also eps, realmin, intmax

2-3251



realmin

Purpose Smallest positive normalized floating-point number

Syntax n = realmin

Description n = realmin returns the smallest positive normalized floating-point
number on your computer. Anything smaller underflows or is an IEEE
“denormal.”

REALMIN('double') is the same as REALMIN with no arguments.

REALMIN('single') is the smallest positive normalized single precision
floating point number on your computer.

Examples realmin is 2^(-1022) or about 2.2251e-308.

Algorithm The realmin function is equivalent to pow2(1,minexp) where minexp is
the smallest possible floating-point exponent.

Execute type realmin to see minexp for various computers.

See Also eps, realmax, intmin

2-3252



realpow

Purpose Array power for real-only output

Syntax Z = realpow(X,Y)

Description Z = realpow(X,Y) raises each element of array X to the power of its
corresponding element in array Y. Arrays X and Ymust be the same size.
The range of realpow is the set of all real numbers, i.e., all elements of
the output array Z must be real.

Examples X = -2*ones(3,3)

X =
-2 -2 -2
-2 -2 -2
-2 -2 -2

Y = pascal(3)

ans =
1 1 1
1 2 3
1 3 6

realpow(X,Y)

ans =
-2 -2 -2
-2 4 -8
-2 -8 64

See Also reallog, realsqrt, .^ (array power operator)

2-3253



realsqrt

Purpose Square root for nonnegative real arrays

Syntax Y = realsqrt(X)

Description Y = realsqrt(X) returns the square root of each element of array X.
Array X must contain only nonnegative real numbers. The size of Y is
the same as the size of X.

Examples M = magic(4)

M =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

realsqrt(M)

ans =
4.0000 1.4142 1.7321 3.6056
2.2361 3.3166 3.1623 2.8284
3.0000 2.6458 2.4495 3.4641
2.0000 3.7417 3.8730 1.0000

See Also reallog, realpow, sqrt, sqrtm

2-3254



record

Purpose Record data and event information to file

Syntax record(obj)
record(obj,'switch')

Description record(obj) toggles the recording state for the serial port object, obj.

record(obj,'switch') initiates or terminates recording for obj.
switch can be on or off. If switch is on, recording is initiated. If
switch is off, recording is terminated.

Remarks Before you can record information to disk, obj must be connected to
the device with the fopen function. A connected serial port object has
a Status property value of open. An error is returned if you attempt
to record information while obj is not connected to the device. Each
serial port object must record information to a separate file. Recording
is automatically terminated when obj is disconnected from the device
with fclose.

The RecordName and RecordMode properties are read-only while obj is
recording, and must be configured before using record.

For a detailed description of the record file format and the properties
associated with recording data and event information to a file, refer to
Debugging: Recording Information to Disk.

Example This example creates the serial port object s on a Windows platform.
It connects s to the device, configures s to record information to a file,
writes and reads text data, and then disconnects s from the device.

s = serial('COM1');
fopen(s)
s.RecordDetail = 'verbose';
s.RecordName = 'MySerialFile.txt';
record(s,'on')
fprintf(s,'*IDN?')
out = fscanf(s);
record(s,'off')

2-3255



record

fclose(s)

See Also Functions

fclose, fopen

Properties

RecordDetail, RecordMode, RecordName, RecordStatus, Status

2-3256



audiorecorder.record

Purpose Record audio to audiorecorder object

Syntax record(recorderObj)
record(recorderObj, length)

Description record(recorderObj) records audio from an input device, such
as a microphone connected to your system. recorderObj is an
audiorecorder object that defines the sample rate, bit depth, and other
properties of the recording.

record(recorderObj, length) records for the number of seconds
specified by length.

Example Record 5 seconds of your speech with a microphone:

myVoice = audiorecorder;

% Define callbacks to show when
% recording starts and completes.
myVoice.StartFcn = 'disp(''Start speaking.'')';
myVoice.StopFcn = 'disp(''End of recording.'')';

record(myVoice, 5);

To listen to the recording, call the play method:

play(myVoice);

See Also audiorecorder | getaudiodata | recordblocking

How To • “Recording Audio”

• “Recording or Playing Audio within a Function”

2-3257



audiorecorder.recordblocking

Purpose Record audio to audiorecorder object, holding control until recording
completes

Syntax recordblocking(recorderObj, length)

Description recordblocking(recorderObj, length) records audio from an
input device, such as a microphone connected to your system, for the
number of seconds specified by length. The recordblocking method
does not return control until recording completes. recorderObj is an
audiorecorder object that defines the sample rate, bit depth, and other
properties of the recording.

Examples Record 5 seconds of your speech with a microphone, and play it back:

myVoice = audiorecorder;

disp('Start speaking.');
recordblocking(myVoice, 5);
disp('End of recording. Playing back ...');

play(myVoice);

See Also audiorecorder | getaudiodata | record

How To • “Recording Audio”

2-3258



rectangle

Purpose Create 2-D rectangle object

Syntax rectangle
rectangle('Position',[x,y,w,h])
rectangle('Curvature',[x,y])
rectangle('PropertyName',propertyvalue,...)
h = rectangle(...)

Properties For a list of properties, see Rectangle Properties.

Description rectangle draws a rectangle with Position [0,0,1,1] and Curvature
[0,0] (i.e., no curvature).

rectangle('Position',[x,y,w,h]) draws the rectangle from the point
x,y and having a width of w and a height of h. Specify values in axes
data units.

Note that, to display a rectangle in the specified proportions, you need
to set the axes data aspect ratio so that one unit is of equal length along
both the x and y axes. You can do this with the command axis equal or
daspect([1,1,1]).

rectangle('Curvature',[x,y]) specifies the curvature of the rectangle
sides, enabling it to vary from a rectangle to an ellipse. The horizontal
curvature x is the fraction of width of the rectangle that is curved along
the top and bottom edges. The vertical curvature y is the fraction of the
height of the rectangle that is curved along the left and right edges.

The values of x and y can range from 0 (no curvature) to 1 (maximum
curvature). A value of [0,0] creates a rectangle with square sides.
A value of [1,1] creates an ellipse. If you specify only one value
for Curvature, then the same length (in axes data units) is curved
along both horizontal and vertical sides. The amount of curvature is
determined by the shorter dimension.

rectangle('PropertyName',propertyvalue,...) draws the
rectangle using the values for the property name/property value pairs
specified and default values for all other properties. For a description of
the properties, see Rectangle Properties.

2-3259



rectangle

h = rectangle(...) returns the handle of the rectangle object created.

Remarks Rectangle objects are 2-D and can be drawn in an axes only if the view is
[0 90] (i.e., view(2)). Rectangles are children of axes and are defined
in coordinates of the axes data.

Examples This example sets the data aspect ratio to [1,1,1] so that the rectangle
is displayed in the specified proportions (daspect). Note that the
horizontal and vertical curvature can be different. Also, note the effects
of using a single value for Curvature.

rectangle('Position',[0.59,0.35,3.75,1.37],...
'Curvature',[0.8,0.4],...

'LineWidth',2,'LineStyle','--')
daspect([1,1,1])

Specifying a single value of [0.4] for Curvature produces

2-3260



rectangle

A Curvature of [1] produces a rectangle with the shortest side
completely round:

This example creates an ellipse and colors the face red.

rectangle('Position',[1,2,5,10],'Curvature',[1,1],...
'FaceColor','r')

daspect([1,1,1])
xlim([0,7])

2-3261



rectangle

ylim([1,13])

Setting
Default
Properties

You can set default rectangle properties on the axes, figure, and root
object levels:

set(0,'DefaultRectangleProperty',PropertyValue...)
set(gcf,'DefaultRectangleProperty',PropertyValue...)
set(gca,'DefaultRectangleProperty',PropertyValue...)

where Property is the name of the rectangle property whose default
value you want to set and PropertyValue is the value you are
specifying. Use set and get to access the surface properties.

2-3262



rectangle

See Also line, patch

Rectangle Properties for property descriptions

“Object Creation” on page 1-104 for related functions

See the annotation function for information about the rectangle
annotation object.

2-3263



Rectangle Properties

Purpose Define rectangle properties

Creating
Rectangle
Objects

Use rectangle to create rectangle objects.

Modifying
Properties

You can set and query graphics object properties in two ways:

• “The Property Editor” is an interactive tool that enables you to see
and change object property values.

• The set and get commands enable you to set and query the values of
properties.

To change the default values of properties, see “Setting Default Property
Values”.

See “Core Graphics Objects” for general information about this type
of object.

Rectangle
Property
Descriptions

This section lists property names along with the type of values each
accepts. Curly braces { } enclose default values.

Annotation
hg.Annotation object Read Only

Control the display of rectangle objects in legends. The Annotation
property enables you to specify whether this rectangle object is
represented in a figure legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

2-3264



Rectangle Properties

Once you have obtained the hg.LegendEntry object, you can set
its IconDisplayStyle property to control whether the rectangle
object is displayed in a figure legend:

IconDisplayStyle
Value

Purpose

on Represent this rectangle object in a legend
(default)

off Do not include this rectangle object in a
legend

children Same as on because rectangle objects do not
have children

Setting the IconDisplayStyle property

These commands set the IconDisplayStyle of a graphics object
with handle hobj to off:

hAnnotation = get(hobj,'Annotation');
hLegendEntry = get(hAnnotation','LegendInformation');
set(hLegendEntry,'IconDisplayStyle','off')

Using the IconDisplayStyle property

See “Controlling Legends” for more information and examples.

BeingDeleted
on | {off} read only

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in
the process of being deleted. The MATLAB software sets the
BeingDeleted property to on when the object’s delete function
callback is called (see the DeleteFcn property). It remains set to
on while the delete function executes, after which the object no
longer exists.

2-3265



Rectangle Properties

For example, an object’s delete function might call other functions
that act on a number of different objects. These functions may not
need to perform actions on objects that are going to be deleted,
and therefore, can check the object’s BeingDeleted property
before acting.

BusyAction
cancel | {queue}

Callback routine interruption. The BusyAction property enables
you to control how MATLAB handles events that potentially
interrupt executing callback routines. If there is a callback
routine executing, callback routines invoked subsequently always
attempt to interrupt it. If the Interruptible property of the
object whose callback is executing is set to on (the default), then
interruption occurs at the next point where the event queue is
processed. If the Interruptible property is off, the BusyAction
property (of the object owning the executing callback) determines
how MATLAB handles the event. The choices are

• cancel— Discard the event that attempted to execute a second
callback routine.

• queue — Queue the event that attempted to execute a second
callback routine until the current callback finishes.

ButtonDownFcn
function handle, cell array containing function handle and
additional arguments, or string (not recommended)

Button press callback function. A callback function that executes
whenever you press a mouse button while the pointer is over the
rectangle object.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

Set this property to a function handle that references the callback.
The function must define at least two input arguments (handle

2-3266



Rectangle Properties

of object associated with the button down event and an event
structure, which is empty for this property)

function button_down(src,evnt)
% src - the object that is the source of the event
% evnt - empty for this property

sel_typ = get(gcbf,'SelectionType')
switch sel_typ

case 'normal'
disp('User clicked left-mouse button')
set(src,'Selected','on')

case 'extend'
disp('User did a shift-click')
set(src,'Selected','on')

case 'alt'
disp('User did a control-click')
set(src,'Selected','on')
set(src,'SelectionHighlight','off')

end
end

Suppose h is the handle of a rectangle object and that the
button_down function is on your MATLAB path. The following
statement assigns the function above to the ButtonDownFcn:

set(h,'ButtonDownFcn',@button_down)

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

Children
vector of handles

The empty matrix; rectangle objects have no children.

Clipping
{on} | off

2-3267



Rectangle Properties

Clipping mode. MATLAB clips rectangles to the axes plot box
by default. If you set Clipping to off, rectangles are displayed
outside the axes plot box. This can occur if you create a rectangle,
set hold to on, freeze axis scaling (axis set to manual), and then
create a larger rectangle.

CreateFcn
function handle, cell array containing function handle and
additional arguments, or string (not recommended)

Callback function executed during object creation. This property
defines a callback function that executes when MATLAB creates a
rectangle object. You must define this property as a default value
for rectangles or in a call to the rectangle function to create a
new rectangle object. For example, the statement

set(0,'DefaultRectangleCreateFcn',@rect_create)

defines a default value for the rectangle CreateFcn property on
the root level that sets the axes DataAspectRatio whenever you
create a rectangle object. The callback function must be on your
MATLAB path when you execute the above statement.

function rect_create(src,evnt)
% src - the object that is the source of the event
% evnt - empty for this property
axh = get(src,'Parent');
set(axh,'DataAspectRatio',[1,1,1]))

end

MATLAB executes this function after setting all rectangle
properties. Setting this property on an existing rectangle object
has no effect. The function must define at least two input
arguments (handle of object created and an event structure, which
is empty for this property).

The handle of the object whose CreateFcn is being executed is
passed by MATLAB as the first argument to the callback function

2-3268



Rectangle Properties

and is also accessible through the root CallbackObject property,
which you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

Curvature
one- or two-element vector [x,y]

Amount of horizontal and vertical curvature. This property
specifies the curvature of the rectangle sides, which enables the
shape of the rectangle to vary from rectangular to ellipsoidal. The
horizontal curvature x is the fraction of width of the rectangle that
is curved along the top and bottom edges. The vertical curvature
y is the fraction of the height of the rectangle that is curved along
the left and right edges.

The values of x and y can range from 0 (no curvature) to 1
(maximum curvature). A value of [0,0] creates a rectangle with
square sides. A value of [1,1] creates an ellipse. If you specify
only one value for Curvature, then the same length (in axes data
units) is curved along both horizontal and vertical sides. The
amount of curvature is determined by the shorter dimension.

DeleteFcn
function handle, cell array containing function handle and
additional arguments, or string (not recommended)

Delete rectangle callback function. A callback function that
executes when you delete the rectangle object (for example, when
you issue a delete command or clear the axes cla or figure clf).
For example, the following function displays object property data
before the object is deleted.

function delete_fcn(src,evnt)
% src - the object that is the source of the event
% evnt - empty for this property

obj_tp = get(src,'Type');

2-3269



Rectangle Properties

disp([obj_tp, ' object deleted'])
disp('Its user data is:')
disp(get(src,'UserData'))

end

MATLAB executes the function before deleting the object’s
properties so these values are available to the callback function.
The function must define at least two input arguments (handle
of object being deleted and an event structure, which is empty
for this property)

The handle of the object whose DeleteFcn is being executed is
passed by MATLAB as the first argument to the callback function
and is also accessible through the root CallbackObject property,
which you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

DisplayName
string (default is empty string)

String used by legend for this rectangle object. The legend
function uses the string defined by the DisplayName property to
label this rectangle object in the legend.

• If you specify string arguments with the legend function,
DisplayName is set to this rectangle object’s corresponding
string and that string is used for the legend.

• If DisplayName is empty, legend creates a string of the form,
['data' n], where n is the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

• If you edit the string directly in an existing legend, DisplayName
is set to the edited string.

2-3270



Rectangle Properties

• If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

• To add programmatically a legend that uses the DisplayName
string, call legend with the toggle or show option.

See “Controlling Legends” for more examples.

EdgeColor
{ColorSpec} | none

Color of the rectangle edges. This property specifies the color of
the rectangle edges as a color or specifies that no edges be drawn.

EraseMode
{normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses
to draw and erase rectangle objects. Alternative erase modes
are useful for creating animated sequences, where control of
the way individual objects are redrawn is necessary to improve
performance and obtain the desired effect.

• normal (the default) — Redraw the affected region of the
display, performing the three-dimensional analysis necessary
to ensure that all objects are rendered correctly. This mode
produces the most accurate picture, but is the slowest. The
other modes are faster, but do not perform a complete redraw
and are therefore less accurate.

• none — Do not erase the rectangle when it is moved or
destroyed. While the object is still visible on the screen after
erasing with EraseMode none, you cannot print it because
MATLAB stores no information about its former location.

• xor—Draw and erase the rectangle by performing an exclusive
OR (XOR) with the color of the screen beneath it. This mode
does not damage the color of the objects beneath the rectangle.

2-3271



Rectangle Properties

However, the rectangle’s color depends on the color of whatever
is beneath it on the display.

• background — Erase the rectangle by drawing it in the axes
background Color, or the figure background Color if the axes
Color is set to none. This damages objects that are behind the
erased rectangle, but rectangles are always properly colored.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all
objects is normal. This means graphics objects created with
EraseMode set to none, xor, or background can look different on
screen than on paper. On screen, MATLAB can mathematically
combine layers of colors (for example, performing an XOR
of a pixel color with that of the pixel behind it) and ignore
three-dimensional sorting to obtain greater rendering speed.
However, these techniques are not applied to the printed
output.

You can use the MATLAB getframe command or other screen
capture application to create an image of a figure containing
nonnormal mode objects.

FaceColor
ColorSpec | {none}

Color of rectangle face. This property specifies the color of the
rectangle face, which is not colored by default.

HandleVisibility
{on} | callback | off

Control access to object’s handle by command-line users and GUIs.
This property determines when an object’s handle is visible in
its parent’s list of children. HandleVisibility is useful for
preventing command-line users from accidentally drawing into or
deleting a figure that contains only user interface devices (such as
a dialog box).

2-3272



Rectangle Properties

Handles are always visible when HandleVisibility is on.

Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by
callback routines, but not from within functions invoked from
the command line. This provides a means to protect GUIs from
command-line users, while allowing callback routines to have
complete access to object handles.

Setting HandleVisibility to off makes handles invisible at all
times. This may be necessary when a callback routine invokes
a function that might potentially damage the GUI (such as
evaluating a user-typed string), and so temporarily hides its own
handles during the execution of that function.

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

You can set the Root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties).

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties and pass it to any
function that operates on handles.

2-3273



Rectangle Properties

HitTest
{on} | off

Selectable by mouse click. HitTest determines if the rectangle can
become the current object (as returned by the gco command and
the figure CurrentObject property) as a result of a mouse click on
the rectangle. If HitTest is off, clicking the rectangle selects the
object below it (which may be the axes containing it).

Interruptible
{on} | off

Callback routine interruption mode. The Interruptible property
controls whether a rectangle callback routine can be interrupted
by subsequently invoked callback routines. Only callback routines
defined for the ButtonDownFcn are affected by the Interruptible
property. MATLAB checks for events that can interrupt a callback
routine only when it encounters a drawnow, figure, getframe, or
pause command in the routine.

LineStyle
{-} | -- | : | -. | none

Line style of rectangle edge. This property specifies the line style
of the edges. The available line styles are

Symbol Line Style

- Solid line (default)

-- Dashed line

: Dotted line

-. Dash-dot line

none No line

LineWidth
scalar

2-3274



Rectangle Properties

The width of the rectangle edge line. Specify this value in points (1
point = 1/72 inch). The default LineWidth is 0.5 points.

Parent
handle of axes, hggroup, or hgtransform

Parent of rectangle object. This property contains the handle of
the rectangle object’s parent. The parent of a rectangle object is
the axes, hggroup, or hgtransform object that contains it.

See “Objects That Can Contain Other Objects” for more
information on parenting graphics objects.

Position
four-element vector [x,y,width,height]

Location and size of rectangle. This property specifies the location
and size of the rectangle in the data units of the axes. The point
defined by x, y specifies one corner of the rectangle, and width and
height define the size in units along the x-and y-axes respectively.

Selected
on | off

Is object selected? When this property is on MATLAB displays
selection handles if the SelectionHighlight property is also
on. You can, for example, define the ButtonDownFcn to set this
property, allowing users to select the object with the mouse.

SelectionHighlight
{on} | off

Objects are highlighted when selected. When the Selected
property is on, MATLAB indicates the selected state by drawing
handles at each vertex. When SelectionHighlight is off,
MATLAB does not draw the handles.

Tag
string

2-3275



Rectangle Properties

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This is
particularly useful when you are constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callback
routines. You can define Tag as any string.

Type
string (read only)

Class of graphics object. For rectangle objects, Type is always
the string 'rectangle'.

UIContextMenu
handle of a uicontextmenu object

Associate a context menu with the rectangle. Assign this property
the handle of a uicontextmenu object created in the same figure
as the rectangle. Use the uicontextmenu function to create the
context menu. MATLAB displays the context menu whenever you
right-click over the rectangle.

UserData
matrix

User-specified data. Any data you want to associate with the
rectangle object. MATLAB does not use this data, but you can
access it using the set and get commands.

Visible
{on} | off

Rectangle visibility. By default, all rectangles are visible. When
set to off, the rectangle is not visible, but still exists, and you
can get and set its properties.

See Also rectangle

2-3276



rectint

Purpose Rectangle intersection area

Syntax area = rectint(A,B)

Description area = rectint(A,B) returns the area of intersection of the rectangles
specified by position vectors A and B.

If A and B each specify one rectangle, the output area is a scalar.

A and B can also be matrices, where each row is a position vector. area is
then a matrix giving the intersection of all rectangles specified by A with
all the rectangles specified by B. That is, if A is n-by-4 and B is m-by-4,
then area is an n-by-m matrix where area(i,j) is the intersection area
of the rectangles specified by the ith row of A and the jth row of B.

Note A position vector is a four-element vector [x,y,width,height],
where the point defined by x and y specifies one corner of the rectangle,
and width and height define the size in units along the x and y axes
respectively.

See Also polyarea

2-3277



recycle

Purpose Set option to move deleted files to recycle folder

Syntax recycle
stat = recycle
previousStat = recycle state
previousStat = recycle('state')

Description recycle displays the current state, on or off, for recycling files you
remove using the delete function. When the value is on, deleted files
move to a different location. The location varies by platform—see
“Deleting Files and Folders Using Functions”. When the value is off,
the delete function permanently removes the files. For details, see
the Remarks section.

stat = recycle returns the current state for recycling files to the
character array stat.

previousStat = recycle state sets the recycle option for MATLAB
to the specified state, either on or off. The previousStat value is the
recycle state before running the statement.

previousStat = recycle('state') is the function form of the syntax.

Remarks The preference for Deleting files sets the state of the recycle function
at startup. When you change the preference, it changes the state of
recycle. When you change the state of recycle, it does not change the
preference. Use recycle to override the behavior of the preference. For
example, regardless of the setting for the Deleting files preference, to
remove thisfile.m permanently, run:

recycle('off')
delete('thisfile.m')

After setting the recycle state to off, all files you delete using the
delete function are deleted permanently until you do one of the
following:

• Run recycle('on')

2-3278



recycle

• Restart MATLAB. Upon startup, MATLAB sets the state for recycle
to match the Deleting files preference.

Examples Start from a state where file recycling is off. Verify the current recycle
state:

recycle
ans =

off

Turn file recycling on. Delete a file and move it to the recycle bin or
temporary folder:

recycle on;
delete myfile.txt

See Also delete, dir, ls, rmdir

“Managing Files in MATLAB”

2-3279



reducepatch

Purpose Reduce number of patch faces

Syntax nfv = reducepatch(p,r)
nfv = reducepatch(fv,r)
nfv = reducepatch(p) or nfv = reducepatch(fv)
reducepatch(...,'fast')
reducepatch(...,'verbose')
nfv = reducepatch(f,v,r)
[nf,nv] = reducepatch(...)

Description reducepatch(p,r) reduces the number of faces of the patch identified
by handle p, while attempting to preserve the overall shape of the
original object. The MATLAB software interprets the reduction factor
r in one of two ways depending on its value:

• If r is less than 1, r is interpreted as a fraction of the original number
of faces. For example, if you specify r as 0.2, then the number of faces
is reduced to 20% of the number in the original patch.

• If r is greater than or equal to 1, then r is the target number of faces.
For example, if you specify r as 400, then the number of faces is
reduced until there are 400 faces remaining.

nfv = reducepatch(p,r) returns the reduced set of faces and vertices
but does not set the Faces and Vertices properties of patch p. The
struct nfv contains the faces and vertices after reduction.

nfv = reducepatch(fv,r) performs the reduction on the faces and
vertices in the struct fv.

nfv = reducepatch(p) or nfv = reducepatch(fv) uses a reduction
value of 0.5.

reducepatch(...,'fast') assumes the vertices are unique and does
not compute shared vertices.

reducepatch(...,'verbose') prints progress messages to the
command window as the computation progresses.

2-3280



reducepatch

nfv = reducepatch(f,v,r) performs the reduction on the faces in f
and the vertices in v.

[nf,nv] = reducepatch(...) returns the faces and vertices in the
arrays nf and nv.

Remarks If the patch contains nonshared vertices, MATLAB computes shared
vertices before reducing the number of faces. If the faces of the patch
are not triangles, MATLAB triangulates the faces before reduction. The
faces returned are always defined as triangles.

The number of output triangles may not be exactly the number specified
with the reduction factor argument (r), particularly if the faces of the
original patch are not triangles.

Examples This example illustrates the effect of reducing the number of faces to
only 15% of the original value.

[x,y,z,v] = flow;
p = patch(isosurface(x,y,z,v,-3));
set(p,'facecolor','w','EdgeColor','b');
daspect([1,1,1])
view(3)
figure;
h = axes;
p2 = copyobj(p,h);
reducepatch(p2,0.15)
daspect([1,1,1])
view(3)

2-3281



reducepatch

2-3282



reducepatch

See Also isosurface, isocaps, isonormals, smooth3, subvolume, reducevolume

“Volume Visualization” on page 1-111 for related functions

Vector Field Displayed with Cone Plots for another example

2-3283



reducevolume

Purpose Reduce number of elements in volume data set

Syntax [nx,ny,nz,nv] = reducevolume(X,Y,Z,V,[Rx,Ry,Rz])
[nx,ny,nz,nv] = reducevolume(V,[Rx,Ry,Rz])
nv = reducevolume(...)

Description [nx,ny,nz,nv] = reducevolume(X,Y,Z,V,[Rx,Ry,Rz]) reduces the
number of elements in the volume by retaining every Rxth element in
the x direction, every Ryth element in the y direction, and every Rzth

element in the z direction. If a scalar R is used to indicate the amount
or reduction instead of a three-element vector, the MATLAB software
assumes the reduction to be [R R R].

The arrays X, Y, and Z define the coordinates for the volume V. The
reduced volume is returned in nv, and the coordinates of the reduced
volume are returned in nx, ny, and nz.

[nx,ny,nz,nv] = reducevolume(V,[Rx,Ry,Rz]) assumes the arrays
X, Y, and Z are defined as [X,Y,Z] = meshgrid(1:n,1:m,1:p), where
[m,n,p] = size(V).

nv = reducevolume(...) returns only the reduced volume.

Examples This example uses a data set that is a collection of MRI slices of a
human skull. This data is processed in a variety of ways:

• The 4-D array is squeezed (squeeze) into three dimensions and
then reduced (reducevolume) so that what remains is every fourth
element in the x and y directions and every element in the z direction.

• The reduced data is smoothed (smooth3).

• The outline of the skull is an isosurface generated as a patch (p1)
whose vertex normals are recalculated to improve the appearance
when lighting is applied (patch, isosurface, isonormals).

• A second patch (p2) with an interpolated face color draws the end
caps (FaceColor) isocaps).

• The view of the object is set (view, axis, daspect).

2-3284



reducevolume

• A 100-element grayscale colormap provides coloring for the end caps
(colormap).

• Adding a light to the right of the camera illuminates the object
(camlight, lighting).

load mri
D = squeeze(D);
[x,y,z,D] = reducevolume(D,[4,4,1]);
D = smooth3(D);
p1 = patch(isosurface(x,y,z,D, 5,'verbose'),...

'FaceColor','red','EdgeColor','none');
isonormals(x,y,z,D,p1);
p2 = patch(isocaps(x,y,z,D, 5),...

'FaceColor','interp','EdgeColor','none');
view(3); axis tight; daspect([1,1,.4])
colormap(gray(100))
camlight; lighting gouraud

See Also isosurface, isocaps, isonormals, smooth3, subvolume, reducepatch

2-3285



reducevolume

“Volume Visualization” on page 1-111 for related functions

2-3286



refresh

Purpose Redraw current figure

Syntax refresh
refresh(h)

Description refresh erases and redraws the current figure.

refresh(h) redraws the figure identified by h.

See Also “Figure Windows” on page 1-105 for related functions

2-3287



refreshdata

Purpose Refresh data in graph when data source is specified

Syntax refreshdata
refreshdata(figure_handle)
refreshdata(object_handles)
refreshdata(object_handles,'workspace')

Description refreshdata evaluates any data source properties (XDataSource,
YDataSource, or ZDataSource) on all objects in graphs in the current
figure. If the specified data source has changed, the MATLAB software
updates the graph to reflect this change.

Note that the variable assigned to the data source property must be in
the base workspace.

refreshdata(figure_handle) refreshes the data of the objects in the
specified figure.

refreshdata(object_handles) refreshes the data of the objects
specified in object_handles or the children of those objects. Therefore,
object_handles can contain figure, axes, or plot object handles.

refreshdata(object_handles,'workspace') enables you to specify
whether the data source properties are evaluated in the base workspace
or the workspace of the function in which refreshdata was called.
workspace is a string that can be

• base— Evaluate the data source properties in the base workspace.

• caller — Evaluate the data source properties in the workspace of
the function that called refreshdata.

Remarks The Linked Plots feature (see documentation for linked) sets up data
sources for graphs and synchronizes them with the workspace variables
they display. When you use this feature, you do not also need to call
refreshdata, as it is essentially automatically triggered every time a
data source changes.

2-3288



refreshdata

If you are not using the Linked Plots feature, you need to set the
XDataSource, YDataSource, and/or ZDataSource properties of a graph
in order to use refreshdata. You can do that programmatically, as
shown in the examples below, or use the Property Editor, one of the
plotting tools. In the Property Editor, select the graph (e.g., a lineseries
object) and type in (or select from the drop-down choices) the name(s)
of the workspace variable(s) from which you want the plot to refresh,
in the fields labelled X Data Source, Y Data Source, and/or Z Data
Source. The call to refreshdata causes the graph to update.

Examples Plot a sine wave, identify data sources, and then modify its
YDataSource:

x = 0:.1:8;
y = sin(x);
h = plot(x,y)
set(h,'YDataSource','y')
set(h,'XDataSource','x')
y = sin(x.^3);
refreshdata

Create a surface plot, identify a ZDataSource for it, and change the
data to a different size.

Z = peaks(5);
h = surf(Z)
set(h,'ZDataSource','Z')
pause(3)
Z = peaks(25);
refreshdata

See Also The [X,Y,Z]DataSource properties of plot objects.

2-3289



regexp, regexpi

Purpose Match regular expression

Syntax regexp(parseStr, matchExpr)
[startIndex, endIndex, tokIndex, matchStr, tokenStr,

exprNames, splitStr] = regexp(parseStr, matchExpr)
[outVal1, outVal5, ...] = regexp(str, expr,
outSel1, outSel5,

...)
[v1 v2 ...] = regexp(str, expr, ..., options)

Description Each of the above syntaxes applies to both regexp and regexpi. The
regexp function is case sensitive in matching regular expressions to a
string, and regexpi is case insensitive.

regexp(parseStr, matchExpr) returns a row vector containing the
starting index of each substring of parseStr that matches the regular
expression string matchExpr. If no matches are found, regexp returns
an empty array. The parseStr and matchExpr arguments can also
be cell arrays of strings. See “Regular Expressions” in the MATLAB
Programming Fundamentals documentation for more information.

To specify more than one string to parse or more than one expression
to match, see the guidelines listed below under “Multiple Strings or
Expressions” on page 2-3298.

[startIndex, endIndex, tokIndex, matchStr, tokenStr,
exprNames, splitStr] = regexp(parseStr, matchExpr) returns up
to six values, one for each output variable you specify, and in the default
order (as shown in the table below).

Note The str and expr inputs are required and must be entered as the
first and second arguments, respectively. Any other input arguments
(all are described below) are optional and can be entered following the
two required inputs in any order.

2-3290



regexp, regexpi

[outVal1, outVal5, ...] = regexp(str, expr, outSel1,
outSel5, ...) returns up to six values, one for each output variable
you specify, and ordered according to the order of the qualifier
arguments, q1, q2, etc.

Tip When using the split option, regexp always returns one more
string than it does with the match option. Also, you can always put the
original input string back together from the substrings obtained from
both split and match. See “Example 4 — Splitting the Input String”
on page 2-3300.

[v1 v2 ...] = regexp(str, expr, ..., options) calls regexp
with one or more of the nondefault options listed in the following table.
These options must follow str and expr in the input argument list.

Option Description

mode See the section on Modes under Inputs, below.

’once’ Return only the first match found.

’warnings’ Display any hidden warning messages issued by
MATLAB during the execution of the command. This
option only enables warnings for the one command
being executed. See “Example 11 — Displaying Parsing
Warnings” on page 2-3305.

Input
Arguments

str

A string MATLAB that searches for a substring that matches
the regular expression. It can be of any length and may contain
any characters.

expr

A combination of text and operators that enable you to specify the
content of the phrase you are looking for in the parse string. Any

2-3291



regexp, regexpi

text in the expression must be an exact match for at least part of
the text in the parse string. Operators, on the other hand, are
symbolic. Each operator symbol stands for a type of character
(e.g., an uppercase letter ([A-Z]), a space character (\s), four
characters of any type (.{4})).

MATLAB parses the input string from left to right, attempting
to match text in the string with the first element of the regular
expression. During this process, MATLAB skips over any text
that does not match. When it finds the first match, it continues
parsing the string, this time attempting to match the second piece
of the expression, and so on. If characters are detected in the
string that do not match the expression, then MATLAB drops the
current match candidate and again starts looking for a match
with the first element of the expression.

outputSelect

One to seven keywords with which you can select which output
values regexp is to return and in what order.

Qualifier Description Default
Order

start Row vector containing the starting index
of each substring of str that matches
expr.

1

end Row vector containing the ending index
of each substring of str that matches
expr.

2

tokenExtentsCell array containing the starting and
ending indices of each substring of str
that matches a token in expr. (This is a
double array when used with 'once'.)

3

match Cell array containing the text of each
substring of str that matches expr.
(This is a string when used with 'once'.)

4

2-3292



regexp, regexpi

Qualifier Description Default
Order

tokens Cell array of cell arrays of strings
containing the text of each token
captured by regexp. (This is a cell array
of strings when used with 'once'.)

5

names Structure array containing the name and
text of each named token captured by
regexp. If there are no named tokens in
expr, regexp returns a structure array
with no fields.

Field names of the returned structure are
set to the token names, and field values
are the text of those tokens. Named
tokens are generated by the expression
(?<tokenname>).

6

split Cell array containing those parts of
the input string that are delimited by
substrings returned when using the
regexp 'match' option.

7

mode

You can specify one or more of the following modes with the
regexp, regexpi, and regexprep functions. You can enable or
disable any of these modes using the mode specifier keyword (e.g.,
'lineanchors') or the mode flag (e.g., (?m)). Both are shown
in the tables that follow. Use the keyword to enable or disable
the mode for the entire string being parsed. Use the flag to both
enable and disable the mode for selected pieces of the string.

For more information about modes, see “Modifying Parameters
of the Search” in the MATLAB “Programming Fundamentals”
documentation.

Case-Sensitivity Mode

2-3293



regexp, regexpi

Use the Case-Sensitivity mode to control whether or not MATLAB
considers letter case when matching an expression to a string.
“Example 7 — Using the Case-Sensitive Mode” on page 2-3303
illustrates this mode.

Mode
Keyword Flag Description

matchcase’ (?-i) Letter case must match when
matching patterns to a string. (The
default for regexp).

’ignorecase’ (?i) Do not consider letter case when
matching patterns to a string. (The
default for regexpi).

Dot Matching Mode

Use the Dot Matching mode to control whether or not MATLAB
includes the newline (\n) character when matching the dot (.)
metacharacter in a regular expression. “Example 8 — Using the
Dot Matching Mode” on page 2-3303 illustrates the Dot Matching
mode.

Mode
Keyword Flag Description

’dotall’ (?s) Match dot (’.’) in the pattern
string with any character. (This
is the default).

’dotexceptnewline’(?-s) Match dot in the pattern with any
character that is not a newline.

Anchor Type Mode

Use the Anchor Type mode to control whether MATLAB considers
the ^ and $ metacharacters to represent the beginning and end
of a string or the beginning and end of a line. “Example 9 —

2-3294



regexp, regexpi

Using the Anchor Type Mode” on page 2-3304 illustrates the
Anchor mode.

Mode
Keyword Flag Description

’stringanchors’ (?-m) Match the ^ and $ metacharacters
at the beginning and end of a
string. (This is the default).

’lineanchors’ (?m) Match the ^ and $ metacharacters
at the beginning and end of a line.

Spacing Mode

Use the Spacing mode to control how MATLAB interprets space
characters and comments within the parsing string. Note that
spacing mode applies to the parsing string (the second input
argument that contains the metacharacters (e.g., \w ) and not the
string being parsed. “Example 10 — Using the Spacing Mode” on
page 2-3305 illustrates the Spacing mode.

Mode
Keyword Flag Description

’literalspacing’(?-x) Parse space characters and
comments (the # character and any
text to the right of it) in the same
way as any other characters in the
string. (This is the default).

’freespacing’ (?x) Ignore spaces and comments when
parsing the string. (You must use
'\ ' and '\#' to match space and
# characters.)

once

Specify the 'once' option to return only the first match found
from the parse. This example finds four matches:

2-3295



regexp, regexpi

warning

Display any hidden warning messages issued by MATLAB during
the execution of the command. This option only enables warnings
for the one command being executed.

Output
Arguments

Return Values for Regular Expressions

Default
Order Description Qualifier

1 Row vector containing the starting index of each substring of
str that matches expr.

start

2 Row vector containing the ending index of each substring of
str that matches expr.

end

3 Cell array containing the starting and ending indices of each
substring of str that matches a token in expr. (This is a
double array when used with 'once'.)

tokenExtents

4 Cell array containing the text of each substring of str that
matches expr. (This is a string when used with 'once'.)

match

5 Cell array of cell arrays of strings containing the text of each
token captured by regexp. (This is a cell array of strings
when used with 'once'.)

tokens

2-3296



regexp, regexpi

Return Values for Regular Expressions (Continued)

Default
Order Description Qualifier

6 Structure array containing the name and text of each named
token captured by regexp. If there are no named tokens in
expr, regexp returns a structure array with no fields.

Field names of the returned structure are set to the token
names, and field values are the text of those tokens. Named
tokens are generated by the expression (?<tokenname>).

names

7 Cell array containing those parts of the input string that are
delimited by substrings returned when using the regexp
'match' option.

split

endIndex

Row vector containing the ending index of each substring of str
that matches expr.

tokenExtents

Cell array containing the starting and ending indices of each
substring of str that matches a token in expr. (This is a double
array when used with ’once’.)

matchString

Cell array containing the text of each substring of str that matches
expr. (This is a string when used with ’once’.)

tokenStrings

Cell array of cell arrays of strings containing the text of each
token captured by regexp. (This is a cell array of strings when
used with ’once’.)

tokenNames

Structure array containing the name and text of each named
token captured by regexp. If there are no named tokens in expr,

2-3297



regexp, regexpi

regexp returns a structure array with no fields. Field names
of the returned structure are set to the token names, and field
values are the text of those tokens. Named tokens are generated
by the expression (?<tokenName>).

splitString

Cell array containing those parts of the input string that are
delimited by substrings returned when using the regexp ’match’
option.

Remarks See “Regular Expressions” in the MATLAB Programming Fundamentals
documentation for a listing of all regular expression elements supported
by MATLAB.

Multiple Strings or Expressions

Either the str or expr argument, or both, can be a cell array of strings,
according to the following guidelines:

• If str is a cell array of strings, then each of the regexp outputs is a
cell array having the same dimensions as str.

• If str is a single string but expr is a cell array of strings, then each
of the regexp outputs is a cell array having the same dimensions
as expr.

• If both str and expr are cell arrays of strings, these two cell arrays
must contain the same number of elements.

Examples Example 1 — Matching a Simple Pattern

Return a row vector of indices that match words that start with c,
end with t, and contain one or more vowels between them. Make the
matches insensitive to letter case (by using regexpi):

str = 'bat cat can car COAT court cut ct CAT-scan';
regexpi(str, 'c[aeiou]+t')
ans =

5 17 28 35

2-3298



regexp, regexpi

Example 2 — Parsing Multiple Input Strings

Return a cell array of row vectors of indices that match capital letters
and white spaces in the cell array of strings str:

str = {'Madrid, Spain' 'Romeo and Juliet' 'MATLAB is great'};

s1 = regexp(str, '[A-Z]');

s2 = regexp(str, '\s');

Capital letters, '[A-Z]', were found at these str indices:

s1{:}
ans =

1 9
ans =

1 11
ans =

1 2 3 4 5 6

Space characters, '\s', were found at these str indices:

s2{:}
ans =

8
ans =

6 10
ans =

7 10

Example 3 — Selecting Return Values

Return the text and the starting and ending indices of words containing
the letter x:

str = 'regexp helps you relax';
[m s e] = regexp(str, '\w*x\w*', 'match', 'start', 'end')
m =

'regexp' 'relax'
s =

1 18

2-3299



regexp, regexpi

e =
6 22

Example 4 — Splitting the Input String

Find the substrings delimited by the ^ character:

s1 = ['Use REGEXP to split ^this string into ' ...
'several ^individual pieces'];

s2 = regexp(s1, '\^', 'split');

s2(:)
ans =

'Use REGEXP to split '
'this string into several '
'individual pieces'

The split option returns those parts of the input string that are not
returned when using the 'match' option. Note that when you match the
beginning or ending characters in a string (as is done in this example),
the first (or last) return value is always an empty string:

str = 'She sells sea shells by the seashore.';

[matchstr splitstr] = regexp(str, '[Ss]h.', 'match', ...
'split')

matchstr =
'She' 'she' 'sho'

splitstr =
'' ' sells sea ' 'lls by the sea' 're.'

For any string that has been split, you can reassemble the pieces into
the initial string using the command

j = [splitstr; [matchstr {''}]]; [j{:}]

ans =
She sells sea shells by the seashore.

2-3300



regexp, regexpi

Example 5 — Using Tokens

Search a string for opening and closing HTML tags. Use the expression
<(\w+) to find the opening tag (e.g., '<tagname') and to create a token
for it. Use the expression </\1> to find another occurrence of the same
token, but formatted as a closing tag (e.g., '</tagname>'):

str = ['if <code>A</code> == x<sup>2</sup>, ' ...
'<em>disp(x)</em>']

str =
if <code>A</code> == x<sup>2</sup>, <em>disp(x)</em>

expr = '<(\w+).*?>.*?</\1>';

[tok mat] = regexp(str, expr, 'tokens', 'match');

tok{:}
ans =

'code'
ans =

'sup'
ans =

'em'

mat{:}
ans =

<code>A</code>
ans =

<sup>2</sup>
ans =

<em>disp(x)</em>

See “Tokens” in the MATLAB Programming Fundamentals
documentation for information on using tokens.

Example 6 — Using Named Capture

Enter a string containing two names, the first and last names being
in a different order:

2-3301



regexp, regexpi

str = sprintf('John Davis\nRogers, James')
str =

John Davis
Rogers, James

Create an expression that generates first and last name tokens,
assigning the names first and last to the tokens. Call regexp to get
the text and names of each token found:

expr = ...

'(?<first>\w+)\s+(?<last>\w+)|(?<last>\w+),\s+(?<first>\w+)';

[tokens names] = regexp(str, expr, 'tokens', 'names');

Examine the tokens cell array that was returned. The first and last
name tokens appear in the order in which they were generated: first
name–last name, then last name–first name:

tokens{:}
ans =

'John' 'Davis'
ans =

'Rogers' 'James'

Now examine the names structure that was returned. First and last
names appear in a more usable order:

names(:,1)
ans =

first: 'John'
last: 'Davis'

names(:,2)
ans =

first: 'James'
last: 'Rogers'

2-3302



regexp, regexpi

Example 7 — Using the Case-Sensitive Mode

Given a string that has both uppercase and lowercase letters,

str = 'A string with UPPERCASE and lowercase text.';

Use the regexp default mode (case-sensitive) to locate only the
lowercase instance of the word case:

regexp(str, 'case', 'match')
ans =

'case'

Now disable case-sensitive matching to find both instances of case:

regexp(str, 'case', 'ignorecase', 'match')
ans =

'CASE' 'case'

Match 5 letters that are followed by ’CASE’. Use the (?-i) flag to turn on
case-sensitivity for the first match and (?i) to turn it off for the second:

M = regexp(str, {'(?-i)\w{5}(?=CASE)', ...
'(?i)\w{5}(?=CASE)'}, 'match');

M{:}
ans =

'UPPER'
ans =

'UPPER' 'lower'

Example 8 — Using the Dot Matching Mode

Parse the following string that contains a newline (\n) character:

str = sprintf('abc\ndef')
str =

abc
def

2-3303



regexp, regexpi

When you use the default mode, dotall, MATLAB includes the newline
in the characters matched:

regexp(str, '.', 'match')
ans =

'a' 'b' 'c' [1x1 char] 'd' 'e' 'f'

When you use the dotexceptnewline mode, MATLAB skips the
newline character:

regexp(str, '.', 'match', 'dotexceptnewline')
ans =

'a' 'b' 'c' 'd' 'e' 'f'

Example 9 — Using the Anchor Type Mode

Given the following two-line string,

str = sprintf('%s\n%s', 'Here is the first line', ...
'followed by the second line')

str =
Here is the first line
followed by the second line

In stringanchors mode, MATLAB interprets the $ metacharacter as
an end-of-string specifier, and thus finds the last two words of the
entire string:

regexp(str, '\w+\W\w+$', 'match', 'stringanchors')
ans =

'second line'

While in lineanchors mode, MATLAB interprets $ as an end-of-line
specifier, and finds the last two words of each line:

regexp(str, '\w+\W\w+$', 'match', 'lineanchors')
ans =

'first line' 'second line'

2-3304



regexp, regexpi

Example 10 — Using the Spacing Mode

Create a file called regexp_str.txt containing the following text.

(?x) # turn on freespacing.

# This pattern matches a string with a repeated letter.

\w* # First, match any number of preceding word characters.

( # Mark a token.

. # Match a character of any type.

) # Finish capturing said token.

\1 # Backreference to match what token #1 matched.

\w* # Finally, match the remainder of the word.

Because the first line enables freespacing mode, MATLAB ignores all
spaces and comments that appear in the file. Here is the string to parse:

str = ['Looking for words with letters that ' ...
'appear twice in succession.'];

Use the pattern expression read from the file to find those words that
have consecutive matching letters:

patt = fileread('regexp_str.txt');
regexp(str, patt, 'match')
ans =

'Looking' 'letters' 'appear' 'succession'

Example 11 — Displaying Parsing Warnings

To help debug problems in parsing a string with regexp, regexpi, or
regexprep, use the ’warnings’ option to view all warning messages:

regexp('$.', '[a-]','warnings')
Warning: Unbound range.
[a-]

|

2-3305



regexp, regexpi

See Also “Regular Expressions”, regexprep, regexptranslate, strfind, strcmp,
strcmpi, strncmp, strncmpi

2-3306



regexprep

Purpose Replace string using regular expression

Syntax s = regexprep('str', 'expr', 'repstr')
s = regexprep('str', 'expr', 'repstr', options)

Description s = regexprep('str', 'expr', 'repstr') replaces all occurrences
of the regular expression expr in string str with the string repstr. The
new string is returned in s. If no matches are found, return string s is
the same as input string str. You can use character representations
(e.g., '\t' for tab, or '\n' for newline) in replacement string
repstr. See “Regular Expressions” in the MATLAB Programming
Fundamentals documentation for more information.

If str is a cell array of strings, then the regexprep return value s is
always a cell array of strings having the same dimensions as str.

To specify more than one expression to match or more than one
replacement string, see the guidelines listed below under “Multiple
Expressions or Replacement Strings” on page 2-3308.

You can capture parts of the input string as tokens and then reuse them
in the replacement string. Specify the parts of the string to capture
using the (...) operator. Specify the tokens to use in the replacement
string using the operators $1, $2, $N to reference the first, second, and
Nth tokens captured. (See “Tokens” and the example “Using Tokens in
a Replacement String” in the MATLAB Programming Fundamentals
documentation for information on using tokens.)

s = regexprep('str', 'expr', 'repstr', options) By default,
regexprep replaces all matches and is case sensitive. You can use one
or more of the following options with regexprep.

Option Description

mode See mode descriptions on the regexp reference page.

N Replace only the Nth occurrence of expr in str.

’once’ Replace only the first occurrence of expr in str.

2-3307



regexprep

Option Description

’ignorecase’ Ignore case when matching and when replacing.

’preservecase’ Ignore case when matching (as with 'ignorecase'),
but override the case of replace characters with
the case of corresponding characters in str when
replacing.

’warnings’ Display any hidden warning messages issued by
MATLAB during the execution of the command.
This option only enables warnings for the one
command being executed.

Remarks See “Regular Expressions” in the MATLAB Programming Fundamentals
documentation for a listing of all regular expression metacharacters
supported by MATLAB.

Multiple Expressions or Replacement Strings

In the case of multiple expressions and/or replacement strings,
regexprep attempts to make all matches and replacements. The first
match is against the initial input string. Successive matches are against
the string resulting from the previous replacement.

The expr and repstr inputs follow these rules:

• If expr is a cell array of strings and repstr is a single string,
regexprep uses the same replacement string on each expression
in expr.

• If expr is a single string and repstr is a cell array of N strings,
regexprep attempts to make N matches and replacements.

• If both expr and repstr are cell arrays of strings, then expr and
repstr must contain the same number of elements, and regexprep
pairs each repstr element with its matching element in expr.

2-3308



regexprep

Examples Example 1 — Making a Case-Sensitive Replacement

Perform a case-sensitive replacement on words starting with m and
ending with y:

str = 'My flowers may bloom in May';
pat = 'm(\w*)y';
regexprep(str, pat, 'April')
ans =

My flowers April bloom in May

Replace all words starting with m and ending with y, regardless of case,
but maintain the original case in the replacement strings:

regexprep(str, pat, 'April', 'preservecase')
ans =

April flowers april bloom in April

Example 2 — Using Tokens In the Replacement String

Replace all variations of the words 'walk up' using the letters following
walk as a token. In the replacement string

str = 'I walk up, they walked up, we are walking up.';
pat = 'walk(\w*) up';
regexprep(str, pat, 'ascend$1')
ans =

I ascend, they ascended, we are ascending.

Example 3 — Operating on Multiple Strings

This example operates on a cell array of strings. It searches
for consecutive matching letters (e.g., 'oo') and uses a common
replacement value ('--') for all matches. The function returns a cell
array of strings having the same dimensions as the input cell array:

str = { ...
'Whose woods these are I think I know.' ; ...
'His house is in the village though;' ; ...
'He will not see me stopping here' ; ...
'To watch his woods fill up with snow.'};

2-3309



regexprep

a = regexprep(str, '(.)\1', '--', 'ignorecase')
a =

'Whose w--ds these are I think I know.'
'His house is in the vi--age though;'
'He wi-- not s-- me sto--ing here'
'To watch his w--ds fi-- up with snow.'

See Also “Regular Expressions”, regexp, regexpi, regexptranslate, strfind,
strcmp, strcmpi, strncmp, strncmpi

2-3310



regexptranslate

Purpose Translate string into regular expression

Syntax s2 = regexptranslate(type, s1)

Description s2 = regexptranslate(type, s1) translates string s1 into a regular
expression string s2 that you can then use as input into one of the
MATLAB regular expression functions such as regexp. The type
input can be either one of the following strings that define the type of
translation to be performed. See “Regular Expressions” in the MATLAB
Programming Fundamentals documentation for more information.

Type Description

'escape' Translate all special characters (e.g., ’$’, ’.’, ’?’, ’[’) in
string s1 so that they are treated as literal characters
when used in the regexp and regexprep functions. The
translation inserts an escape character (’\’) before each
special character in s1. Return the new string in s2.

'wildcard' Translate all wildcard and ’.’ characters in string s1 so
that they are treated as literal wildcards and periods
when used in the regexp and regexprep functions. The
translation replaces all instances of ’*’ with ’.*’, all
instances of ’?’ with ’.’, and all instances of ’.’ with ’\.’.
Return the new string in s2.

Examples Example 1 — Using the ’escape’ Option

Because regexp interprets the sequence ’\n’ as a newline character, it
cannot locate the two consecutive characters ’\’ and ’n’ in this string:

str = 'The sequence \n generates a new line';
pat = '\n';

regexp(str, pat)
ans =

[]

2-3311



regexptranslate

To have regexp interpret the expression expr as the characters ’\’ and
’n’, first translate the expression using regexptranslate:

pat2 = regexptranslate('escape', pat)
pat2 =

\\n

regexp(str, pat2)
ans =

14

Example 2 — Using ’escape’ In a Replacement String

Replace the word ’walk’ with ’ascend’ in this string, treating the
characters ’$1’ as a token designator:

str = 'I walk up, they walked up, we are walking up.';
pat = 'walk(\w*) up';

regexprep(str, pat, 'ascend$1')
ans =

I ascend, they ascended, we are ascending.

Make another replacement on the same string, this time treating the
’$1’ as literal characters:

regexprep(str, pat, regexptranslate('escape', 'ascend$1'))
ans =

I ascend$1, they ascend$1, we are ascend$1.

Example 3 — Using the ’wildcard’ Option

Given the following string of filenames, pick out just the MAT-files. Use
regexptranslate to interpret the ’*’ wildcard as ’\w+’ instead of as
a regular expression quantifier:

files = ['test1.mat, myfile.mat, newfile.txt, ' ...
'jan30.mat, table3.xls'];

regexp(str, regexptranslate('wildcard', '*.mat'), 'match')
ans =

2-3312



regexptranslate

'test1.mat' 'myfile.mat' 'jan30.mat'

To see the translation, you can type

regexptranslate('wildcard','*.mat')
ans =

\w+\.mat

See Also “Regular Expressions”, regexp, regexpi, regexprep

2-3313



registerevent

Purpose Associate event handler for COM object event at run time

Syntax h.registerevent(eventhandler)
registerevent(h, eventhandler)

Description h.registerevent(eventhandler) registers event handler routines
with their corresponding events. The eventhandler argument can be
either a string that specifies the name of the event handler function,
or a function handle that maps to that function. Strings used in the
eventhandler argument are not case sensitive.

registerevent(h, eventhandler) is an alternate syntax.

COM functions are available on Microsoft Windows systems only.

Examples Show events in the MATLAB sample control:

f = figure ('position', [100 200 200 200]);
h = actxcontrol ('mwsamp.mwsampctrl.2', [0 0 200 200], f);
h.events

MATLAB displays all events associated with the instance of the control
(output is formatted):

Click = void Click()
DblClick = void DblClick()
MouseDown = void MouseDown(int16 Button, int16 Shift,

Variant x, Variant y)
Event_Args = void Event_Args(int16 typeshort,

int32 typelong, double typedouble, string typestring,
bool typebool)

Register all events with the same event handler routine, sampev:

h.registerevent('sampev');
h.eventlisteners

2-3314



registerevent

MATLAB displays:

ans =
'Click' 'sampev'
'DblClick' 'sampev'
'MouseDown' 'sampev'
'Event_Args' 'sampev'

Register individual events:

%Unregister existing events
h.unregisterallevents;
%Register specific events
h.registerevent({'click' 'myclick'; ...

'dblclick' 'my2click'});
h.eventlisteners

MATLAB displays:

ans =
'click' 'myclick'
'dblclick' 'my2click'

Register events using a function handle (@sampev) instead of the
function name:

h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200]);
registerevent(h, @sampev);

See Also events (COM) | eventlisteners | unregisterevent |
unregisterallevents | isevent

How To • “Writing Event Handlers”

2-3315



rehash

Purpose Refresh function and file system path caches

Syntax rehash
rehash path
rehash toolbox
rehash pathreset
rehash toolboxreset
rehash toolboxcache

Description rehash with no arguments updates the MATLAB list of known
files and classes for directories on the search path that are not in
matlabroot/toolbox. It compares the timestamps for loaded functions
against their timestamps on disk. It clears loaded functions if the files
on disk are newer. All of this normally happens each time MATLAB
displays the Command Window prompt. Use rehash with no arguments
only when you run a program file that updates another program file,
and the calling file needs to reuse the updated version of the second file
before the calling file has finished running.

rehash path performs the same updates as rehash, but uses a different
technique for detecting the files and directories that require updates.
Run rehash path only if you receive a warning during MATLAB
startup notifying you that MATLAB could not tell if a directory has
changed, and you encounter problems with MATLAB not using the
most current versions of your program files.

rehash toolbox performs the same updates as rehash path, except it
updates the list of known files and classes for all directories on the
search path, including those in matlabroot/toolbox. Run rehash
toolbox when you change, add, or remove files in matlabroot/toolbox
during a session. Typically, you should not make changes to files and
directories in matlabroot/toolbox.

rehash pathreset performs the same updates as rehash path, and also
ensures the known files and classes list follows precedence rules for
shadowed functions.

2-3316



rehash

rehash toolboxreset performs the same updates as rehash toolbox,
and also ensures the known files and classes list follows precedence
rules for shadowed functions.

rehash toolboxcache performs the same updates as rehash toolbox,
and also updates the cache file. This is the equivalent of clicking the
Update Toolbox Path Cache button in the General Preferences
dialog box.

See Also addpath, clear, matlabroot, path, rmpath

“Toolbox Path Caching in the MATLAB Program” and “Using
the MATLAB Search Path” in the MATLAB Desktop Tools and
Development Environment documentation

2-3317



release

Purpose Release COM interface

Syntax h.release
release(h)

Description h.release releases the interface and all resources used by the interface.
You must release the handle when you are done with the interface. A
released interface is no longer valid. MATLAB generates an error if you
try to use an object that represents that interface.

release(h) is an alternate syntax.

Releasing the interface does not delete the control itself (see the delete
function), since other interfaces on that object might still be active.

COM functions are available on Microsoft Windows systems only.

Examples 1 Create an instance of a Microsoft Calendar control. Get a TitleFont
interface and use it to change the appearance of the calendar title
font:

f = figure('position',[300 300 500 500]);
cal = actxcontrol('mscal.calendar', [0 0 500 500], f);

TFont = cal.TitleFont;
TFont.Name = 'Viva BoldExtraExtended';
TFont.Bold = 0;

2 After working with the title font, release the TitleFont interface:

TFont.release;

3 Delete the cal object and the figure window:

cal.delete;
delete(f);
clear f;

See Also delete (COM) | actxcontrol | actxserver

2-3318



release

How To • Releasing Interfaces

2-3319



relationaloperators (handle)

Purpose Equality and sorting of handle objects

Syntax TF = eq(H1,H2)
TF = ne(H1,H2)
TF = lt(H1,H2)
TF = le(H1,H2)
TF = gt(H1,H2)
TF = ge(H1,H2)

Description TF = eq(H1,H2)

TF = ne(H1,H2)

TF = lt(H1,H2)

TF = le(H1,H2)

TF = gt(H1,H2)

TF = ge(H1,H2)

For each pair of input arrays (H1 and H2), a logical array of the
same size is returned in which each element is an element-wise
equality or comparison test result. These methods perform scalar
expansion in the same way as the MATLAB built-in functions. See
relationaloperators for more information.

You can make the following assumptions about the result of a handle
comparison:

• The same two handles always compare as equal and the repeated
comparison of any two handles always yields the same result in the
same MATLAB session.

• Different handles are always not-equal.

• The order of handle values is purely arbitrary and has no connection
to the state of the handle objects being compared.

• If the input arrays belong to different classes (including the case
where one input array belongs to a non-handle class such as double)
then the comparison is always false.

2-3320



relationaloperators (handle)

• If a comparison is made between a handle object and an object of a
dominant class, the method of the dominant class is invoked. You
should generally test only like objects because a dominant class
might not define one of these methods.

• An error occurs if the input arrays are not the same size and neither
is scalar.

See Also handle, meta.class

2-3321



rem

Purpose Remainder after division

Syntax R = rem(X,Y)

Description R = rem(X,Y) if Y ~= 0, returns X - n.*Y where n = fix(X./Y). If Y
is not an integer and the quotient X./Y is within roundoff error of an
integer, then n is that integer. The inputs X and Y must be real arrays
of the same size, or real scalars.

The following are true by convention:

• rem(X,0) is NaN

• rem(X,X) for X~=0 is 0

• rem(X,Y) for X~=Y and Y~=0 has the same sign as X.

Remarks mod(X,Y) for X~=Y and Y~=0 has the same sign as Y.

rem(X,Y) and mod(X,Y) are equal if X and Y have the same sign, but
differ by Y if X and Y have different signs.

The rem function returns a result that is between 0 and sign(X)*abs(Y).
If Y is zero, rem returns NaN.

See Also mod

2-3322



remove (Map)

Purpose Remove key-value pairs from containers.Map

Syntax remove(M, keys)

Description remove(M, keys) erases all specified keys, and the values associated
with them, from Map object M.keys can be a scalar key or a cell array
of keys.

Using remove changes the count of the elements in the map.

Read more about Map Containers in the MATLAB Programming
Fundamentals documentation.

Examples Create a Map object containing the names of several US states and the
capital city of each:

US_Capitals = containers.Map( ...
{'Arizona', 'Nebraska', 'Nevada', 'New York', ...
'Georgia', 'Alaska', 'Vermont', 'Oregon'}, ...

{'Phoenix', 'Lincoln', 'Carson City', 'Albany', ...
'Atlanta', 'Juneau', 'Montpelier', 'Salem'});

After checking how many keys there are in the US_Capitals map,
remove the key-value pair with key name Oregon from it:

US_Capitals.Count
ans =

8

remove(US_Capitals, 'Oregon');

US_Capitals.Count
ans =

7

Remove three more key-value pairs from the map:

2-3323



remove (Map)

remove(US_Capitals, {'Nebraska', 'Nevada', 'New York'});
US_Capitals.Count
ans =

4

See Also containers.Map, keys(Map), values(Map), size(Map),
length(Map)isKey(Map),handle

2-3324



removets

Purpose Remove timeseries objects from tscollection object

Syntax tsc = removets(tsc,Name)

Description tsc = removets(tsc,Name) removes one or more timeseries objects
with the name specified in Name from the tscollection object tsc. Name
can either be a string or a cell array of strings.

Examples The following example shows how to remove a time series from a
tscollection.

1 Create two timeseries objects, ts1 and ts2.

ts1=timeseries([1.1 2.9 3.7 4.0 3.0],1:5,'name','acceleration');

ts2=timeseries([3.2 4.2 6.2 8.5 1.1],1:5,'name','speed');

2 Create a tscollection object tsc, which includes ts1 and ts2.

tsc=tscollection({ts1 ts2});

3 To view the members of tsc, type the following at the MATLAB
prompt:

tsc

The response is

Time Series Collection Object: unnamed

Time vector characteristics

Start time 1 seconds
End time 5 seconds

Member Time Series Objects:

2-3325



removets

acceleration
speed

The members of tsc are listed by name at the bottom: acceleration
and speed. These are the Name properties of ts1 and ts2, respectively.

4 Remove ts2 from tsc.

tsc=removets(tsc,'speed');

5 To view the current members of tsc, type the following at the
MATLAB prompt:

tsc

The response is

Time Series Collection Object: unnamed

Time vector characteristics

Start time 1 seconds
End time 5 seconds

Member Time Series Objects:
acceleration

The remaining member of tsc is acceleration. The timeseries speed
has been removed.

See Also addts, tscollection

2-3326



rename

Purpose Rename file on FTP server

Syntax rename(f,'oldname','newname')

Description rename(f,'oldname','newname') changes the name of the file oldname
to newname in the current directory of the FTP server f, where f was
created using ftp.

Examples Connect to server testsite, view the contents, and change the name
of testfile.m to showresults.m.

test=ftp('ftp.testsite.com');
dir(test)
. .. testfile.m
rename(test,'testfile.m','showresults.m')
dir(test)
. .. showresults.m

See Also dir (ftp), delete (ftp), ftp, mget, mput

2-3327



repmat

Purpose Replicate and tile array

Syntax B = repmat(A,m,n)
B = repmat(A,[m n])
B = repmat(A,[m n p...])

Description B = repmat(A,m,n) creates a large matrix B consisting of an m-by-n
tiling of copies of A. The size of B is [size(A,1)*m, (size(A,2)*n]. The
statement repmat(A,n) creates an n-by-n tiling.

B = repmat(A,[m n]) accomplishes the same result as repmat(A,m,n).

B = repmat(A,[m n p...]) produces a multidimensional array B
composed of copies of A. The size of B is [size(A,1)*m, size(A,2)*n,
size(A,3)*p, ...].

Remarks repmat(A,m,n), when A is a scalar, produces an m-by-nmatrix filled with
A’s value and having A’s class. For certain values, you can achieve the
same results using other functions, as shown by the following examples:

• repmat(NaN,m,n) returns the same result as NaN(m,n).

• repmat(single(inf),m,n) is the same as inf(m,n,'single').

• repmat(int8(0),m,n) is the same as zeros(m,n,'int8').

• repmat(uint32(1),m,n) is the same as ones(m,n,'uint32').

• repmat(eps,m,n) is the same as eps(ones(m,n)).

Examples In this example, repmat replicates 12 copies of the second-order identity
matrix, resulting in a “checkerboard” pattern.

B = repmat(eye(2),3,4)

B =
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0

2-3328



repmat

0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

The statement N = repmat(NaN,[2 3]) creates a 2-by-3matrix of NaNs.

See Also reshape, bsxfun, NaN, Inf, ones, zeros

2-3329



resample (timeseries)

Purpose Select or interpolate timeseries data using new time vector

Syntax ts = resample(ts,Time)
ts = resample(ts,Time,interp_method)
ts = resample(ts,Time,interp_method,code)

Description ts = resample(ts,Time) resamples the timeseries object ts using
the new Time vector. When ts uses date strings and Time is numeric,
Time is treated as specified relative to the ts.TimeInfo.StartDate
property and in the same units that ts uses. The resample operation
uses the default interpolation method, which you can view by using
the getinterpmethod(ts) syntax.

ts = resample(ts,Time,interp_method) resamples the timeseries
object ts using the interpolation method given by the string
interp_method. Valid interpolation methods include 'linear' and
'zoh' (zero-order hold).

ts = resample(ts,Time,interp_method,code) resamples the
timeseries object ts using the interpolation method given by the string
interp_method. The integer code is a user-defined Quality code for
resampling, applied to all samples.

Examples The following example shows how to resample a timeseries object.

1 Create a timeseries object.

ts=timeseries([1.1 2.9 3.7 4.0 3.0],1:5,'Name','speed');

2 Transpose ts to make the data columnwise.

ts=transpose(ts)

The display in the MATLAB Command Window is

Time Series Object: speed

Time vector characteristics

2-3330



resample (timeseries)

Length 5
Start time 1 seconds
End time 5 seconds

Data characteristics

Interpolation method linear
Size [5 1]
Data type double

Time Data Quality
-------------------------------------------
1 1.1
2 2.9
3 3.7
4 4
5 3

Note that the interpolation method is set to linear, by default.

3 Resample ts using its default interpolation method.

res_ts=resample(ts,[1 1.5 3.5 4.5 4.9])

The resampled time series displays as follows:

Time Series Object: speed

Time vector characteristics

Length 5
Start time 1 seconds
End time 4.900000e+000 seconds

2-3331



resample (timeseries)

Data characteristics

Interpolation method linear
Size [5 1]
Data type double

Time Data Quality
-------------------------------------------
1 1.1
1.5 2
3.5 3.85
4.5 3.5
4.9 3.1

See Also getinterpmethod, setinterpmethod, synchronize, timeseries

2-3332



resample (tscollection)

Purpose Select or interpolate data in tscollection using new time vector

Syntax tsc = resample(tsc,Time)
tsc = resample(tsc,Time,interp_method)
tsc = resample(tsc,Time,interp_method,code)

Description tsc = resample(tsc,Time) resamples the tscollection object
tsc on the new Time vector. When tsc uses date strings and Time
is numeric, Time is treated as numerical specified relative to the
tsc.TimeInfo.StartDate property and in the same units that tsc uses.
The resample method uses the default interpolation method for each
time series member.

tsc = resample(tsc,Time,interp_method) resamples the
tscollection object tsc using the interpolation method given by the
string interp_method. Valid interpolation methods include 'linear'
and 'zoh' (zero-order hold).

tsc = resample(tsc,Time,interp_method,code) resamples the
tscollection object tsc using the interpolation method given by the
string interp_method. The integer code is a user-defined quality code
for resampling, applied to all samples.

Examples The following example shows how to resample a tscollection that
consists of two timeseries members.

1 Create two timeseries objects.

ts1=timeseries([1.1 2.9 3.7 4.0 3.0],1:5,'name','acceleration');

ts2=timeseries([3.2 4.2 6.2 8.5 1.1],1:5,'name','speed');

2 Create a tscollection tsc.

tsc=tscollection({ts1 ts2});

The time vector of the collection tsc is [1:5], which is the same as
for ts1 and ts2 (individually).

2-3333



resample (tscollection)

3 Get the interpolation method for acceleration by typing

tsc.acceleration

MATLAB responds with

Time Series Object: acceleration

Time vector characteristics

Length 5
Start time 1 seconds
End time 5 seconds

Data characteristics

Interpolation method linear
Size [1 1 5]
Data type double

4 Set the interpolation method for speed to zero-order hold by typing

setinterpmethod(tsc.speed,'zoh')

MATLAB responds with

Time Series Object: acceleration

Time vector characteristics

Length 5
Start time 1 seconds
End time 5 seconds

2-3334



resample (tscollection)

Data characteristics

Interpolation method zoh
Size [1 1 5]
Data type double

5 Resample the time-series collection tsc by individually resampling
each time-series member of the collection and using its interpolation
method.

res_tsc=resample(tsc,[1 1.5 3.5 4.5 4.9])

See Also getinterpmethod, setinterpmethod, tscollection

2-3335



reset

Purpose Reset graphics object properties to their defaults

Syntax reset(h)

Description reset(h) resets all properties having factory defaults on the object
identified by h. To see the list of factory defaults, use the statement

get(0,'factory')

If h is a figure, the MATLAB software does not reset Position, Units,
WindowStyle, or PaperUnits. If h is an axes, MATLAB does not reset
Position and Units.

Examples reset(gca) resets the properties of the current axes.

reset(gcf) resets the properties of the current figure.

See Also cla, clf, gca, gcf, hold

“Object Manipulation” on page 1-110 for related functions

2-3336



reset (RandStream)

Purpose Reset random stream

Class @RandStream

Syntax reset(s)
reset(s,seed)

Description reset(s) resets the generator for the random stream s to its initial
internal state. This is similar to clearing s and recreating it using
RandStream('type',...), except reset does not set the stream’s
RandnAlg, Antithetic, and FullPrecision properties to their original
values.

reset(s,seed) resets the generator for the random stream s to the
initial internal state corresponding to the seed seed. Resetting a
stream’s seed can invalidate independence with other streams.

Note Resetting a stream should be used primarily for reproducing
results.

Examples 1 Create a random stream object.

s=RandStream('mt19937ar')

2 Make it the default stream.

RandStream.setDefaultStream(s)

3 Reset the stream object you just created and generate 5 uniform
random values using the rand method.

rand(s,1,5)

ans =

0.3631 0.4048 0.1490 0.9438 0.1247

2-3337



reset (RandStream)

4 Reset the stream.

reset(s)

5 Generate the same 5 random values from the default stream.

rand(s,1,5)

ans =

0.3631 0.4048 0.1490 0.9438 0.1247

See Also @RandStream

2-3338



reshape

Purpose Reshape array

Syntax B = reshape(A,m,n)
B = reshape(A,m,n,p,...)
B = reshape(A,[m n p ...])
B = reshape(A,...,[],...)
B = reshape(A,siz)

Description B = reshape(A,m,n) returns the m-by-n matrix B whose elements are
taken column-wise from A. An error results if A does not have m*n
elements.

B = reshape(A,m,n,p,...) or B = reshape(A,[m n p ...]) returns
an n-dimensional array with the same elements as A but reshaped
to have the size m-by-n-by-p-by-.... The product of the specified
dimensions, m*n*p*..., must be the same as prod(size(A)).

B = reshape(A,...,[],...) calculates the length of the dimension
represented by the placeholder [], such that the product of the
dimensions equals prod(size(A)). The value of prod(size(A)) must
be evenly divisible by the product of the specified dimensions. You can
use only one occurrence of [].

B = reshape(A,siz) returns an n-dimensional array with the
same elements as A, but reshaped to siz, a vector representing the
dimensions of the reshaped array. The quantity prod(siz) must be the
same as prod(size(A)).

Examples Reshape a 3-by-4 matrix into a 2-by-6 matrix.

A =
1 4 7 10
2 5 8 11
3 6 9 12

B = reshape(A,2,6)

B =

2-3339



reshape

1 3 5 7 9 11
2 4 6 8 10 12

B = reshape(A,2,[])

B =
1 3 5 7 9 11
2 4 6 8 10 12

See Also shiftdim, squeeze, circshift, permute, repmat

The colon operator :

2-3340



residue

Purpose Convert between partial fraction expansion and polynomial coefficients

Syntax [r,p,k] = residue(b,a)
[b,a] = residue(r,p,k)

Description The residue function converts a quotient of polynomials to pole-residue
representation, and back again.

[r,p,k] = residue(b,a) finds the residues, poles, and direct term of
a partial fraction expansion of the ratio of two polynomials, and

, of the form

where and are the jth elements of the input vectors b and a.

[b,a] = residue(r,p,k) converts the partial fraction expansion back
to the polynomials with coefficients in b and a.

Definition If there are no multiple roots, then

The number of poles n is

n = length(a)-1 = length(r) = length(p)

The direct term coefficient vector is empty if length(b) < length(a);
otherwise

length(k) = length(b)-length(a)+1

If p(j) = ... = p(j+m-1) is a pole of multiplicity m, then the
expansion includes terms of the form

2-3341



residue

Arguments b,a Vectors that specify the coefficients of the polynomials in
descending powers of

r Column vector of residues

p Column vector of poles

k Row vector of direct terms

Algorithm It first obtains the poles with roots. Next, if the fraction is nonproper,
the direct term k is found using deconv, which performs polynomial
long division. Finally, the residues are determined by evaluating the
polynomial with individual roots removed. For repeated roots, resi2
computes the residues at the repeated root locations.

Limitations Numerically, the partial fraction expansion of a ratio of polynomials
represents an ill-posed problem. If the denominator polynomial, ,
is near a polynomial with multiple roots, then small changes in the
data, including roundoff errors, can make arbitrarily large changes in
the resulting poles and residues. Problem formulations making use of
state-space or zero-pole representations are preferable.

Examples If the ratio of two polynomials is expressed as

then

b = [ 5 3 -2 7]
a = [-4 0 8 3]

2-3342



residue

and you can calculate the partial fraction expansion as

[r, p, k] = residue(b,a)

r =
-1.4167
-0.6653
1.3320

p =
1.5737

-1.1644
-0.4093

k =
-1.2500

Now, convert the partial fraction expansion back to polynomial
coefficients.

[b,a] = residue(r,p,k)

b =
-1.2500 -0.7500 0.5000 -1.7500

a =
1.0000 -0.0000 -2.0000 -0.7500

The result can be expressed as

Note that the result is normalized for the leading coefficient in the
denominator.

See Also deconv, poly, roots

2-3343



residue

References [1] Oppenheim, A.V. and R.W. Schafer, Digital Signal Processing,
Prentice-Hall, 1975, p. 56.

2-3344



restoredefaultpath

Purpose Restore default search path

GUI
Alternatives

As an alternative to the restoredefaultpath function, use the Set
Path dialog box.

Syntax restoredefaultpath
restoredefaultpath; matlabrc

Description restoredefaultpath sets the search path to include only folders for
installed products from The MathWorks. Use restoredefaultpath
when you are having problems with the search path.

restoredefaultpath; matlabrc sets the search path to include only
folders for installed products from The MathWorks and corrects search
path problems encountered during startup.

MATLAB does not support issuing restoredefaultpath from a UNC
path name. Doing so might result in MATLAB being unable to find
files on the search path. If you do issue restoredefaultpath from a
UNC path name, restore the expected behavior by changing the current
folder to an absolute path, and then reissuing restoredefaultpath.

See Also addpath, genpath, matlabrc, rmpath, savepath

Topics in the User Guide:

• “Recovering from Problems with the Search Path”

• “Using the MATLAB Search Path”

2-3345



rethrow

Purpose Reissue error

Note As of version 7.5, MATLAB supports error handling that is
based on the MException class. Calling rethrow with a structure
argument, as described on this page, is now replaced by calling rethrow
with an MException object, as described on the reference page for
rethrow(MException). rethrow called with a structure input will be
removed in a future version.

Syntax rethrow(errorStruct)

Description rethrow(errorStruct) reissues the error specified by errorStruct.
The currently running function terminates and control returns to the
keyboard (or to any enclosing catch block). The errorStruct argument
must be a MATLAB structure containing at least the message and
identifier fields:

Fieldname Description

message Text of the error message

identifier Message identifier of the error message

stack Information about the error from the program stack

See "Message Identifiers" in the MATLAB documentation for more
information on the syntax and usage of message identifiers.

Remarks The errorStruct input can contain the field stack, identical in format
to the output of the dbstack command. If the stack field is present, the
stack of the rethrown error will be set to that value. Otherwise, the
stack will be set to the line at which the rethrow occurs.

2-3346



rethrow

Examples rethrow is usually used in conjunction with try-catch statements to
reissue an error from a catch block after performing catch-related
operations. For example,

try
do_something

catch
do_cleanup
rethrow(previous_error)

end

See Also rethrow(MException), throw(MException),
throwAsCaller(MException), try, catch, error, assert, dbstop

2-3347



rethrow (MException)

Purpose Reissue existing exception

Syntax rethrow(exception)

Description rethrow(exception) forces an exception (i.e., error report) to be
reissued by MATLAB after the error reporting process has been
temporarily suspended to diagnose or remedy the problem. MATLAB
typically responds to errors by terminating the currently running
program. Errors occurring within a try block, however, bypass this
mechanism and transfer control of the program to error handling code
in the catch block instead. This enables you to write your own error
handling procedures for parts of your program that require them.

The exception input is a scalar object of the MException class that
contains information about the cause and location of the error.

The code segment below shows the format of a typical try-catch
statement.

try try block
program-code |
program-code |

: V
catch exception catch block

error-handling code |
: |

rethrow(exception) V
end

An error detected within the try block causes MATLAB to enter the
corresponding catch block. The error record constructed by MATLAB
in the process of reporting this error passes to the catch command
in the statement

catch exception

Error handling code within the catch block uses the information in the
error record to address the problem in some predefined manner. The

2-3348



rethrow (MException)

catch block shown here ends with a rethrow statement which throws
the exception returned in the catch statement, and then terminates
the function:

rethrow(exception)

The most significant difference between rethrow and other MATLAB
functions that throw exceptions is in how rethrow handles a piece of
the exception record called the stack. The stack keeps a record of where
the error occurred and what functions were called in the process. It is
a struct array composed of the following fields, where each element of
the array represents an exception:

Fields of the Exception
Stack

Description

line Line number from which the exception
was thrown.

name Name of the function being executed at
the time.

file Name of the file containing that function.

Functions such as error, assert, or throw, create the stack with the
location from which they were executed. Calling rethrow, however,
preserves information from the original exception. In doing so, rethrow
enables you to retrace the path taken to the source of the error.

Remarks There are four ways to throw an exception in MATLAB (see the list
below). Use the first of these when testing the outcome of some action
for failure and reporting the failure to MATLAB. Use one of the
remaining three techniques to throw an existing exception.

1 Test the result of some action taken by your program. If the result is
found to be incorrect or unexpected, compose an appropriate message
and message identifier, and pass these to MATLAB using the error
function.

2-3349



rethrow (MException)

2 Reissue the original exception by throwing the initial error record
unmodified. Use the MException rethrow method to do this.

3 Collect additional information on the cause of the error, store it in a
new or modified error record, and issue a new exception based on that
record. Use the MException addCause and throw methods to do this.

4 Make it appear that the error originated in the caller of the currently
running function. Use the MException throwAsCaller method to
do this.

rethrow can only issue a previously caught exception. Calling rethrow
on an exception that was not previously thrown is an error.

Examples This example shows the difference between using throw and rethrow
at the end of a catch block. The combineArrays function vertically
concatenates arrays A and B. When the two arrays have rows of unequal
length, the function throws an error.

The first time you run the function, comment out the rethrow command
at the end of the catch block so that the function calls throw instead:

function C = combineArrays(A, B)
try

catAlongDim1(A, B); % Line 3
catch exception

throw(exception) % Line 5
% rethrow(exception) % Line 6

end

function catAlongDim1(V1, V2)
C = cat(1, V1, V2); % Line 10

When MATLAB throws the exception, it reports an error on line 5 which
is the line that calls throw. In some cases, that might be what you want
but, in this case, it does not show the true source of the error.

A = 4:3:19; B = 3:4:19;

2-3350



rethrow (MException)

combineArrays(A, B)
** ERROR: Incompatible array sizes 6 and 5 **
??? Error using ==> combineArrays at 7
CAT arguments dimensions are not consistent.

Make the following changes to combineArrays.m so that you use
rethrow instead:

% throw(exception) % Line 7
rethrow(exception) % Line 8

Run the function again. This time, line 12 is the first line reported
which is where the MATLAB concatenation function cat was called and
the exception originated. The next error reported is on line 3 which is
where the call to catAlongDim1 was called:

** ERROR: Incompatible array sizes 6 and 5 **
??? Error using ==> cat
CAT arguments dimensions are not consistent.

Error in ==> combineArrays>catAlongDim1 at 12
C = cat(1, V1, V2);

Error in ==> combineArrays at 3
catAlongDim1(A, B);

See Also try, catch, error, assert, MException, throw(MException),
throwAsCaller(MException), addCause(MException),
getReport(MException), last(MException)

2-3351



return

Purpose Return to invoking function

Syntax return

Description return causes a normal return to the invoking function or to the
keyboard. It also terminates keyboard mode.

Examples This determinant function uses return to handle the special case of an
empty matrix:

function d = det(A)
%DET det(A) is the determinant of A.
if isempty(A)

d = 1;
return

else
...

end

See Also break, continue, disp, end, error, for, if, keyboard, switch, while

2-3352



Tiff.rewriteDirectory

Purpose Write modified metadata to existing IFD

Syntax tiffobj.rewriteDirectory()

Description tiffobj.rewriteDirectory() writes modified metadata (tag) data to
an existing directory. Use this tag when you want to change the value
of a tag in an existing image file directory.

Examples Open a Tiff object for modification and modify the value of a tag.
Replace myfile.tif with the name of a TIFF file on your MATLAB
path.

t = Tiff('myfile.tif', 'r');
% Modify the value of a tag.
t.setTag('Software','MATLAB');
t.rewriteDirectory();

References

This method corresponds to the TIFFRewriteDirectory function in the
LibTIFF C API. To use this method, you must be familiar with LibTIFF
version 3.7.1, as well as the TIFF specification and technical notes.
View this documentation at LibTIFF - TIFF Library and Utilities.

See Also Tiff.writeDirectory

Tutorials • “Exporting Image Data and Metadata to TIFF Files”

• “Reading Image Data and Metadata from TIFF Files”

2-3353

http://www.remotesensing.org/libtiff/


rgb2hsv

Purpose Convert RGB colormap to HSV colormap

Syntax cmap = rgb2hsv(M)
hsv_image = rgb2hsv(rgb_image)

Description cmap = rgb2hsv(M) converts an RGB colormap M to an HSV colormap
cmap. Both colormaps are m-by-3 matrices. The elements of both
colormaps are in the range 0 to 1.

The columns of the input matrix M represent intensities of red, green,
and blue, respectively. The columns of the output matrix cmap represent
hue, saturation, and value, respectively.

hsv_image = rgb2hsv(rgb_image) converts the RGB image to the
equivalent HSV image. RGB is an m-by-n-by-3 image array whose three
planes contain the red, green, and blue components for the image. HSV
is returned as an m-by-n-by-3 image array whose three planes contain
the hue, saturation, and value components for the image.

See Also brighten, colormap, hsv2rgb, rgbplot

“Color Operations” on page 1-108 for related functions

2-3354



rgb2ind

Purpose Convert RGB image to indexed image

Syntax [X,map] = rgb2ind(RGB, n)
X = rgb2ind(RGB, map)
[X,map] = rgb2ind(RGB, tol)
[...] = rgb2ind(..., dither_option)

Description rgb2ind converts RGB images to indexed images using one of these
methods:

• Uniform quantization

• Minimum variance quantization

• Colormap approximation

For all these methods, rgb2ind also dithers the image unless you
specify 'nodither' for dither_option.

[X,map] = rgb2ind(RGB, n) converts the RGB image to an indexed
image X using minimum variance quantization. map contains at most n
colors. n must be less than or equal to 65,536.

X = rgb2ind(RGB, map) converts the RGB image to an indexed image
X with colormap map by matching colors in RGB with the nearest color in
the colormap map. size(map,1) must be less than or equal to 65,536.

[X,map] = rgb2ind(RGB, tol) converts the RGB image to an
indexed image X using uniform quantization. map contains at most
(floor(1/tol)+1)^3 colors. tol must be between 0.0 and 1.0.

[...] = rgb2ind(..., dither_option) enables or disables
dithering. dither_option is a string that can have one of these values.

2-3355



rgb2ind

'dither' (default) dithers, if necessary, to achieve
better color resolution at the
expense of spatial resolution.

'nodither' maps each color in the original
image to the closest color in
the new map. No dithering is
performed.

Note The values in the resultant image X are indexes into the colormap
map and cannot be used in mathematical processing, such as filtering
operations.

Class
Support

The input image can be of class uint8, uint16, single, or double. If
the length of map is less than or equal to 256, the output image is of
class uint8. Otherwise, the output image is of class uint16.

Remarks If you specify tol, rgb2ind uses uniform quantization to convert the
image. This method involves cutting the RGB color cube into smaller
cubes of length tol. For example, if you specify a tol of 0.1, the edges of
the cubes are one-tenth the length of the RGB cube. The total number
of small cubes is:

n = (floor(1/tol)+1)^3

Each cube represents a single color in the output image. Therefore, the
maximum length of the colormap is n. rgb2ind removes any colors that
don’t appear in the input image, so the actual colormap can be much
smaller than n.

If you specify n, rgb2ind uses minimum variance quantization. This
method involves cutting the RGB color cube into smaller boxes (not
necessarily cubes) of different sizes, depending on how the colors are
distributed in the image. If the input image actually uses fewer colors
than the number you specify, the output colormap is also smaller.

2-3356



rgb2ind

If you specify map, rgb2ind uses colormap mapping, which involves
finding the colors in map that best match the colors in the RGB image.

Examples RGB = imread('peppers.png');
[X,map] = rgb2ind(RGB,128);
figure, imshow(X,map)

See Also cmunique, dither, imapprox, ind2rgb

2-3357



rgbplot

Purpose Plot colormap

Syntax rgbplot(cmap)

Description rgbplot(cmap) plots the three columns of cmap, where cmap is an
m-by-3 colormap matrix. rgbplot draws the first column in red, the
second in green, and the third in blue.

Examples Plot the RGB values of the copper colormap.

rgbplot(copper)

2-3358



rgbplot

See Also colormap

“Color Operations” on page 1-108 for related functions

2-3359



ribbon

Purpose Ribbon plot

GUI
Alternatives

To graph selected variables, use the Plot Selector in the
Workspace Browser, or use the Figure Palette Plot Catalog. Manipulate
graphs in plot edit mode with the Property Editor. For details, see
Plotting Tools — Interactive Plotting in the MATLAB Graphics
documentation and Creating Graphics from the Workspace Browser in
the MATLAB Desktop Tools documentation.

Syntax ribbon(Y)
ribbon(X,Y)
ribbon(X,Y,width)
ribbon(axes_handle,...)
h = ribbon(...)

Description ribbon(Y) plots the columns of Y as undulating three-dimensional
ribbons of uniform width using X = 1:size(Y,1). Ribbons advance
along the x-axis centered on tick marks at unit intervals, three-quarters
of a unit in width. Ribbons are assigned colors from the current
colormap in sequence from minimum X to maximum X (the axes
colororder property, used by plot and plot3, does not apply to ribbon
or other surface plots).

ribbon(X,Y) plots X versus the columns of Y as three-dimensional
strips. X and Y are vectors of the same size or matrices of the same
size. Additionally, X can be a row or a column vector, and Y a matrix
with length(X) rows. ribbon(X,Y) is the same as plot(X,Y) except
that the columns of Y are plotted as separated ribbons in 3-D. The y and
z-axes of ribbon(X,Y) correspond to the x and y-axes of plot(X,Y).

ribbon(X,Y,width) specifies the width of the ribbons. The default is
0.75. If width = 1, the ribbons touch, leaving no space between them
when viewed down the z-axis. If width > 1, ribbons overlap and can
intersect.

2-3360



ribbon

ribbon(axes_handle,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

h = ribbon(...) returns a vector of handles to surface graphics
objects. ribbon returns one handle per strip.

Examples Create a ribbon plot of the peaks function.

[x,y] = meshgrid(-3:.5:3,-3:.1:3);
z = peaks(x,y);
ribbon(y,z)
xlabel('X')
ylabel('Y')
zlabel('Z')
colormap hsv

2-3361



ribbon

See Also plot, plot3, surface, waterfall

“Polygons and Surfaces” on page 1-100 for related functions

2-3362



rmappdata

Purpose Remove application-defined data

Syntax rmappdata(h,name)

Description rmappdata(h,name) removes the application-defined data name from
the object specified by handle h.

Remarks Application data is data that is meaningful to or defined by your
application which you attach to a figure or any GUI component (other
than ActiveX controls) through its AppData property. Only Handle
Graphics MATLAB objects use this property.

See Also getappdata, isappdata, setappdata

2-3363



rmdir

Purpose Remove folder

Graphical
Interface

As an alternative to the rmdir function, use the delete feature in the
Current Folder browser.

Syntax rmdir('folderName')
rmdir('folderName','s')
[status, message, messageid] = rmdir('folderName','s')

Description rmdir('folderName') removes the folder folderName from the current
folder, where folderName is empty. If folderName is not in the current
folder, specify the relative path or the full path for folderName.

rmdir('folderName','s') removes the folder folderName and its
contents from the current folder. With the ’s’ option, rmdir attempts
to removes all subfolders and files in folderName regardless of their
write permissions. The result for read-only files follows the practices of
the operating system.

[status, message, messageid] = rmdir('folderName','s')
removes the folder folderName and its contents from the current folder,
returning the status, a message, and the MATLAB message ID. Here,
status is 1 for success and is 0 for error. message, messageid, and
the s input argument are optional.

Remarks When attempting to remove multiple folders, either by including a
wildcard in the folder name or by specifying the 's' flag in rmdir,
MATLAB produces an error if it is unable to remove all folders as
expected. The error message lists the folder and files that MATLAB
could not remove.

Examples Remove Empty Folder

Remove myfiles from the current folder, where myfiles is empty:

rmdir('myfiles')

2-3364



rmdir

If the current folder is matlab/work, and myfiles is in
d:/matlab/work/project/, use the relative path to remove myfiles:

rmdir('project/myfiles')

If the current folder is matlab/work, and myfiles is in
d:/matlab/work/project/, use the full path to remove myfiles:

rmdir('d:/matlab/work/project/myfiles')

Remove Folder and All Contents

Remove myfiles, its subfolders, and all files in the folders, assuming
myfiles is in the current folder:

rmdir('myfiles','s')

Remove Folder and Return Results

Remove myfiles from the current folder, where myfiles is not empty,
and return the results:

[stat, mess, id]=rmdir('myfiles')

MATLAB returns:

stat =
0

mess =

The directory is not empty.

id =

MATLAB:RMDIR:OSError

Remove myfiles and its contents using the s option, which is required
for non-empty folders, and return the results:

[stat, mess]=rmdir('myfiles','s')

2-3365



rmdir

MATLAB returns:

stat =
1

mess =

''

See Also catch, cd, copyfile, delete, dir, fileattrib, filebrowser,
MException, mkdir, movefile, try

“Managing Files in MATLAB”

2-3366



rmdir (ftp)

Purpose Remove directory on FTP server

Syntax rmdir(f,'dirname')

Description rmdir(f,'dirname') removes the directory dirname from the current
directory of the FTP server f, where f was created using ftp.

Examples Connect to server testsite, view the contents of testdir, and remove
the directory newdir from the directory testdir.

test=ftp('ftp.testsite.com');
cd(test,'testdir');
dir(test)
. .. newdir
dir(test,'newdir')
. ..
rmdir(test,'newdir');
dir(test,'testdir')
. ..

See Also cd (ftp), delete (ftp), dir (ftp), ftp, mkdir (ftp)

2-3367



rmfield

Purpose Remove fields from structure

Syntax s = rmfield(s, 'fieldname')
s = rmfield(s, fields)

Description s = rmfield(s, 'fieldname') removes the specified field from the
structure array s.

s = rmfield(s, fields) removes more than one field at a time.
fields is a character array of field names or cell array of strings.

See Also fieldnames, setfield, getfield, isfield, orderfields, dynamic
field names

2-3368



rmpath

Purpose Remove folders from search path

GUI
Alternatives

As an alternative to the rmpath function, use the Set Path dialog box.

Syntax rmpath('folderName')
rmpath folderName

Description rmpath('folderName') removes the specified folder from the search
path . Use the full path for folderName.

rmpath folderName is the command form of the syntax.

Examples Remove /usr/local/matlab/mytools from the search path:

rmpath /usr/local/matlab/mytools

See Also addpath, cd, dir, genpath, matlabroot, path, pathsep, pathtool,
rehash, restoredefaultpath, savepath, userpath, what

“Using the MATLAB Search Path”

2-3369



rmpref

Purpose Remove preference

Syntax rmpref('group','pref')
rmpref('group',{'pref1','pref2',...'prefn'})
rmpref('group')

Description rmpref('group','pref') removes the preference specified by group
and pref. It is an error to remove a preference that does not exist.

rmpref('group',{'pref1','pref2',...'prefn'}) removes each
preference specified in the cell array of preference names. It is an error
if any of the preferences do not exist.

rmpref('group') removes all the preferences for the specified group.
It is an error to remove a group that does not exist.

Examples addpref('mytoolbox','version','1.0')
rmpref('mytoolbox')

See Also addpref, getpref, ispref, setpref, uigetpref, uisetpref

2-3370



root object

Purpose Root

Description The root is a graphics object that corresponds to the computer screen.
There is only one root object and it has no parent. The children of the
root object are figures.

The root object exists when you start MATLAB; you never have to
create it and you cannot destroy it. Use set and get to access the root
properties.

See Also diary, echo, figure, format, gcf, get, set

Root Properties for descriptions of all root object properties

Object
Hierarchy

*���

���
��

+,�� -���.����

2-3371



Root Properties

Purpose Root properties

Modifying
Properties

You can set and query graphics object properties in two ways:

• Property Editor is an interactive tool that enables you to see and
change object property values.

• The set and get commands enable you to set and query the values of
properties.

To change the default values of properties, see “Setting Default Property
Values”.

Root
Properties

This section lists property names along with the type of values each
accepts. Curly braces { } enclose default values.

BusyAction
cancel | {queue}

Not used by the root object.

ButtonDownFcn
string

Not used by the root object.

CallbackObject
handle (read only)

Handle of current callback’s object. This property contains the
handle of the object whose callback routine is currently executing.
If no callback routines are executing, this property contains the
empty matrix [ ]. See also the gco command.

Children
vector of handles

Handles of child objects. A vector containing the handles of
all nonhidden figure objects (see HandleVisibility for more

2-3372



Root Properties

information). You can change the order of the handles and thereby
change the stacking order of the figures on the display.

Clipping
{on} | off

Clipping has no effect on the root object.

CommandWindowSize
[columns rows]

Current size of command window. This property contains the
size of the MATLAB command window in a two-element vector.
The first element is the number of columns wide and the second
element is the number of rows tall.

CreateFcn
The root does not use this property.

CurrentFigure
figure handle

Handle of the current figure window, which is the one most
recently created, clicked in, or made current with the statement:

figure(h)

which restacks the figure to the top of the screen, or:

set(0,'CurrentFigure',h)

which does not restack the figures. In these statements, h is the
handle of an existing figure. If there are no figure objects:

get(0,'CurrentFigure')

returns the empty matrix. Note, however, that gcf always returns
a figure handle, and creates one if there are no figure objects.

DeleteFcn
string

2-3373



Root Properties

This property is not used, because you cannot delete the root
object.

Diary
on | {off}

Diary file mode. When this property is on, MATLAB maintains
a file (whose name is specified by the DiaryFile property) that
saves a copy of all keyboard input and most of the resulting
output. See also the diary command.

DiaryFile
string

Diary filename. The name of the diary file. The default name is
diary.

Echo
on | {off}

Script echoing mode. When Echo is on, MATLAB displays each
line of a script file as it executes. See also the echo command.

ErrorMessage
string

Text of last error message. This property contains the last error
message issued by MATLAB.

FixedWidthFontName
font name

Fixed-width font to use for axes, text, and uicontrols whose
FontName is set to FixedWidth. MATLAB uses the font name
specified for this property as the value for axes, text, and
uicontrol FontName properties when their FontName property is
set to FixedWidth. Specifying the font name with this property
eliminates the need to hardcode font names in MATLAB
applications and thereby enables these applications to run

2-3374



Root Properties

without modification in locales where non-ASCII character sets
are required. In these cases, MATLAB attempts to set the value
of FixedWidthFontName to the correct value for a given locale.

MATLAB application developers should not change this property,
but should create axes, text, and uicontrols with FontName
properties set to FixedWidth when they want to use a fixed-width
font for these objects.

MATLAB end users can set this property if they do not want to
use the preselected value. In locales where Latin-based characters
are used, Courier is the default.

Format
short | {shortE} | long | longE | bank |
hex | + | rat

Output format mode. This property sets the format used to display
numbers. See also the format command.

• short — Fixed-point format with 5 digits

• shortE — Floating-point format with 5 digits

• shortG — Fixed- or floating-point format displaying as many
significant figures as possible with 5 digits

• long — Scaled fixed-point format with 15 digits

• longE — Floating-point format with 15 digits

• longG — Fixed- or floating-point format displaying as many
significant figures as possible with 15 digits

• bank — Fixed-format of dollars and cents

• hex — Hexadecimal format

• + — Displays + and – symbols

• rat — Approximation by ratio of small integers

2-3375



Root Properties

FormatSpacing
compact | {loose}

Output format spacing (see also format command).

• compact— Suppress extra line feeds for more compact display.

• loose— Display extra line feeds for a more readable display.

HandleVisibility
{on} | callback | off

This property is not useful on the root object.

HitTest
{on} | off

This property is not useful on the root object.

Interruptible
{on} | off

This property is not useful on the root object.

Language
string

System environment setting.

MonitorPositions
[x y width height;x y width height]

Width and height of primary and secondary monitors, in pixels.
This property contains the width and height of each monitor
connnected to your computer. The x and y values for the primary
monitor are 0, 0 and the width and height of the monitor are
specified in pixels.

The secondary monitor position is specified as:

x = primary monitor width + 1

2-3376



Root Properties

y = primary monitor height + 1

Querying the value of the figure MonitorPositions on a
multiheaded system returns the position for each monitor on a
separate line.

v = get(0,'MonitorPositions')
v =
x y width height % Primary monitor
x y width height % Secondary monitor

The value of the ScreenSize property is inconsistent when using
multiple monitors. If you want specific and consistent values, use
the MonitorPositions property.

Parent
handle

Handle of parent object. This property always contains the empty
matrix, because the root object has no parent.

PointerLocation
[x,y]

Current location of pointer. A vector containing the x- and
y-coordinates of the pointer position, measured from the lower
left corner of the screen. You can move the pointer by changing
the values of this property. The Units property determines the
units of this measurement.

This property always contains the current pointer location, even
if the pointer is not in a MATLAB window. A callback routine
querying the PointerLocation can get a value different from
the location of the pointer when the callback was triggered. This
difference results from delays in callback execution caused by
competition for system resources.

2-3377



Root Properties

On Macintosh platforms, you cannot change the pointer location
using the set command.

PointerWindow
handle (read only)

Handle of window containing the pointer. MATLAB sets this
property to the handle of the figure window containing the
pointer. If the pointer is not in a MATLAB window, the value of
this property is 0. A callback routine querying the PointerWindow
can get the wrong window handle if you move the pointer to
another window before the callback executes. This error results
from delays in callback execution caused by competition for
system resources.

RecursionLimit
integer

Number of nested MATLAB file calls. This property sets a limit to
the number of nested calls to MATLAB files MATLAB will make
before stopping (or potentially running out of memory). By default
the value is set to a large value. Setting this property to a smaller
value (something like 150, for example) should prevent MATLAB
from running out of memory and will instead cause MATLAB to
issue an error when it reaches the limit.

ScreenDepth
bits per pixel

Screen depth. The depth of the display bitmap (i.e., the number of
bits per pixel). The maximum number of simultaneously displayed
colors on the current graphics device is 2 raised to this power.

ScreenDepth supersedes the BlackAndWhite property. To
override automatic hardware checking, set this property to 1. This
value causes MATLAB to assume the display is monochrome.
This is useful if MATLAB is running on color hardware but is

2-3378



Root Properties

being displayed on a monochrome terminal. Such a situation can
cause MATLAB to determine erroneously that the display is color.

ScreenPixelsPerInch
Display resolution

DPI setting for your display. This property contains the setting of
your display resolution specified in your system preferences.

ScreenSize
four-element rectangle vector (read only)

Screen size. A four-element vector:

[left,bottom,width,height]

that defines the display size. left and bottom are 0 for all Units
except pixels, in which case left and bottom are 1. width and
height are the screen dimensions in units specified by the Units
property.

Determining Screen Size

Note that the screen size in absolute units (for example, inches) is
determined by dividing the number of pixels in width and height
by the screen DPI (see the ScreenPixelPerInch property). This
value is approximate and might not represent the actual size of
the screen.

Note that the ScreenSize property is static. Its values are read
only at MATLAB startup and not updated if system display
settings change. Also, the values returned might not represent
the usable screen size for application developers due to the
presence of other GUIs, such as the Microsoft Windows task bar.

Selected
on | off

This property has no effect on the root level.

2-3379



Root Properties

SelectionHighlight
{on} | off

This property has no effect on the root level.

ShowHiddenHandles
on | {off}

Show or hide handles marked as hidden. When set to on, this
property disables handle hiding and exposes all object handles
regardless of the setting of an object’s HandleVisibility
property. When set to off, all objects so marked remain hidden
within the graphics hierarchy.

Tag
string

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. While it
is not necessary to identify the root object with a tag (since its
handle is always 0), you can use this property to store any string
value that you can later retrieve using set.

Type
string (read only)

Class of graphics object. For the root object, Type is always
'root'.

UIContextMenu
handle

This property has no effect on the root level.

Units

{pixels} | normalized | inches | centimeters
| points | characters

2-3380



Root Properties

Unit of measurement. This property specifies the units MATLAB
uses to interpret size and location data. All units are measured
from the lower left corner of the screen. Normalized units map the
lower left corner of the screen to (0,0) and the upper right corner
to (1.0,1.0). inches, centimeters, and points are absolute units
(one point equals 1/72 of an inch). Characters are units defined
by characters from the default system font; the width of one unit
is the width of the letter x, the height of one character is the
distance between the baselines of two lines of text.

This property affects the PointerLocation and ScreenSize
properties. If you change the value of Units, it is good practice
to return it to its default value after completing your operation,
so as not to affect other functions that assume Units is set to
the default value.

UserData
matrix

User-specified data. This property can be any data you want
to associate with the root object. MATLAB does not use this
property, but you can access it using the set and get functions.

Visible
{on} | off

Object visibility. This property has no effect on the root object.

See Also root object

2-3381



roots

Purpose Polynomial roots

Syntax r = roots(c)

Description r = roots(c) returns a column vector whose elements are the roots
of the polynomial c.

Row vector c contains the coefficients of a polynomial, ordered in
descending powers. If c has n+1 components, the polynomial it

represents is .

Remarks Note the relationship of this function to p = poly(r), which returns
a row vector whose elements are the coefficients of the polynomial.
For vectors, roots and poly are inverse functions of each other, up to
ordering, scaling, and roundoff error.

Examples The polynomial is represented in MATLAB
software as

p = [1 -6 -72 -27]

The roots of this polynomial are returned in a column vector by

r = roots(p)

r =
12.1229
-5.7345
-0.3884

Algorithm The algorithm simply involves computing the eigenvalues of the
companion matrix:

A = diag(ones(n-1,1),-1);
A(1,:) = -c(2:n+1)./c(1);
eig(A)

2-3382



roots

It is possible to prove that the results produced are the exact
eigenvalues of a matrix within roundoff error of the companion matrix
A, but this does not mean that they are the exact roots of a polynomial
with coefficients within roundoff error of those in c.

See Also fzero, poly, residue

2-3383



rose

Purpose Angle histogram plot

GUI
Alternatives

To graph selected variables, use the Plot Selector in the
Workspace Browser, or use the Figure Palette Plot Catalog. Manipulate
graphs in plot edit mode with the Property Editor. For details, see
Plotting Tools — Interactive Plotting in the MATLAB Graphics
documentation and Creating Graphics from the Workspace Browser in
the MATLAB Desktop Tools documentation.

Syntax rose(theta)
rose(theta,x)
rose(theta,nbins)
rose(axes_handle,...)
h = rose(...)
[tout,rout] = rose(...)

Description rose(theta) creates an angle histogram, which is a polar plot showing
the distribution of values grouped according to their numeric range,
showing the distribution of theta in 20 angle bins or less. The vector
theta, expressed in radians, determines the angle of each bin from the
origin. The length of each bin reflects the number of elements in theta
that fall within a group, which ranges from 0 to the greatest number of
elements deposited in any one bin.

rose(theta,x) uses the vector x to specify the number and the
locations of bins. length(x) is the number of bins and the values of x
specify the center angle of each bin. For example, if x is a five-element
vector, rose distributes the elements of theta in five bins centered
at the specified x values.

rose(theta,nbins) plots nbins equally spaced bins in the range [0,
2*pi]. The default is 20.

2-3384



rose

rose(axes_handle,...) plots into the axes with handle axes_handle
instead of the current axes (gca).

h = rose(...) returns the handles of the line objects used to create
the graph.

[tout,rout] = rose(...) returns the vectors tout and rout so
polar(tout,rout) generates the histogram for the data. This syntax
does not generate a plot.

Example Create a rose plot showing the distribution of 50 random numbers.

theta = 2*pi*rand(1,50);
rose(theta)

2-3385



rose

See Also compass, feather, hist, line, polar

“Histograms” on page 1-100 for related functions

Histograms in Polar Coordinates for another example

2-3386



rosser

Purpose Classic symmetric eigenvalue test problem

Syntax A = rosser

Description A = rosser returns the Rosser matrix. This matrix was a challenge for
many matrix eigenvalue algorithms. But LAPACK’s DSYEV routine used
in MATLAB software has no trouble with it. The matrix is 8-by-8 with
integer elements. It has:

• A double eigenvalue

• Three nearly equal eigenvalues

• Dominant eigenvalues of opposite sign

• A zero eigenvalue

• A small, nonzero eigenvalue

Examples rosser

ans =

611 196 -192 407 -8 -52 -49 29
196 899 113 -192 -71 -43 -8 -44

-192 113 899 196 61 49 8 52
407 -192 196 611 8 44 59 -23
-8 -71 61 8 411 -599 208 208

-52 -43 49 44 -599 411 208 208
-49 -8 8 59 208 208 99 -911
29 -44 52 -23 208 208 -911 99

2-3387



rot90

Purpose Rotate matrix 90 degrees

Syntax B = rot90(A)
B = rot90(A,k)

Description B = rot90(A) rotates matrix A counterclockwise by 90 degrees.

B = rot90(A,k) rotates matrix A counterclockwise by k*90 degrees,
where k is an integer.

Examples The matrix

X =
1 2 3
4 5 6
7 8 9

rotated by 90 degrees is

Y = rot90(X)
Y =

3 6 9
2 5 8
1 4 7

See Also flipdim, fliplr, flipud

2-3388



rotate

Purpose Rotate object in specified direction

Syntax rotate(h,direction,alpha)
rotate(...,origin)

Description The rotate function rotates a graphics object in three-dimensional
space, according to the right-hand rule.

rotate(h,direction,alpha) rotates the graphics object h by alpha
degrees. direction is a two- or three-element vector that describes the
axis of rotation in conjunction with the origin.

rotate(...,origin) specifies the origin of the axis of rotation as a
three-element vector. The default origin is the center of the plot box.

Remarks The graphics object you want rotated must be a child of the same axes.
The object’s data is modified by the rotation transformation. This is in
contrast to view and rotate3d, which only modify the viewpoint.

The axis of rotation is defined by an origin and a point P relative to
the origin. P is expressed as the spherical coordinates [theta phi] or
as Cartesian coordinates.

2-3389



rotate

The two-element form for direction specifies the axis direction using
the spherical coordinates [theta phi]. theta is the angle in the x-y
plane counterclockwise from the positive x-axis. phi is the elevation of
the direction vector from the x-y plane.

The three-element form for direction specifies the axis direction using
Cartesian coordinates. The direction vector is the vector from the origin
to (X,Y,Z).

Examples Rotate a graphics object 180º about the x-axis.

h = surf(peaks(20));
rotate(h,[1 0 0],180)

Rotate a surface graphics object 45º about its center in the z direction.

h = surf(peaks(20));
zdir = [0 0 1];
center = [10 10 0];
rotate(h,zdir,45,center)

2-3390



rotate

Remarks rotate changes the Xdata, Ydata, and Zdata properties of the
appropriate graphics object.

See Also rotate3d, sph2cart, view

The axes CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle

“Object Manipulation” on page 1-110 for related functions

2-3391

../infotool/hgprop/doc_frame.html
../infotool/hgprop/doc_frame.html
../infotool/hgprop/doc_frame.html
../infotool/hgprop/doc_frame.html


rotate3d

Purpose Rotate 3-D view using mouse

GUI
Alternatives

Use the Rotate3D tool on the figure toolbar to enable and disable
rotate3D mode on a plot, or select Rotate 3D from the figure’s Tools
menu. For details, see “Rotate 3D — Interactive Rotation of 3-D Views”
in the MATLAB Graphics documentation.

Syntax rotate3d on
rotate3d off
rotate3d
rotate3d(figure_handle,...)
rotate3d(axes_handle,...)
h = rotate3d(figure_handle)

Description rotate3d on enables mouse-base rotation on all axes within the
current figure.

rotate3d off disables interactive axes rotation in the current figure.

rotate3d toggles interactive axes rotation in the current figure.

rotate3d(figure_handle,...) enables rotation within the specified
figure instead of the current figure.

rotate3d(axes_handle,...) enables rotation only in the specified
axes.

h = rotate3d(figure_handle) returns a rotate3d mode object for
figure figure_handle for you to customize the mode’s behavior.

Using Rotate Mode Objects

You access the following properties of rotate mode objects via get and
modify some of them using set.

• FigureHandle <handle>— The associated figure handle, a read-only
property that cannot be set

• Enable 'on'|'off' — Specifies whether this figure mode is
currently enabled on the figure

2-3392



rotate3d

• RotateStyle 'orbit'|'box'— Sets the method of rotation

'orbit' rotates the entire axes; 'box' rotates a plot-box outline
of the axes.

Rotate3D Mode Callbacks

You can program the following callbacks for rotate3d mode operations.

• ButtonDownFilter <function_handle> — Function to intercept
ButtonDown events

The application can inhibit the rotate operation under circumstances
the programmer defines, depending on what the callback returns.
The input function handle should reference a function with two
implicit arguments (similar to handle callbacks):

function [res] = myfunction(obj,event_obj)
% obj handle to the object that has been clicked on
% event_obj handle to event data object (empty in this release
% res [output] logical flag to determine whether the rotate

operation should take place or the 'ButtonDownFcn'
property of the object should take precedence

• ActionPreCallback <function_handle> — Function to execute
before rotating

Set this callback to listen to when a rotate operation will start. The
input function handle should reference a function with two implicit
arguments (similar to Handle Graphics object callbacks):

function myfunction(obj,event_obj)
% obj handle to the figure that has been clicked on
% event_obj object containing struct of event data

The event data has the following field:

Axes The handle of the axes that is being panned

2-3393



rotate3d

• ActionPostCallback <function_handle> — Function to execute
after rotating

Set this callback to listen to when a rotate operation has finished.
The input function handle should reference a function with two
implicit arguments (similar to Handle Graphics object callbacks):

function myfunction(obj,event_obj)
% obj handle to the figure that has been clicked on
% event_obj object containing struct of event data (same as the
% event data of the 'ActionPreCallback' callback)

Rotate3D Mode Utility Functions

The following functions in pan mode query and set certain of its
properties.

• flags = isAllowAxesRotate(h,axes) — Function querying
permission to rotate axes

Calling the function isAllowAxesRotate on the rotate3d object, h,
with a vector of axes handles, axes, as input will return a logical
array of the same dimension as the axes handle vector which indicate
whether a rotate operation is permitted on the axes objects.

• setAllowAxesRotate(h,axes,flag) — Function to set permission
to pan axes

Calling the function setAllowAxesRotate on the rotate3d object, h,
with a vector of axes handles, axes, and a logical scalar, flag, will
either allow or disallow a rotate operation on the axes objects.

Examples Example 1

Simple 3-D rotation

surf(peaks);
rotate3d on
% rotate the plot using the mouse pointer.

2-3394



rotate3d

Example 2

Rotate the plot using the "Plot Box" rotate style:

surf(peaks);
h = rotate3d;
set(h,'RotateStyle','box','Enable','on');
% Rotate the plot.

Example 3

Create two axes as subplots and then prevent one from rotating:

ax1 = subplot(1,2,1);
surf(peaks);
h = rotate3d;
ax2 = subplot(1,2,2);
surf(membrane);
setAllowAxesRotate(h,ax2,false);
% rotate the plots.

Example 4

Create a buttonDown callback for rotate mode objects to trigger.
Copy the following code to a new file, execute it, and observe rotation
behavior:

function demo_mbd
% Allow a line to have its own 'ButtonDownFcn' callback.
hLine = plot(rand(1,10));
set(hLine,'ButtonDownFcn','disp(''This executes'')');
set(hLine,'Tag','DoNotIgnore');
h = rotate3d;
set(h,'ButtonDownFilter',@mycallback);
set(h,'Enable','on');
% mouse-click on the line
%

2-3395



rotate3d

function [flag] = mycallback(obj,event_obj)
% If the tag of the object is 'DoNotIgnore', then return true.
objTag = get(obj,'Tag');
if strcmpi(objTag,'DoNotIgnore')

flag = true;
else

flag = false;
end

Example 5

Create callbacks for pre- and post-buttonDown events for rotate3D
mode objects to trigger. Copy the following code to a new file, execute
it, and observe rotation behavior:

function demo_mbd2
% Listen to rotate events
surf(peaks);
h = rotate3d;
set(h,'ActionPreCallback',@myprecallback);
set(h,'ActionPostCallback',@mypostcallback);
set(h,'Enable','on');
%
function myprecallback(obj,evd)
disp('A rotation is about to occur.');
%
function mypostcallback(obj,evd)
newView = round(get(evd.Axes,'View'));
msgbox(sprintf('The new view is [%d %d].',newView));

Remarks When enabled, rotate3d provides continuous rotation of axes and
the objects it contains through mouse movement. A numeric readout
appears in the lower left corner of the figure during rotation, showing
the current azimuth and elevation of the axes. Releasing the mouse
button removes the animated box and the readout. This differs from
the camorbit function in that while the rotate3d tool modifies the
View property of the axes, the camorbit function fixes the aspect ratio

2-3396



rotate3d

and modifies the CameraTarget, CameraPosition and CameraUpVector
properties of the axes. See Axes Properties for more information.

You can also enable 3-D rotation from the figure Tools menu or the
figure toolbar.

You can create a rotate3D mode object once and use it to customize the
behavior of different axes, as example 3 illustrates. You can also change
its callback functions on the fly.

Note Do not change figure callbacks within an interactive
mode. While a mode is active (when panning, zooming, etc.), you will
receive a warning if you attempt to change any of the figure’s callbacks
and the operation will not succeed. The one exception to this rule is the
figure WindowButtonMotionFcn callback, which can be changed from
within a mode. Therefore, if you are creating a GUI that updates a
figure’s callbacks, the GUI should some keep track of which interactive
mode is active, if any, before attempting to do this.

When you assign different 3-D rotation behaviors to different subplot
axes via a mode object and then link them using the linkaxes function,
the behavior of the axes you manipulate with the mouse will carry over
to the linked axes, regardless of the behavior you previously set for
the other axes.

See Also camorbit, pan, rotate, view, zoom

Object Manipulation for related functions

Axes Properties for related properties

2-3397

../ref/figure_props.html#WindowButtonMotionFcn


round

Purpose Round to nearest integer

Syntax Y = round(X)

Description Y = round(X) rounds the elements of X to the nearest integers. For
complex X, the imaginary and real parts are rounded independently.

Examples a = [-1.9, -0.2, 3.4, 5.6, 7.0, 2.4+3.6i]

a =

Columns 1 through 4

-1.9000 -0.2000 3.4000 5.6000

Columns 5 through 6

7.0000 2.4000 + 3.6000i

round(a)

ans =

Columns 1 through 4

-2.0000 0 3.0000 6.0000

Columns 5 through 6

7.0000 2.0000 + 4.0000i

See Also ceil, fix, floor

2-3398



rref

Purpose Reduced row echelon form

Syntax R = rref(A)
[R,jb] = rref(A)
[R,jb] = rref(A,tol)

Description R = rref(A) produces the reduced row echelon form of A using
Gauss Jordan elimination with partial pivoting. A default tolerance
of (max(size(A))*eps *norm(A,inf)) tests for negligible column
elements.

[R,jb] = rref(A) also returns a vector jb such that:

• r = length(jb) is this algorithm’s idea of the rank of A.

• x(jb) are the pivot variables in a linear system Ax = b.

• A(:,jb) is a basis for the range of A.

• R(1:r,jb) is the r-by-r identity matrix.

[R,jb] = rref(A,tol) uses the given tolerance in the rank tests.

Roundoff errors may cause this algorithm to compute a different value
for the rank than rank, orth and null.

Examples Use rref on a rank-deficient magic square:

A = magic(4), R = rref(A)

A =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

R =
1 0 0 1
0 1 0 3

2-3399



rref

0 0 1 -3
0 0 0 0

See Also inv, lu, rank

2-3400



rsf2csf

Purpose Convert real Schur form to complex Schur form

Syntax [U,T] = rsf2csf(U,T)

Description The complex Schur form of a matrix is upper triangular with the
eigenvalues of the matrix on the diagonal. The real Schur form has the
real eigenvalues on the diagonal and the complex eigenvalues in 2-by-2
blocks on the diagonal.

[U,T] = rsf2csf(U,T) converts the real Schur form to the complex
form.

Arguments U and T represent the unitary and Schur forms of a matrix
A, respectively, that satisfy the relationships: A = U*T*U' and U'*U =
eye(size(A)). See schur for details.

Examples Given matrix A,

1 1 1 3
1 2 1 1
1 1 3 1

-2 1 1 4

with the eigenvalues

4.8121 1.9202 + 1.4742i 1.9202 + 1.4742i 1.3474

Generating the Schur form of A and converting to the complex Schur
form

[u,t] = schur(A);
[U,T] = rsf2csf(u,t)

yields a triangular matrix T whose diagonal (underlined here for
readability) consists of the eigenvalues of A.

U =

2-3401



rsf2csf

-0.4916 -0.2756 - 0.4411i 0.2133 + 0.5699i -0.3428

-0.4980 -0.1012 + 0.2163i -0.1046 + 0.2093i 0.8001

-0.6751 0.1842 + 0.3860i -0.1867 - 0.3808i -0.4260

-0.2337 0.2635 - 0.6481i 0.3134 - 0.5448i 0.2466

T =

4.8121 -0.9697 + 1.0778i -0.5212 + 2.0051i -1.0067

0 1.9202 + 1.4742i 2.3355 0.1117 + 1.6547i

0 0 1.9202 - 1.4742i 0.8002 + 0.2310i

0 0 0 1.3474

See Also schur

2-3402



run

Purpose Run script that is not on current path

Syntax run scriptname

Description run scriptname runs the MATLAB script specified by scriptname.
If scriptname contains the full pathname to the script file, then run
changes the current folder to be the one in which the script file resides,
executes the script, and sets the current folder back to what it was. The
script is run within the caller’s workspace.

run is a convenience function that runs scripts that are not currently on
the path. Typically, you just type the name of a script at the MATLAB
prompt to execute it. This works when the script is on your path. Use
the cd or addpath function to make a script executable by entering the
script name alone.

See Also cd, addpath

2-3403



save

Purpose Save workspace variables to file

Syntax save(filename)
save(filename, variables)
save(filename, '-struct', structName, fieldNames)
save(filename, ..., '-append')
save(filename, ..., format)
save(filename, ..., version)
save filename ...

Description save(filename) stores all variables from the current workspace in a
MATLAB formatted binary file (MAT-file) called filename.

save(filename, variables) stores only the specified variables.

save(filename, '-struct', structName, fieldNames) stores the
fields of the specified scalar structure as individual variables in the file.
If you include the optional fieldNames, the save function stores only
the specified fields of the structure. You cannot specify variables and
the '-struct' keyword in the same call to save.

save(filename, ..., '-append') adds new variables to an existing
file. You can specify the '-append' option with additional inputs such
as variables, '-struct' , format, or version.

save(filename, ..., format) saves in the specified format: '-mat'
or '-ascii'. You can specify the format option with additional inputs
such as variables, '-struct' , '-append', or version.

save(filename, ..., version) saves to MAT-files in the specified
version: '-v4', '-v6', '-v7', or '-v7.3'. You can specify the
version option with additional inputs such as variables, '-struct' ,
'-append', or format.

save filename ... is the command form of the syntax, for convenient
saving from the command line. With command syntax, you do not need
to enclose input strings in single quotation marks. Separate inputs
with spaces instead of commas. Do not use command syntax if inputs
such as filename are variables. For more information, see “Command

2-3404



save

vs. Function Syntax” in the MATLAB Programming Fundamentals
documentation.

Input
Arguments

filename

Name of a file. If you do not specify filename, the save function
saves to a file named matlab.mat.

If filename does not include an extension and the value of format
is -mat (the default), MATLAB appends .mat. If filename does
not include a full path, MATLAB saves in the current folder. You
must have permission to write to the file.

Default: 'matlab.mat'

variables

Description of the variables to save. Use one of the following
forms:

var1, var2, ... Save the listed variables.
Use the '*' wildcard to
match patterns. For example,
save('A*') saves all variables
that start with A.

'-regexp', expressions Save only the variables that
match the specified regular
expressions.
MATLAB treats all inputs
as regular expressions,
except the optional filename.
The filename must appear
immediately after the save
command.

Default: all variables

2-3405



save

'-struct'

Keyword to request saving the fields of a scalar structure as
individual variables in the file. The structName input must
appear immediately after the -struct keyword.

structName

Name of a scalar structure. Required when you use the '-struct'
keyword.

fieldNames

Description of the fields of a structure to save as individual
variables in the file. Use the same forms listed for variables. If
you use the '-regexp' keyword, MATLAB treats all inputs as
regular expressions except filename and structName.

'-append'

Keyword to add data to an existing file. For MAT-files, -append
adds new variables to the file or replaces the saved values of
existing variables with values in the workspace. For ASCII files,
-append adds data to the end of the file.

format

Specifies the format of the file, regardless of any specified
extension. Use one of the following combinations (not case
sensitive):

'-mat' Binary MAT-file format (default).

'-ascii' 8-digit ASCII format.

'-ascii', '-tabs' Tab-delimited 8-digit ASCII format.

'-ascii', '-double' 16-digit ASCII format.

'-ascii',
'-double', '-tabs'

Tab-delimited 16-digit ASCII format.

2-3406



save

For MAT-files, data saved on one machine and loaded on another
machine retains as much accuracy and range as the different
machine floating-point formats allow.

For ASCII file formats, the save function has the following
limitations:

• Each variable must be a two-dimensional double or character
array.

• MATLAB translates characters to their corresponding internal
ASCII codes. For example, 'abc' appears in an ASCII file as:

9.7000000e+001 9.8000000e+001 9.9000000e+001

• The output includes only the real component of complex
numbers.

• MATLAB writes data from each variable sequentially to the
file. If you plan to use the load function to read the file, all
variables must have the same number of columns. The load
function creates a single variable from the file.

For more flexibility in creating ASCII files, use dlmwrite or
fprintf.

version

Specifies the version of the file. Applies to MAT-files only.

The following table shows the available MAT-file version options
and the corresponding supported features.

2-3407



save

Option
Can Load in
Versions Supported Features

'-v7.3' 7.3 or later Version 7.0 features plus support for
data items greater than or equal to
2 GB on 64-bit systems.

'-v7' 7.0 or later Version 6 features plus data
compression and Unicode character
encoding. Unicode encoding enables
file sharing between systems that
use different default character
encoding schemes.

'-v6' 5 or later Version 4 features plus
N-dimensional arrays, cell arrays
and structures, and variable names
greater than 19 characters.

'-v4' all Two-dimensional double, character,
and sparse arrays.

If any data items require features that the specified version does
not support, MATLAB does not save those items and issues a
warning. You cannot specify a version later than your version of
MATLAB software.

To view or set the default version for MAT-files, select
File > Preferences > General > MAT-Files.

Examples Save all variables from the workspace in binary MAT-file test.mat.
Remove the variables from the workspace, and retrieve the data with
the load function.

save test.mat
clear
load test.mat

2-3408



save

Create a variable savefile that stores the name of a file, pqfile.mat.
Save two variables to the file.

savefile = 'pqfile.mat';
p = rand(1, 10);
q = ones(10);
save(savefile, 'p', 'q')

Save data to an ASCII file, and view the contents of the file with the
type function:

p = rand(1, 10);
q = ones(10);
save('pqfile.txt', 'p', 'q', '-ASCII')
type pqfile.txt

Alternatively, use command syntax for the save operation:

save pqfile.txt p q -ASCII

Save the fields of structure s1 as individual variables. Check the
contents of the file with the whos function. Clear the workspace and
load the contents of a single field.

s1.a = 12.7;
s1.b = {'abc', [4 5; 6 7]};
s1.c = 'Hello!';

save('newstruct.mat', '-struct', 's1');

disp('Contents of newstruct.mat:')
whos('-file', 'newstruct.mat')

clear('s1')
load('newstruct.mat', 'b')

2-3409



save

Save any variables in the workspace with names that begin with Mon,
Tue, or Wed to mydata.mat:

save('mydata', '-regexp', '^Mon|^Tue|^Wed');

Alternatives To save data from the MATLAB desktop, select File > Save
Workspace As, or use the Workspace browser.

See Also clear | hgsave | fileformats | load | regexp | saveas | whos |
workspace

How To • “Exporting to MAT-Files”

• “Exporting to Text Data Files”

2-3410



save (COM)

Purpose Serialize control object to file

Syntax h.save('filename')
save(h, 'filename')

Description h.save('filename') saves the COM control object, h, to the file
specified in the string, filename.

save(h, 'filename') is an alternate syntax for the same operation.

Note The COM save function is only supported for controls at this time.

Remarks COM functions are available on Microsoft Windows systems only.

Examples Create an mwsamp control and save its original state to the file mwsample:

f = figure('position', [100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], f);
h.save('mwsample')

Now, alter the figure by changing its label and the radius of the circle:

h.Label = 'Circle';
h.Radius = 50;
h.Redraw;

Using the load function, you can restore the control to its original state:

h.load('mwsample');
h.get

MATLAB displays the original values:

ans =
Label: 'Label'

Radius: 20

2-3411



save (COM)

See Also load (COM), actxcontrol, actxserver, release, delete (COM)

2-3412



save (serial)

Purpose Save serial port objects and variables to file

Syntax save filename
save filename obj1 obj2...

Description save filename saves all MATLAB variables to the file filename. If an
extension is not specified for filename, then the .mat extension is used.

save filename obj1 obj2... saves the serial port objects obj1
obj2... to the file filename.

Remarks You can use save in the functional form as well as the command form
shown above. When using the functional form, you must specify the
filename and serial port objects as strings. For example. to save the
serial port object s to the file MySerial.mat on a Windows platform

s = serial('COM1');
save('MySerial','s')

Any data that is associated with the serial port object is not
automatically stored in the file. For example, suppose there is data in
the input buffer for obj. To save that data to a file, you must bring
it into the MATLAB workspace using one of the synchronous read
functions, and then save to the file using a separate variable name. You
can also save data to a text file with the record function.

You return objects and variables to the MATLAB workspace with the
load command. Values for read-only properties are restored to their
default values upon loading. For example, the Status property is
restored to closed. To determine if a property is read-only, examine
its reference pages.

Example This example illustrates how to use the command and functional form
of save on a Windows platform.

s = serial('COM1');
set(s,'BaudRate',2400,'StopBits',1)
save MySerial1 s

2-3413



save (serial)

set(s,'BytesAvailableFcn',@mycallback)
save('MySerial2','s')

See Also Functions

load, record

Properties

Status

2-3414



saveas

Purpose Save figure or Simulink block diagram using specified format

GUI
Alternative

Use File > Save As on the figure window menu to access the Save
As dialog, in which you can select a graphics format. For details, see
“Exporting in a Specific Graphics Format” in the MATLAB Graphics
documentation. Sizes of files written to image formats by this GUI and
by saveas can differ due to disparate resolution settings.

Syntax saveas(h,'filename.ext')
saveas(h,'filename','format')

Description saveas(h,'filename.ext') saves the figure or Simulink block
diagram with the handle h to the file filename.ext. The format of the
file is determined by the extension, ext. Allowable values for ext are
listed in this table.

You can pass the handle of any Handle Graphics object to saveas,
which then saves the parent figure to the object you specified should h
not be a figure handle. This means that saveas cannot save a subplot
without also saving all subplots in its parent figure.

ext Value Format

ai Adobe® Illustrator ‘88

bmp Windows bitmap

emf Enhanced metafile

eps EPS Level 1

fig MATLAB figure (invalid for Simulink block
diagrams)

jpg JPEG image (invalid for Simulink block diagrams)

m MATLAB file (invalid for Simulink block
diagrams)

pbm Portable bitmap

2-3415



saveas

ext Value Format

pcx Paintbrush 24-bit

pdf Portable Document Format

pgm Portable Graymap

png Portable Network Graphics

ppm Portable Pixmap

tif TIFF image, compressed

saveas(h,'filename','format') saves the figure or Simulink block
diagram with the handle h to the file called filename using the specified
format. The filename can have an extension, but the extension is not
used to define the file format. If no extension is specified, the standard
extension corresponding to the specified format is automatically
appended to the filename.

Allowable values for format are the extensions in the table above and
the device drivers and graphic formats supported by print. The drivers
and graphic formats supported by print include additional file formats
not listed in the table above. When using a print device type to specify
format for saveas, do not prefix it with -d.

Remarks You can use open to open files saved using saveas with an m or fig
extension. Other saveas and print formats are not supported by open.
Both the Save As and Export Setup dialog boxes that you access
from a figure’s File menu use saveas with the format argument, and
support all device and file types listed above.

2-3416



saveas

Note Whenever you specify a format for saving a figure with the
Save As menu item , that file format is used again the next time
you save that figure or a new one. If you do not want to save in the
previously-used format, use Save As and be sure to set the Save as
type drop-down menu to the kind of file you want to write. However,
saving a figure with the saveas function and a format does not change
the Save as type setting in the GUI.

If you want to control the size or resolution of figures saved in image
(bit-mapped) formats, such as BMP or JPG, use the print command and
specify dots-per-inch resolution with the r switch.

Examples Example 1: Specify File Extension

Save the current figure that you annotated using the Plot Editor to a
file named pred_prey using the MATLAB fig format. This allows you
to open the file pred_prey.fig at a later time and continue editing it
with the Plot Editor.

saveas(gcf,'pred_prey.fig')

Example 2: Specify File Format but No Extension

Save the current figure, using Adobe Illustrator format, to the file logo.
Use the ai extension from the above table to specify the format. The file
created is logo.ai.

saveas(gcf,'logo', 'ai')

This is the same as using the Adobe Illustrator format from the print
devices table, which is -dill; use doc print or help print to see the
table for print device types. The file created is logo.ai. MATLAB
automatically appends the ai extension for an Illustrator format file
because no extension was specified.

saveas(gcf,'logo', 'ill')

2-3417



saveas

Example 3: Specify File Format and Extension

Save the current figure to the file star.eps using the Level 2 Color
PostScript format. If you use doc print or help print, you can see from
the table for print device types that the device type for this format is
-dpsc2. The file created is star.eps.

saveas(gcf,'star.eps', 'psc2')

In another example, save the current Simulink block diagram to the file
trans.tiff using the TIFF format with no compression. From the
table for print device types, you can see that the device type for this
format is -dtiffn. The file created is trans.tiff.

saveas(gcf,'trans.tiff', 'tiffn')

See Also hgsave, open, print

“Printing” on page 1-102 for related functions

Simulink users, see also save_system

2-3418



saveobj

Purpose Modify save process for object

Syntax b = saveobj(a)

Description b = saveobj(a) is called by the save function if the class of a defines a
saveobj method. save writes the returned value, b, to the MAT-file.

Define a loadobj method to take the appropriate action when loading
the object.

If A is an array of objects, MATLAB invokes saveobj separately for
each object saved.

Examples Call the superclass saveobj method from the subclass implementation
of saveobj with the following syntax:

classdef mySub < super
methods

function sobj = saveobj(obj)
% Call superclass saveobj method
sobj = saveobj@super(obj);
% Perform subclass save operations
...

end
...
end

...
end

See “Saving and Loading Objects from Class Hierarchies”.

Update object when saved:

function b = saveobj(a)
% If the object does not have an account number,
% call method to add account number to AccountNumber property
if isempty(a.AccountNumber)

a.AccountNumber = getAccountNumber(a);

2-3419



saveobj

end
b = a;

end

See “Example — Maintaining Class Compatibility”.

See Also save | load | loadobj

Tutorials • “Saving and Loading Objects”

2-3420



savepath

Purpose Save current search path

GUI
Alternatives

As an alternative to the savepath function, use the Set Path dialog box.

Syntax savepath
savepath folderName/pathdef.m
status = savepath...

Description savepath saves the current MATLAB search path for use in a future
session. savepath saves the search path to the pathdef.m file that
MATLAB located at startup, or to the current folder if a pathdef.m file
exists there. To save the search path programmatically each time you
exit MATLAB, use savepath in a finish.m file.

savepath folderName/pathdef.m saves the current search path to
pathdef.m located in folderName. Use this form of the syntax if you
do not have write access to the current pathdef.m. If you do not
specify folderName, MATLAB saves pathdef.m in the current folder.
folderName can be a relative or absolute path. To use the saved search
path automatically in a future session, make folderName be the startup
folder for MATLAB.

status = savepath... returns 0 when savepath was successful and 1
when savepath failed.

Examples Save the current search path to pathdef.m, located in
I:/my_matlab_files:

savepath I:/my_matlab_files/pathdef.m

See Also addpath, cd, dir, finish, genpath, matlabroot, pathsep, pathtool,
rehash, restoredefaultpath, rmpath, startup, userpath, what

Topics in the User Guide:

• “Running a Script When Quitting the MATLAB Program”.

2-3421



savepath

• “Using the MATLAB Search Path”

2-3422



scatter

Purpose Scatter plot

GUI
Alternatives

To graph selected variables, use the Plot Selector in the
Workspace Browser, or use the Figure Palette Plot Catalog. Manipulate
graphs in plot edit mode with the Property Editor. For details, see
Plotting Tools — Interactive Plotting in the MATLAB Graphics
documentation and Creating Graphics from the Workspace Browser in
the MATLAB Desktop Tools documentation.

Syntax scatter(X,Y,S,C)
scatter(X,Y)
scatter(X,Y,S)
scatter(...,markertype)
scatter(...,'filled')
scatter(...,'PropertyName',propertyvalue)
scatter(axes_handle,...)
h = scatter(...)

Description scatter(X,Y,S,C) displays colored circles at the locations specified by
the vectors X and Y (which must be the same size).

S determines the area of each marker (specified in points^2). S can be a
vector the same length as X and Y or a scalar. If S is a scalar, MATLAB
draws all the markers the same size. If S is empty, the default size
is used.

C determines the color of each marker. When C is a vector the same
length as X and Y, the values in C are linearly mapped to the colors in
the current colormap. When C is a 1-by-3 matrix, it specifies the colors
of the markers as RGB values. If you have 3 points in the scatter plot
and wish to have the colors be indices into the colormap, C should be
a 3-by-1 matrix. C can also be a color string (see ColorSpec for a list
of color string specifiers).

2-3423



scatter

scatter(X,Y) draws the markers in the default size and color.

scatter(X,Y,S) draws the markers at the specified sizes (S) with a
single color. This type of graph is also known as a bubble plot.

scatter(...,markertype) uses the marker type specified instead of
'o' (see LineSpec for a list of marker specifiers).

scatter(...,'filled') fills the markers.

scatter(...,'PropertyName',propertyvalue) creates the scatter
graph, applying the specified property settings. See scattergroup
properties for a description of properties.

scatter(axes_handle,...) plots into the axes object with handle
axes_handle instead of the current axes object (gca).

h = scatter(...) returns the handle of the scattergroup object
created.

Example load seamount
scatter(x,y,5,z)

2-3424



scatter

See Also scatter3, plot3

“Scatter/Bubble Plots” on page 1-101 for related functions

See Scattergroup Properties for property descriptions.

2-3425



scatter3

Purpose 3-D scatter plot

GUI
Alternatives

To graph selected variables, use the Plot Selector in the
Workspace Browser, or use the Figure Palette Plot Catalog. Manipulate
graphs in plot edit mode with the Property Editor. For details, see
Plotting Tools — Interactive Plotting in the MATLAB Graphics
documentation and Creating Graphics from the Workspace Browser in
the MATLAB Desktop Tools documentation.

Syntax scatter3(X,Y,Z,S,C)
scatter3(X,Y,Z)
scatter3(X,Y,Z,S)
scatter3(...,markertype)
scatter3(...,'filled')
scatter3(...,'PropertyName',propertyvalue)
h = scatter3(...)

Description scatter3(X,Y,Z,S,C) displays colored circles at the locations specified
by the vectors X, Y, and Z (which must all be the same size).

S determines the size of each marker (specified in points). S can be
a vector the same length as X, Y, and Z or a scalar. If S is a scalar,
MATLAB draws all the markers the same size.

C determines the color of each marker. When C is a vector the same
length as X and Y, the values in C are linearly mapped to the colors in
the current colormap. When C is a 1-by-3 matrix, it specifies the colors
of the markers as RGB values. If you have 3 points in the scatter plot
and wish to have the colors be indices into the colormap, C should be
a 3-by-1 matrix. C can also be a color string (see ColorSpec for a list
of color string specifiers).

scatter3(X,Y,Z) draws the markers in the default size and color.

2-3426



scatter3

scatter3(X,Y,Z,S) draws markers at the specified sizes (S) in a single
color.

scatter3(...,markertype) uses the marker type specified instead of
’o’ (see LineSpec for a list of marker specifiers).

scatter3(...,'filled') fills the markers.

scatter3(...,'PropertyName',propertyvalue) creates the scatter
graph, applying the specified property settings. See scattergroup
properties for a description of properties.

h = scatter3(...) returns handles to the scattergroup objects
created by scatter3. See Scattergroup Properties for property
descriptions.

Use plot3 for single color, single marker size 3-D scatter plots.

Examples [x,y,z] = sphere(16);
X = [x(:)*.5 x(:)*.75 x(:)];
Y = [y(:)*.5 y(:)*.75 y(:)];
Z = [z(:)*.5 z(:)*.75 z(:)];
S = repmat([1 .75 .5]*10,prod(size(x)),1);
C = repmat([1 2 3],prod(size(x)),1);
scatter3(X(:),Y(:),Z(:),S(:),C(:),'filled'), view(-60,60)

2-3427



scatter3

See Also scatter, plot3

See Scattergroup Properties for property descriptions

“Scatter/Bubble Plots” on page 1-101 for related functions

2-3428



Scattergroup Properties

Purpose Define scattergroup properties

Modifying
Properties

You can set and query graphics object properties using the set and get
commands or the Property Editor (propertyeditor).

Note that you cannot define default property values for scattergroup
objects.

See Plot Objects for information on scattergroup objects.

Scattergroup
Property
Descriptions

This section provides a description of properties. Curly braces { } enclose
default values.

Annotation
hg.Annotation object Read Only

Control the display of scattergroup objects in legends. The
Annotation property enables you to specify whether this
scattergroup object is represented in a figure legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Once you have obtained the hg.LegendEntry object, you can
set its IconDisplayStyle property to control whether the
scattergroup object is displayed in a figure legend:

2-3429



Scattergroup Properties

IconDisplayStyle
Value

Purpose

on Include the scattergroup object in a legend
as one entry, but not its children objects

off Do not include the scattergroup or its
children in a legend (default)

children Include only the children of the scattergroup
as separate entries in the legend

Setting the IconDisplayStyle Property

These commands set the IconDisplayStyle of a graphics object
with handle hobj to children, which causes each child object
to have an entry in the legend:

hAnnotation = get(hobj,'Annotation');
hLegendEntry = get(hAnnotation,'LegendInformation');
set(hLegendEntry,'IconDisplayStyle','children')

Using the IconDisplayStyle Property

See “Controlling Legends” for more information and examples.

BeingDeleted
on | {off} Read Only

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in
the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions
that act on a number of different objects. These functions might
not need to perform actions on objects if the objects are going to

2-3430



Scattergroup Properties

be deleted, and therefore, can check the object’s BeingDeleted
property before acting.

BusyAction
cancel | {queue}

Callback routine interruption. The BusyAction property enables
you to control how MATLAB handles events that potentially
interrupt executing callbacks. If there is a callback function
executing, callbacks invoked subsequently always attempt to
interrupt it.

If the Interruptible property of the object whose callback is
executing is set to on (the default), then interruption occurs
at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the
object owning the executing callback) determines how MATLAB
handles the event. The choices are

• cancel— Discard the event that attempted to execute a second
callback routine.

• queue — Queue the event that attempted to execute a second
callback routine until the current callback finishes.

ButtonDownFcn
string or function handle

Button press callback function. A callback that executes whenever
you press a mouse button while the pointer is over this object, but
not over another graphics object. See the HitTestArea property
for information about selecting objects of this type.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

This property can be

• A string that is a valid MATLAB expression

2-3431



Scattergroup Properties

• The name of a MATLAB file

• A function handle

Set this property to a function handle that references the callback.
The expressions execute in the MATLAB workspace.

See “Function Handle Callbacks” for information on how to use
function handles to define the callbacks.

CData
vector, m-by-3 matrix, ColorSpec

Color of markers. When CData is a vector the same length as XData
and YData, the values in CData are linearly mapped to the colors
in the current colormap. When CData is a length(XData)-by-3
matrix, it specifies the colors of the markers as RGB values.

CDataSource
string (MATLAB variable)

Link CData to MATLAB variable. Set this property to a MATLAB
variable that, by default, is evaluated in the base workspace to
generate the CData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change CData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

2-3432



Scattergroup Properties

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

Children
array of graphics object handles

Children of the scattergroup object. An array containing the
handle of a patch object parented to the scattergroup object
(whether visible or not).

If a child object’s HandleVisibility property is callback or off,
its handle does not show up in this object’s Children property.
If you want the handle in the Children property, set the root
ShowHiddenHandles property to on. For example:

set(0,'ShowHiddenHandles','on')

Clipping
{on} | off

Clipping mode. MATLAB clips graphs to the axes plot box by
default. If you set Clipping to off, portions of graphs can be
displayed outside the axes plot box. This can occur if you create a
plot object, set hold to on, freeze axis scaling (axis manual), and
then create a larger plot object.

CreateFcn
string or function handle

Callback routine executed during object creation. This property
defines a callback that executes when MATLAB creates an object.
You must specify the callback during the creation of the object.
For example,

2-3433



Scattergroup Properties

graphicfcn(y,'CreateFcn',@CallbackFcn)

where @CallbackFcn is a function handle that references the
callback function and graphicfcn is the plotting function which
creates this object.

MATLAB executes this routine after setting all other object
properties. Setting this property on an existing object has no
effect.

The handle of the object whose CreateFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

DeleteFcn
string or function handle

Callback executed during object deletion. A callback that executes
when this object is deleted (e.g., this might happen when you issue
a delete command on the object, its parent axes, or the figure
containing it). MATLAB executes the callback before destroying
the object’s properties so the callback routine can query these
values.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
can be queried using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

See the BeingDeleted property for related information.

DisplayName
string (default is empty string)

2-3434



Scattergroup Properties

String used by legend for this scattergroup object. The legend
function uses the string defined by the DisplayName property to
label this scattergroup object in the legend.

• If you specify string arguments with the legend function,
DisplayName is set to this scattergroup object’s corresponding
string and that string is used for the legend.

• If DisplayName is empty, legend creates a string of the form,
['data' n], where n is the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

• If you edit the string directly in an existing legend, DisplayName
is set to the edited string.

• If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

• To add programmatically a legend that uses the DisplayName
string, call legend with the toggle or show option.

See “Controlling Legends” for more examples.

EraseMode
{normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses
to draw and erase objects and their children. Alternative erase
modes are useful for creating animated sequences, where control
of the way individual objects are redrawn is necessary to improve
performance and obtain the desired effect.

• normal— Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all
objects are rendered correctly. This mode produces the most
accurate picture, but is the slowest. The other modes are faster,
but do not perform a complete redraw and are therefore less
accurate.

2-3435



Scattergroup Properties

• none— Do not erase objects when they are moved or destroyed.
While the objects are still visible on the screen after erasing
with EraseMode none, you cannot print these objects because
MATLAB stores no information about their former locations.

• xor — Draw and erase the object by performing an exclusive
OR (XOR) with each pixel index of the screen behind it. Erasing
the object does not damage the color of the objects behind it.
However, the color of the erased object depends on the color of
the screen behind it and it is correctly colored only when it is
over the axes background color (or the figure background color
if the axes Color property is set to none). That is, it isn’t erased
correctly if there are objects behind it.

• background — Erase the graphics objects by redrawing them
in the axes background color, (or the figure background color
if the axes Color property is set to none). This damages other
graphics objects that are behind the erased object, but the
erased object is always properly colored.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB can mathematically combine
layers of colors (e.g., performing an XOR on a pixel color with that
of the pixel behind it) and ignore three-dimensional sorting to
obtain greater rendering speed. However, these techniques are
not applied to the printed output.

Set the axes background color with the axes Color property. Set
the figure background color with the figure Color property.

You can use the MATLAB getframe command or other screen
capture applications to create an image of a figure containing
nonnormal mode objects.

2-3436



Scattergroup Properties

HandleVisibility
{on} | callback | off

Control access to object’s handle by command-line users and GUIs.
This property determines when an object’s handle is visible in
its parent’s list of children. HandleVisibility is useful for
preventing command-line users from accidentally accessing
objects that you need to protect for some reason.

• on—Handles are always visible when HandleVisibility is on.

• callback — Setting HandleVisibility to callback causes
handles to be visible from within callback routines or functions
invoked by callback routines, but not from within functions
invoked from the command line. This provides a means to
protect GUIs from command-line users, while allowing callback
routines to have access to object handles.

• off — Setting HandleVisibility to off makes handles
invisible at all times. This might be necessary when a callback
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string) and so temporarily
hides its own handles during the execution of that function.

Functions Affected by Handle Visibility

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

Properties Affected by Handle Visibility

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in

2-3437



Scattergroup Properties

the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

Overriding Handle Visibility

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties). See also findall.

Handle Validity

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties and pass it to any
function that operates on handles.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

HitTest
{on} | off

Selectable by mouse click. HitTest determines whether this object
can become the current object (as returned by the gco command
and the figure CurrentObject property) as a result of a mouse
click on the objects that compose the area graph. If HitTest
is off, clicking this object selects the object below it (which is
usually the axes containing it).

HitTestArea
on | {off}

2-3438



Scattergroup Properties

Select the object by clicking lines or area of extent. This property
enables you to select plot objects in two ways:

• Select by clicking lines or markers (default).

• Select by clicking anywhere in the extent of the plot.

When HitTestArea is off, you must click the object’s lines or
markers (excluding the baseline, if any) to select the object. When
HitTestArea is on, you can select this object by clicking anywhere
within the extent of the plot (i.e., anywhere within a rectangle
that encloses it).

Interruptible
{on} | off

Callback routine interruption mode. The Interruptible property
controls whether an object’s callback can be interrupted by
callbacks invoked subsequently.

Only callbacks defined for the ButtonDownFcn property are
affected by the Interruptible property. MATLAB checks for
events that can interrupt a callback only when it encounters a
drawnow, figure, getframe, or pause command in the routine.
See the BusyAction property for related information.

Setting Interruptible to on allows any graphics object’s callback
to interrupt callback routines originating from a bar property.
Note that MATLAB does not save the state of variables or the
display (e.g., the handle returned by the gca or gcf command)
when an interruption occurs.

LineWidth
scalar

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = 1/72 inch). The default LineWidth is 0.5
points.

2-3439



Scattergroup Properties

Marker
character (see table)

Marker symbol. The Marker property specifies the type of markers
that are displayed at plot vertices. You can set values for the
Marker property independently from the LineStyle property.
Supported markers include those shown in the following table.

Marker Specifier Description

+ Plus sign

o Circle

* Asterisk

. Point

x Cross

s Square

d Diamond

^ Upward-pointing triangle

v Downward-pointing triangle

> Right-pointing triangle

< Left-pointing triangle

p Five-pointed star (pentagram)

h Six-pointed star (hexagram)

none No marker (default)

MarkerEdgeColor
ColorSpec | none | {auto}

Marker edge color. The color of the marker or the edge color for
filled markers (circle, square, diamond, pentagram, hexagram,
and the four triangles). ColorSpec defines the color to use. none

2-3440



Scattergroup Properties

specifies no color, which makes nonfilled markers invisible. auto
sets MarkerEdgeColor to the same color as the CData property.

MarkerFaceColor
ColorSpec | {none} | auto

Marker face color. The fill color for markers that are closed shapes
(circle, square, diamond, pentagram, hexagram, and the four
triangles). ColorSpec defines the color to use. none makes the
interior of the marker transparent, allowing the background to
show through. auto sets the fill color to the axes color, or to the
figure color if the axes Color property is set to none (which is the
factory default for axes objects).

Parent
handle of parent axes, hggroup, or hgtransform

Parent of this object. This property contains the handle of the
object’s parent. The parent is normally the axes, hggroup, or
hgtransform object that contains the object.

See “Objects That Can Contain Other Objects” for more
information on parenting graphics objects.

Selected
on | {off}

Is object selected? When you set this property to on, MATLAB
displays selection "handles" at the corners and midpoints if the
SelectionHighlight property is also on (the default). You
can, for example, define the ButtonDownFcn callback to set this
property to on, thereby indicating that this particular object
is selected. This property is also set to on when an object is
manually selected in plot edit mode.

SelectionHighlight
{on} | off

2-3441



Scattergroup Properties

Objects are highlighted when selected. When the Selected
property is on, MATLAB indicates the selected state by
drawing four edge handles and four corner handles. When
SelectionHighlight is off, MATLAB does not draw the handles
except when in plot edit mode and objects are selected manually.

SizeData
square points

Size of markers in square points. This property specifies the area
of the marker in the scatter graph in units of points. Since there
are 72 points to one inch, to specify a marker that has an area of
one square inch you would use a value of 72^2.

SizeDataSource
string (MATLAB variable)

Link SizeData to MATLAB variable. Set this property to a
MATLAB variable that, by default, is evaluated in the base
workspace to generate the SizeData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change SizeData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

2-3442



Scattergroup Properties

Tag
string

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This is
particularly useful when you are constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callbacks.
You can define Tag as any string.

For example, you might create an areaseries object and set the
Tag property.

t = area(Y,'Tag','area1')

When you want to access objects of a given type, you can use
findobj to find the object’s handle. The following statement
changes the FaceColor property of the object whose Tag is area1.

set(findobj('Tag','area1'),'FaceColor','red')

Type
string (read only)

Type of graphics object. This property contains a string that
identifies the class of the graphics object. For stemseries objects,
Type is ’hggroup’. The following statement finds all the hggroup
objects in the current axes.

t = findobj(gca,'Type','hggroup');

UIContextMenu
handle of a uicontextmenu object

Associate a context menu with this object. Assign this property
the handle of a uicontextmenu object created in the object’s
parent figure. Use the uicontextmenu function to create the

2-3443



Scattergroup Properties

context menu. MATLAB displays the context menu whenever
you right-click over the object.

UserData
array

User-specified data. This property can be any data you want to
associate with this object (including cell arrays and structures).
The object does not set values for this property, but you can access
it using the set and get functions.

Visible
{on} | off

Visibility of this object and its children. By default, a new object’s
visibility is on. This means all children of the object are visible
unless the child object’s Visible property is set to off. Setting an
object’s Visible property to off prevents the object from being
displayed. However, the object still exists and you can set and
query its properties.

XData
array

X-coordinates of scatter markers. The scatter function draws
individual markers at each x-axis location in the XData array.
The input argument x in the scatter function calling syntax
assigns values to XData.

XDataSource
string (MATLAB variable)

Link XData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
XData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change XData.

2-3444



Scattergroup Properties

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

YData
scalar, vector, or matrix

Y-coordinates of scatter markers. The scatter function draws
individual markers at each y-axis location in the YData array.

The input argument y in the scatter function calling syntax
assigns values to YData.

YDataSource
string (MATLAB variable)

Link YData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
YData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change YData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the

2-3445



Scattergroup Properties

data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

ZData
vector of coordinates

Z-coordinates. A vector defining the z-coordinates for the graph.
XData and YData must be the same length and have the same
number of rows.

ZDataSource
string (MATLAB variable)

Link ZData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
ZData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change ZData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

2-3446



Scattergroup Properties

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

2-3447



schur

Purpose Schur decomposition

Syntax T = schur(A)
T = schur(A,flag)
[U,T] = schur(A,...)

Description The schur command computes the Schur form of a matrix.

T = schur(A) returns the Schur matrix T.

T = schur(A,flag) for real matrix A, returns a Schur matrix T in one
of two forms depending on the value of flag:

'complex' T is triangular and is complex if A has complex
eigenvalues.

'real' T has the real eigenvalues on the diagonal and
the complex eigenvalues in 2-by-2 blocks on the
diagonal. 'real' is the default.

If A is complex, schur returns the complex Schur form in matrix T.
The complex Schur form is upper triangular with the eigenvalues of A
on the diagonal.

The function rsf2csf converts the real Schur form to the complex
Schur form.

[U,T] = schur(A,...) also returns a unitary matrix U so that A =
U*T*U' and U'*U = eye(size(A)).

Examples H is a 3-by-3 eigenvalue test matrix:

H = [ -149 -50 -154
537 180 546
-27 -9 -25 ]

Its Schur form is

schur(H)

2-3448



schur

ans =
1.0000 -7.1119 -815.8706

0 2.0000 -55.0236
0 0 3.0000

The eigenvalues, which in this case are 1, 2, and 3, are on the diagonal.
The fact that the off-diagonal elements are so large indicates that this
matrix has poorly conditioned eigenvalues; small changes in the matrix
elements produce relatively large changes in its eigenvalues.

Algorithm Input of Type Double

If A has type double, schur uses the LAPACK routines listed in the
following table to compute the Schur form of a matrix:

Matrix A Routine

Real symmetric DSYTRD, DSTEQR

DSYTRD, DORGTR, DSTEQR (with output U)

Real nonsymmetric DGEHRD, DHSEQR

DGEHRD, DORGHR, DHSEQR (with output U)

Complex Hermitian ZHETRD, ZSTEQR

ZHETRD, ZUNGTR, ZSTEQR (with output U)

Non-Hermitian ZGEHRD, ZHSEQR

ZGEHRD, ZUNGHR, ZHSEQR (with output U)

Input of Type Single

If A has type single, schur uses the LAPACK routines listed in the
following table to compute the Schur form of a matrix:

2-3449



schur

Matrix A Routine

Real symmetric SSYTRD, SSTEQR

SSYTRD, SORGTR, SSTEQR (with output U)

Real nonsymmetric SGEHRD, SHSEQR

SGEHRD, SORGHR, SHSEQR (with output U)

Complex Hermitian CHETRD, CSTEQR

CHETRD, CUNGTR, CSTEQR (with output U)

Non-Hermitian CGEHRD, CHSEQR

CGEHRD, CUNGHR, CHSEQR (with output U)

See Also eig, hess, qz, rsf2csf

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen, LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third
Edition, SIAM, Philadelphia, 1999.

2-3450

http://www.netlib.org/lapack/lug/lapack_lug.html


script

Purpose Sequence of MATLAB statements in file

Description A script file is an external file that contains a sequence of MATLAB
statements. By typing the filename, you can obtain subsequent
MATLAB input from the file. Script files have a filename extension
of .m.

Scripts are the simplest kind of MATLAB program. They are useful
for automating blocks of MATLAB commands, such as computations
you have to perform repeatedly from the command line. Scripts can
operate on existing data in the workspace, or they can create new data
on which to operate. Although scripts do not return output arguments,
any variables that they create remain in the workspace, so you can
use them in further computations. In addition, scripts can produce
graphical output using commands like plot.

Scripts can contain any series of MATLAB statements. They require no
declarations or begin/end delimiters.

Like any MATLAB program, scripts can contain comments. Any text
following a percent sign (%) on a given line is comment text. Comments
can appear on lines by themselves, or you can append them to the end
of any executable line.

See Also echo, function, type

2-3451



sec

Purpose Secant of argument in radians

Syntax Y = sec(X)

Description The sec function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Y = sec(X) returns an array the same size as X containing the secant
of the elements of X.

Examples Graph the secant over the domains and
.

x1 = -pi/2+0.01:0.01:pi/2-0.01;
x2 = pi/2+0.01:0.01:(3*pi/2)-0.01;
plot(x1,sec(x1),x2,sec(x2)), grid on

2-3452



sec

The expression sec(pi/2) does not evaluate as infinite but as
the reciprocal of the floating-point accuracy eps, because pi is a
floating-point approximation to the exact value of .

Definition The secant can be defined as

Algorithm sec uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc. business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also secd, sech, asec, asecd, asech

2-3453

http://www.netlib.org


secd

Purpose Secant of argument in degrees

Syntax Y = secd(X)

Description Y = secd(X) is the secant of the elements of X, expressed in degrees.
For odd integers n, secd(n*90) is infinite, whereas sec(n*pi/2) is
large but finite, reflecting the accuracy of the floating point value of pi.

See Also sec, sech, asec, asecd, asech

2-3454



sech

Purpose Hyperbolic secant

Syntax Y = sech(X)

Description The sech function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Y = sech(X) returns an array the same size as X containing the
hyperbolic secant of the elements of X.

Examples Graph the hyperbolic secant over the domain

x = -2*pi:0.01:2*pi;
plot(x,sech(x)), grid on

2-3455



sech

Algorithm sech uses this algorithm.

Definition The secant can be defined as

Algorithm sec uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc. business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also asec, asech, sec

2-3456

http://www.netlib.org


selectmoveresize

Purpose Select, move, resize, or copy axes and uicontrol graphics objects

Syntax A = selectmoveresize
set(gca,'ButtonDownFcn','selectmoveresize')

Description selectmoveresize is useful as the callback routine for axes and
uicontrol button down functions. When executed, it selects the object
and allows you to move, resize, and copy it.

A = selectmoveresize returns a structure array containing

• A.Type: a string containing the action type, which can be Select,
Move, Resize, or Copy

• A.Handles: a list of the selected handles, or, for a Copy, an m-by-2
matrix containing the original handles in the first column and the
new handles in the second column

set(gca,'ButtonDownFcn','selectmoveresize') sets the
ButtonDownFcn property of the current axes to selectmoveresize:

See Also The ButtonDownFcn property of axes and uicontrol objects

“Object Manipulation” on page 1-110 for related functions

2-3457

../ref/axes_props.html#ButtonDownFcn
../ref/uicontrol_props.html#ButtonDownFcn


semilogx, semilogy

Purpose Semilogarithmic plots

GUI
Alternatives

To graph selected variables, use the Plot Selector in the
Workspace Browser, or use the Figure Palette Plot Catalog. Manipulate
graphs in plot edit mode with the Property Editor. For details, see
Plotting Tools — Interactive Plotting in the MATLAB Graphics
documentation and Creating Graphics from the Workspace Browser in
the MATLAB Desktop Tools documentation.

Syntax semilogx(Y)
semilogy(...)
semilogx(X1,Y1,...)
semilogx(X1,Y1,LineSpec,...)
semilogx(...,'PropertyName',PropertyValue,...)
h = semilogx(...)
h = semilogy(...)

Description semilogx and semilogy plot data as logarithmic scales for the x- and
y-axis, respectively.

semilogx(Y) creates a plot using a base 10 logarithmic scale for the
x-axis and a linear scale for the y-axis. It plots the columns of Y versus
their index if Y contains real numbers. semilogx(Y) is equivalent to
semilogx(real(Y), imag(Y)) if Y contains complex numbers. semilogx
ignores the imaginary component in all other uses of this function.

semilogy(...) creates a plot using a base 10 logarithmic scale for the
y-axis and a linear scale for the x-axis.

semilogx(X1,Y1,...) plots all Xn versus Yn pairs. If only Xn or Yn
is a matrix, semilogx plots the vector argument versus the rows or
columns of the matrix, depending on whether the vector’s row or column
dimension matches the matrix.

2-3458



semilogx, semilogy

semilogx(X1,Y1,LineSpec,...) plots all lines defined by the
Xn,Yn,LineSpec triples. LineSpec determines line style, marker
symbol, and color of the plotted lines.

semilogx(...,'PropertyName',PropertyValue,...) sets property
values for all lineseries graphics objects created by semilogx.

h = semilogx(...) and h = semilogy(...) return a vector of
handles to lineseries graphics objects, one handle per line.

Remarks If you do not specify a color when plotting more than one line,
semilogx and semilogy automatically cycle through the colors and
line styles in the order specified by the current axes ColorOrder and
LineStyleOrder properties.

You can mix Xn,Yn pairs with Xn,Yn,LineSpec triples; for example,

semilogx(X1,Y1,X2,Y2,LineSpec,X3,Y3)

If you attempt to add a loglog, semilogx, or semilogy plot to a linear
axis mode graph with hold on, the axis mode will remain as it is and
the new data will plot as linear.

Examples Create a simple semilogy plot.

x = 0:.1:10;
semilogy(x,10.^x)

2-3459



semilogx, semilogy

See Also line, LineSpec, loglog, plot

“Basic Plots and Graphs” on page 1-96 for related functions

2-3460



sendmail

Purpose Send e-mail message to address list

Syntax sendmail('recipients','subject')
sendmail('recipients','subject','message')
sendmail('recipients','subject','message','attachments')

Description sendmail('recipients','subject') sends e-mail to recipients with
the specified subject. The recipients input is a string for a single
address, or a cell array of strings for multiple addresses.

sendmail('recipients','subject','message') includes the
specified message. If message is a string, sendmail automatically wraps
text at 75 characters. To force a line break in the message text, use 10,
as shown in the Examples. If message is a cell array of strings, each
cell represents a new line of text.

sendmail('recipients','subject','message','attachments')
attaches the files listed in the string or cell array attachments.

Tips • The sendmail function does not support e-mail servers that require
authentication.

• If sendmail cannot determine your e-mail address or outgoing SMTP
mail server from your system registry, specify those settings using
the setpref function. For example:

setpref('Internet','SMTP_Server','myserver.myhost.com');
setpref('Internet','E_mail','myaddress@example.com');

To identify the SMTP server for the call to setpref, check the
preferences for your electronic mail application, or consult your
e-mail system administrator. If you cannot easily determine the
server name, try 'mail', which is a common default, such as:

setpref('Internet','SMTP_Server','mail');

• The sendmail function does not support HTML-formatted messages.
However, you can send HTML files as attachments.

2-3461



sendmail

Examples Send a message with two attachments to a hypothetical e-mail address:

sendmail('user@otherdomain.com',...
'Test subject','Test message',...
{'directory/attach1.html','attach2.doc'});

Send a message with forced line breaks (using 10) to a hypothetical
e-mail address:

sendmail('user@otherdomain.com','New subject', ...
['Line1 of message' 10 'Line2 of message' 10 ...
'Line3 of message' 10 'Line4 of message']);

The resulting message is:

Line1 of message
Line2 of message
Line3 of message
Line4 of message

Alternatives On Windows systems with Microsoft® Outlook®, you can send
e-mail directly through Outlook® by accessing the COM server with
actxserver. For an example, see Solution 1-RTY6J.

See Also getpref | setpref

How To • “Specifying Proxy Server Settings”

2-3462

http://www.mathworks.com/support/solutions/en/data/1-RTY6J/index.html?solution=1-RTY6J


serial

Purpose Create serial port object

Syntax obj = serial('port')
obj = serial('port','PropertyName',PropertyValue,...)

Description obj = serial('port') creates a serial port object associated with the
serial port specified by port. If port does not exist, or if it is in use, you
will not be able to connect the serial port object to the device.

Port object name will depend upon the platform that the serial port is
on. instrhwinfo (’serial’) provides a list of available serial ports. This
list is an example of serial constructors on different platforms:

Platform Serial Port Constructor

Linux and Linux 64 serial('/dev/ttyS0');

Mac OS X and Mac
OS X 64

serial('/dev/tty.KeySerial1');

Solaris 64 serial('/dev/term/a');

Windows 32 and
Windows 64

serial('com1');

obj = serial('port','PropertyName',PropertyValue,...) creates
a serial port object with the specified property names and property
values. If an invalid property name or property value is specified, an
error is returned and the serial port object is not created.

Remarks When you create a serial port object, these property values are
automatically configured:

• The Type property is given by serial.

• The Name property is given by concatenating Serial with the port
specified in the serial function.

• The Port property is given by the port specified in the serial
function.

2-3463



serial

You can specify the property names and property values using any
format supported by the set function. For example, you can use
property name/property value cell array pairs. Additionally, you can
specify property names without regard to case, and you can make use of
property name completion. For example, the following commands are
all valid on a Windows platform.

s = serial('COM1','BaudRate',4800);
s = serial('COM1','baudrate',4800);
s = serial('COM1','BAUD',4800);

Refer to Configuring Property Values for a list of serial port object
properties that you can use with serial.

Before you can communicate with the device, it must be connected to
obj with the fopen function. A connected serial port object has a Status
property value of open. An error is returned if you attempt a read or
write operation while the object is not connected to the device. You can
connect only one serial port object to a given serial port.

Example This example creates the serial port object s1 associated with the serial
port COM1 on a Windows platform.

s1 = serial('COM1');

The Type, Name, and Port properties are automatically configured.

get(s1,{'Type','Name','Port'})
ans =

'serial' 'Serial-COM1' 'COM1'

To specify properties during object creation

s2 = serial('COM2','BaudRate',1200,'DataBits',7);

See Also Functions

fclose, fopen

2-3464



serial

Properties

Name, Port, Status, Type

2-3465



serialbreak

Purpose Send break to device connected to serial port

Syntax serialbreak(obj)
serialbreak(obj,time)

Description serialbreak(obj) sends a break of 10 milliseconds to the device
connected to the serial port object, obj.

serialbreak(obj,time) sends a break to the device with a duration,
in milliseconds, specified by time. Note that the duration of the break
might be inaccurate under some operating systems.

Remarks For some devices, the break signal provides a way to clear the hardware
buffer.

Before you can send a break to the device, it must be connected to obj
with the fopen function. A connected serial port object has a Status
property value of open. An error is returned if you attempt to send a
break while obj is not connected to the device.

serialbreak is a synchronous function, and blocks the command line
until execution is complete.

If you issue serialbreak while data is being asynchronously written,
an error is returned. In this case, you must call the stopasync function
or wait for the write operation to complete.

See Also Functions

fopen, stopasync

Properties

Status

2-3466



set

Purpose Set Handle Graphics object properties

Syntax set(H,'PropertyName',PropertyValue,...)
set(H,a)
set(H,pn,pv,...)
set(H,pn,MxN_pv)
a = set(h)
pv = set(h,'PropertyName')

Description
Note Do not use the set function on Java objects as it will cause a
memory leak. For more information, see “Accessing Private and Public
Data”

set(H,'PropertyName',PropertyValue,...) sets the named
properties to the specified values on the object(s) identified by H. H can
be a vector of handles, in which case set sets the properties’ values for
all the objects.

set(H,a) sets the named properties to the specified values on the
object(s) identified by H. a is a structure array whose field names are
the object property names and whose field values are the values of the
corresponding properties.

set(H,pn,pv,...) sets the named properties specified in the cell
array pn to the corresponding value in the cell array pv for all objects
identified in H.

set(H,pn,MxN_pv) sets n property values on each of m graphics objects,
where m = length(H) and n is equal to the number of property names
contained in the cell array pn. This allows you to set a given group of
properties to different values on each object.

a = set(h) returns the user-settable properties and possible values for
the object identified by h. a is a structure array whose field names are
the object’s property names and whose field values are the possible
values of the corresponding properties. If you do not specify an output

2-3467



set

argument, the MATLAB software displays the information on the
screen. h must be scalar.

pv = set(h,'PropertyName') returns the possible values for the
named property. If the possible values are strings, set returns each in
a cell of the cell array pv. For other properties, set returns a statement
indicating that PropertyName does not have a fixed set of property
values. If you do not specify an output argument, MATLAB displays the
information on the screen. h must be scalar.

Remarks You can use any combination of property name/property value pairs,
structure arrays, and cell arrays in one call to set.

Setting Property Units

Note that if you are setting both the FontSize and the FontUnits
properties in one function call, you must set the FontUnits property
first so that the MATLAB software can correctly interpret the specified
FontSize. The same applies to figure and axes uints — always set the
Units property before setting properties whose values you want to be
interpreted in those units. For example,

f = figure('Units','characters',...
'Position',[30 30 120 35]);

Examples Set the Color property of the current axes to blue.

axes;
set(gca,'Color','b')

Change all the lines in a plot to black.

plot(peaks)
set(findobj('Type','line'),'Color','k')

You can define a group of properties in a structure to better organize
your code. For example, these statements define a structure called
active, which contains a set of property definitions used for the

2-3468



set

uicontrol objects in a particular figure. When this figure becomes the
current figure, MATLAB changes the colors and enables the controls.

active.BackgroundColor = [.7 .7 .7];
active.Enable = 'on';
active.ForegroundColor = [0 0 0];

if gcf == control_fig_handle
set(findobj(control_fig_handle,'Type','uicontrol'),active)

end

You can use cell arrays to set properties to different values on each
object. For example, these statements define a cell array to set three
properties,

PropName(1) = {'BackgroundColor'};
PropName(2) = {'Enable'};
PropName(3) = {'ForegroundColor'};

These statements define a cell array containing three values for each of
three objects (i.e., a 3-by-3 cell array).

PropVal(1,1) = {[.5 .5 .5]};
PropVal(1,2) = {'off'};
PropVal(1,3) = {[.9 .9 .9]};
PropVal(2,1) = {[1 0 0]};
PropVal(2,2) = {'on'};
PropVal(2,3) = {[1 1 1]};
PropVal(3,1) = {[.7 .7 .7]};
PropVal(3,2) = {'on'};
PropVal(3,3) = {[0 0 0]};

Now pass the arguments to set,

set(H,PropName,PropVal)

where length(H) = 3 and each element is the handle to a uicontrol.

2-3469



set

Setting Different Values for the Same Property on Multiple
Objects

Suppose you want to set the value of the Tag property on five line
objects, each to a different value. Note how the value cell array needs to
be transposed to have the proper shape.

h = plot(rand(5));
set(h,{'Tag'},{'line1','line2','line3','line4','line5'}')

See Also findobj, gca, gcf, gco, gcbo, get

“Graphics Object Identification” on page 1-103 for related functions

2-3470



audioplayer.set

Purpose Set property values for audioplayer object

Syntax set(obj, 'PropertyName', Value)
set(obj, cellOfNames, cellOfValues)
set(obj, structOfProperties)
settableProperties = set(obj)

Description set(obj, 'PropertyName', Value) sets the named property to the
specified value for the object obj.

set(obj, cellOfNames, cellOfValues) sets the properties listed
in the cell array cellOfNames to the corresponding values in the cell
array cellOfValues. Each cell array must contain the same number
of elements.

set(obj, structOfProperties) sets the properties identified by each
field of the structure array structOfProperties to the values of the
associated fields.

settableProperties = set(obj) returns the names of the
properties that you can set in a structure array. The field names of
settableProperties are the property names.

Tips The set function allows combinations of property name/value pairs, cell
array pairs, and structure arrays in the same function call.

Examples View the list of properties that you can set for an audioplayer object:

load handel.mat;
handelObj = audioplayer(y, Fs);
set(handelObj)

Set the Tag and UserData properties of an audioplayer object using a
structure array:

newValues.Tag = 'My Tag';
newValues.UserData = {'My User Data', pi, [1 2 3 4]};

2-3471



audioplayer.set

load handel.mat;
handelObj = audioplayer(y, Fs);
set(handelObj, newValues)

% View the values all properties.
get(handelObj)

Alternatives To set the value of a single property, you can use dot notation. Reference
each property as though it is a field of a structure array. For example,
set the Tag property for an object called handelObj (as created in the
Examples):

handelObj.Tag = 'This is my tag.';

This command is exactly equivalent to:

set(handelObj, 'Tag', 'This is my tag.');

See Also audioplayer | get

2-3472



audiorecorder.set

Purpose Set property values for audiorecorder object

Syntax set(obj, 'PropertyName', Value)
set(obj, cellOfNames, cellOfValues)
set(obj, structOfProperties)
settableProperties = set(obj)

Description set(obj, 'PropertyName', Value) sets the named property to the
specified value for the object obj.

set(obj, cellOfNames, cellOfValues) sets the properties listed
in the cell array cellOfNames to the corresponding values in the cell
array cellOfValues. Each cell array must contain the same number
of elements.

set(obj, structOfProperties) sets the properties identified by each
field of the structure array structOfProperties to the values of the
associated fields.

settableProperties = set(obj) returns the names of the
properties that you can set in a structure array. The field names of
settableProperties are the property names.

Tips The set function allows combinations of property name/value pairs, cell
array pairs, and structure arrays in the same function call.

Examples View the list of properties that you can set for an audiorecorder object:

recorderObj = audiorecorder;
set(recorderObj)

Set the Tag and UserData properties of an audiorecorder object using
a structure array:

newValues.Tag = 'My Tag';
newValues.UserData = {'My User Data', pi, [1 2 3 4]};

2-3473



audiorecorder.set

recorderObj = audiorecorder;
set(recorderObj, newValues)

% View the values all properties.
get(recorderObj)

Alternatives To set the value of a single property, you can use dot notation. Reference
each property as though it is a field of a structure array. For example,
set the Tag property for an object called recorderObj (as created in
the Examples):

recorderObj.Tag = 'This is my tag.';

This command is exactly equivalent to:

set(recorderObj, 'Tag', 'This is my tag.');

See Also audiorecorder | get

2-3474



set (COM)

Purpose Set object or interface property to specified value

Syntax h.set('pname', value)
h.set('pname1', value1, 'pname2', value2, ...)
set(h, ...)

Description h.set('pname', value) sets the property specified in the string pname
to the given value.

h.set('pname1', value1, 'pname2', value2, ...) sets each
property specified in the pname strings to the given value.

set(h, ...) is an alternate syntax for the same operation.

See “Handling COM Data in MATLAB Software” in the External
Interfaces documentation for information on how MATLAB converts
workspace matrices to COM data types.

Remarks COM functions are available on Microsoft Windows systems only.

Examples Create an mwsamp control and use set to change the Label and Radius
properties:

f = figure ('position', [100 200 200 200]);
h = actxcontrol ('mwsamp.mwsampctrl.1', [0 0 200 200], f);

h.set('Label', 'Click to fire event', 'Radius', 40);
h.invoke('Redraw');

Here is another way to do the same thing, only without set and invoke:

h.Label = 'Click to fire event';
h.Radius = 40;
h.Redraw;

See Also get (COM), inspect, isprop, addproperty, deleteproperty

2-3475



set (hgsetget)

Purpose Assign property values to handle objects derived from hgsetget class

Syntax set(H,'PropertyName',value,...)
set(H,pn,pv)
set(H,S)
pv = set(h,'PropertyName')
S = set(h)

Description set(H,'PropertyName',value,...) sets the named property to the
specified value for the objects in the handle array H.

set(H,pn,pv) sets the named properties specified in the cell array of
strings pn to the corresponding values in the cell array pv for all objects
specified in H. The cell array pn must be 1-by-n, but the cell array pv can
be m-by-n where m is equal to length(H). set updates each object with a
different set of values for the list of property names contained in pn.

set(H,S) sets the properties identified by each field name of struct
S with the values contained in S. S is a struct whose field names are
object property names.

pv = set(h,'PropertyName') returns the possible values for the
named property.

S = set(h) returns the user-settable properties and possible values for
the handle object h. S is a struct whose field names are the object’s
property names and whose values are cell arrays containing the possible
values of the corresponding properties. The cell array is empty for
properties that do not have finite possible values.

You can use property/value string pairs, structs, and property/value
cell array pairs in the same call to set.

Override the hgsetget class setdisp method to change how MATLAB
displays this information.

See Also See “Implementing a Set/Get Interface for Properties”

handle, hgsetget, set, get (hgsetget)

2-3476



mmreader.set

Purpose Set property values for multimedia reader object

Syntax set(obj, 'PropertyName', Value)
set(obj, cellOfNames, cellOfValues)
set(obj, structOfProperties)
settableProperties = set(obj)

Description set(obj, 'PropertyName', Value) sets the named property to the
specified value for the object obj.

set(obj, cellOfNames, cellOfValues) sets the properties listed
in the cell array cellOfNames to the corresponding values in the cell
array cellOfValues. Each cell array must contain the same number
of elements.

set(obj, structOfProperties) sets the properties identified by each
field of the structure array structOfProperties to the values of the
associated fields.

settableProperties = set(obj) returns the names of the
properties that you can set in a structure array. The field names of
settableProperties are the property names.

Tips The set function allows combinations of property name/value pairs, cell
array pairs, and structure arrays in the same function call.

Examples View the list of properties that you can set for a multimedia reader
object:

xyloObj = mmreader('xylophone.mpg');
set(xyloObj)

Set the Tag and UserData properties of a multimedia reader object
using a structure array:

newValues.Tag = 'My Tag';
newValues.UserData = {'My User Data', pi, [1 2 3 4]};

2-3477



mmreader.set

xyloObj = mmreader('xylophone.mpg');
set(xyloObj, newValues)

% View the values all properties.
get(xyloObj)

Alternatives To set the value of a single property, you can use dot notation. Reference
each property as though it is a field of a structure array. For example,
set the Tag property for a reader object called xyloObj (as created in
the Examples):

xyloObj.Tag = 'This is my tag.';

This command is exactly equivalent to:

set(xyloObj, 'Tag', 'This is my tag.');

See Also mmreader | get

2-3478



set (RandStream)

Purpose Set random stream property

Class @RandStream

Syntax set(S,'PropertyName',Value)
set(S,'Property1',Value1,'Property2',Value2,...)
set(S,A)
A=set(S,'Property')
set(S,'Property')
A=set(S)
set(S)

Description set(S,'PropertyName',Value) sets the property 'PropertyName' of
the random stream S to the value Value.

set(S,'Property1',Value1,'Property2',Value2,...) sets multiple
random stream property values with a single statement.

set(S,A) where A is a structure whose field names are property names
of the random stream S sets the properties of S named by each field with
the values contained in those fields.

A=set(S,'Property') or set(S,'Property') displays possible values
for the specified property of S.

A=set(S) or set(S) displays or returns all properties of S and their
possible values.

See Also @RandStream, get (RandStream), rand, randn, randi

2-3479



set (serial)

Purpose Configure or display serial port object properties

Syntax set(obj)
props = set(obj)
set(obj,'PropertyName')
props = set(obj,'PropertyName')
set(obj,'PropertyName',PropertyValue,...)
set(obj,PN,PV)
set(obj,S)

Description set(obj) displays all configurable properties values for the serial port
object, obj. If a property has a finite list of possible string values, then
these values are also displayed.

props = set(obj) returns all configurable properties and their
possible values for obj to props. props is a structure whose field names
are the property names of obj, and whose values are cell arrays of
possible property values. If the property does not have a finite set of
possible values, then the cell array is empty.

set(obj,'PropertyName') displays the valid values for PropertyName
if it possesses a finite list of string values.

props = set(obj,'PropertyName') returns the valid values for
PropertyName to props. props is a cell array of possible string values
or an empty cell array if PropertyName does not have a finite list of
possible values.

set(obj,'PropertyName',PropertyValue,...) configures multiple
property values with a single command.

set(obj,PN,PV) configures the properties specified in the cell array of
strings PN to the corresponding values in the cell array PV. PN must be a
vector. PV can be m-by-n where m is equal to the number of serial port
objects in obj and n is equal to the length of PN.

set(obj,S) configures the named properties to the specified values for
obj. S is a structure whose field names are serial port object properties,
and whose field values are the values of the corresponding properties.

2-3480



set (serial)

Remarks Refer to Configuring Property Values for a list of serial port object
properties that you can configure with set.

You can use any combination of property name/property value pairs,
structures, and cell arrays in one call to set. Additionally, you can
specify a property name without regard to case, and you can make use
of property name completion. For example, if s is a serial port object,
then the following commands are all valid.

set(s,'BaudRate')
set(s,'baudrate')
set(s,'BAUD')

If you use the help command to display help for set, then you need to
supply the pathname shown below.

help serial/set

Examples This example illustrates some of the ways you can use set to configure
or return property values for the serial port object s, on a Windows
platform.

s = serial('COM1');
set(s,'BaudRate',9600,'Parity','even')
set(s,{'StopBits','RecordName'},{2,'sydney.txt'})
set(s,'Parity')
[ {none} | odd | even | mark | space ]

See Also Functions

get

2-3481



set (timer)

Purpose Configure or display timer object properties

Syntax set(obj)
prop_struct = set(obj)
set(obj,'PropertyName')
prop_cell=set(obj,'PropertyName')
set(obj,'PropertyName',PropertyValue,...)
set(obj,S)
set(obj,PN,PV)

Description set(obj) displays property names and their possible values for all
configurable properties of timer object obj. obj must be a single timer
object.

prop_struct = set(obj) returns the property names and their
possible values for all configurable properties of timer object obj. obj
must be a single timer object. The return value, prop_struct, is a
structure whose field names are the property names of obj, and whose
values are cell arrays of possible property values or empty cell arrays if
the property does not have a finite set of possible string values.

set(obj,'PropertyName') displays the possible values for the
specified property, PropertyName, of timer object obj. obj must be a
single timer object.

prop_cell=set(obj,'PropertyName') returns the possible values for
the specified property, PropertyName, of timer object obj. obj must be
a single timer object. The returned array, prop_cell, is a cell array of
possible value strings or an empty cell array if the property does not
have a finite set of possible string values.

set(obj,'PropertyName',PropertyValue,...) configures the
property, PropertyName, to the specified value, PropertyValue, for
timer object obj. You can specify multiple property name/property
value pairs in a single statement. obj can be a single timer object or a
vector of timer objects, in which case set configures the property values
for all the timer objects specified.

2-3482



set (timer)

set(obj,S) configures the properties of obj, with the values specified
in S, where S is a structure whose field names are object property names.

set(obj,PN,PV) configures the properties specified in the cell array
of strings, PN, to the corresponding values in the cell array PV, for the
timer object obj. PN must be a vector. If obj is an array of timer objects,
PV can be an M-by-N cell array, where M is equal to the length of timer
object array and N is equal to the length of PN. In this case, each timer
object is updated with a different set of values for the list of property
names contained in PN.

Note When specifying parameter/value pairs, you can use any mixture
of strings, structures, and cell arrays in the same call to set.

Examples Create a timer object.

t = timer;

Display all configurable properties and their possible values.

set(t)

BusyMode: [ {drop} | queue | error ]

ErrorFcn: string -or- function handle -or- cell array

ExecutionMode: [ {singleShot} | fixedSpacing | fixedDelay | fixedRate ]

Name

ObjectVisibility: [ {on} | off ]

Period

StartDelay

StartFcn: string -or- function handle -or- cell array

StopFcn: string -or- function handle -or- cell array

Tag

TasksToExecute

TimerFcn: string -or- function handle -or- cell array

UserData

View the possible values of the ExecutionMode property.

2-3483



set (timer)

set(t, 'ExecutionMode')
[ {singleShot} | fixedSpacing | fixedDelay | fixedRate ]

Set the value of a specific timer object property.

set(t, 'ExecutionMode', 'FixedRate')

Set the values of several properties of the timer object.

set(t, 'TimerFcn', 'callbk', 'Period', 10)

Use a cell array to specify the names of the properties you want to set
and another cell array to specify the values of these properties.

set(t, {'StartDelay', 'Period'}, {30, 30})

See Also timer, get(timer)

2-3484



set (timeseries)

Purpose Set properties of timeseries object

Syntax set(ts,'Property',Value)
set(ts,'Property1',Value1,'Property2',Value2,...)
set(ts,'Property')
set(ts)

Description set(ts,'Property',Value) sets the property 'Property' of the
timeseries object ts to the value Value. The following syntax is
equivalent:

ts.Property = Value

set(ts,'Property1',Value1,'Property2',Value2,...) sets
multiple property values for ts with a single statement.

set(ts,'Property') displays values for the specified property of the
timeseries object ts.

set(ts) displays all properties and values of the timeseries object ts.

See Also get (timeseries)

2-3485



set (tscollection)

Purpose Set properties of tscollection object

Syntax set(tsc,'Property',Value)
set(tsc,'Property1',Value1,'Property2',Value2,...)
set(tsc,'Property')

Description set(tsc,'Property',Value) sets the property 'Property' of the
tscollection tsc to the value Value. The following syntax is
equivalent:

tsc.Property = Value

set(tsc,'Property1',Value1,'Property2',Value2,...) sets
multiple property values for tsc with a single statement.

set(tsc,'Property') displays values for the specified property in the
time-series collection tsc.

set(tsc) displays all properties and values of the tscollection object
tsc.

See Also get (tscollection)

2-3486



setabstime (timeseries)

Purpose Set times of timeseries object as date strings

Syntax ts = setabstime(ts,Times)
ts = setabstime(ts,Times,Format)

Description ts = setabstime(ts,Times) sets the times in ts to the date strings
specified in Times. Times must either be a cell array of strings, or a
char array containing valid date or time values in the same date format.

ts = setabstime(ts,Times,Format) explicitly specifies the
date-string format used in Times.

Examples 1 Create a time-series object.

ts = timeseries(rand(3,1))

2 Set the absolute time vector.

ts = setabstime(ts,{'12-DEC-2005 12:34:56',...
'12-DEC-2005 13:34:56','12-DEC-2005 14:34:56'})

See Also datestr, getabstime (timeseries), timeseries

2-3487



setabstime (tscollection)

Purpose Set times of tscollection object as date strings

Syntax tsc = setabstime(tsc,Times)
tsc = setabstime(tsc,Times,format)

Description tsc = setabstime(tsc,Times) sets the times in tsc using the date
strings Times. Times must be either a cell array of strings, or a char
array containing valid date or time values in the same date format.

tsc = setabstime(tsc,Times,format) specifies the date-string
format used in Times explicitly.

Examples 1 Create a tscollection object.

tsc = tscollection(timeseries(rand(3,1)))

2 Set the absolute time vector.

tsc = setabstime(tsc,{'12-DEC-2005 12:34:56',...
'12-DEC-2005 13:34:56','12-DEC-2005 14:34:56'})

See Also datestr, getabstime (tscollection), tscollection

2-3488



setappdata

Purpose Specify application-defined data

Syntax setappdata(h,'name',value)

Description setappdata(h,'name',value) sets application-defined data for the
object with handle h. The application-defined data, which is created
if it does not already exist, is assigned the specified name and value.
The value can be any type of data.

Remarks Application data is data that is meaningful to or defined by your
application which you attach to a figure or any GUI component (other
than ActiveX controls) through its AppData property. Only Handle
Graphics MATLAB objects use this property.

See Also getappdata, isappdata, rmappdata

2-3489



setDefaultStream (RandStream)

Purpose Set default random number stream

Syntax prevstream = RandStream.setDefaultStream(stream)

Description prevstream = RandStream.setDefaultStream(stream) returns the
current default random number stream, and designates the random
number stream stream as the new default to be used by the rand,
randi, and randn functions.

rand, randi, and randn all rely on the same stream of uniform
pseudorandom numbers, known as the default stream. randi uses
one uniform value from the default stream to generate each integer
value. randn uses one or more uniform values from the default stream
to generate each normal value. Note that there are also rand, randi,
and randn methods for which you specify a specific random stream
from which to draw values.

See Also getDefaultStream (RandStream), @RandStream, rand (RandStream),
randn (RandStream), randperm (RandStream)

2-3490



setdiff

Purpose Find set difference of two vectors

Syntax c = setdiff(A, B)
c = setdiff(A, B, 'rows')
[c,i] = setdiff(...)

Description c = setdiff(A, B) returns the values in A that are not in B. In set
theory terms, c = A - B. Inputs A and B can be numeric or character
vectors or cell arrays of strings. The resulting vector is sorted in
ascending order.

c = setdiff(A, B, 'rows'), when A and B are matrices with the
same number of columns, returns the rows from A that are not in B.

[c,i] = setdiff(...) also returns an index vector index such that
c = a(i) or c = a(i,:).

Remarks Because NaN is considered to be not equal to itself, it is always in the
result c if it is in A.

Examples A = magic(5);
B = magic(4);
[c, i] = setdiff(A(:), B(:));
c' = 17 18 19 20 21 22 23 24 25
i' = 1 10 14 18 19 23 2 6 15

See Also intersect, ismember, issorted, setxor, union, unique

2-3491



Tiff.setDirectory

Purpose Make specified IFD current IFD

Syntax tiffobj.setDirectory(dirNum)

Description tiffobj.setDirectory(dirNum) sets the image file directory (IFD)
specified by dirNum as the current IFD. Tiff object methods operate on
the current IFD. The directory index number is one-based.

Examples Open a TIFF file and move to an IFD in the file by specifying its index
number. Replace myfile.tif with the name of a TIFF file on your
MATLAB path. The TIFF file should contain multiple images.

t = Tiff('myfile.tif','r');
t.setDirectory(2);

References This method corresponds to the TIFFSetDirectory function in the
LibTIFF C API. To use this method, you must be familiar with LibTIFF
version 3.7.1 as well as the TIFF specification and technical notes. View
this documentation at LibTIFF - TIFF Library and Utilities.

See Also Tiff.currentDirectory | Tiff.nextDirectory

Tutorials • “Exporting Image Data and Metadata to TIFF Files”

• “Reading Image Data and Metadata from TIFF Files”

2-3492

http://www.remotesensing.org/libtiff/


setdisp (hgsetget)

Purpose Override to change command window display

Syntax setdisp(H)

Description setdisp(H) called by set when set is called with no output arguments
and a single input argument that is a handle array. Override
this hgsetget class method in a subclass to change how property
information is displayed in the command window.

See Also See “Implementing a Set/Get Interface for Properties”

hgsetget, set (hgsetget)

2-3493



setenv

Purpose Set environment variable

Syntax setenv(name, value)
setenv(name)

Description setenv(name, value) sets the value of an environment variable
belonging to the underlying operating system. Inputs name and value
are both strings. If name already exists as an environment variable,
then setenv replaces its current value with the string given in value. If
name does not exist, setenv creates a new environment variable called
name and assigns value to it.

setenv(name) is equivalent to setenv(name, '') and assigns a null
value to the variable name. On the Microsoft Windows platform, this is
equivalent to undefining the variable. On most UNIX16 platforms, it is
possible to have an environment variable defined as empty.

The maximum number of characters in name is 215 - 2 (or 32766). If
name contains the character =, setenv throws an error. The behavior of
environment variables with = in the name is not well-defined.

On all platforms, setenv passes the name and value strings to the
operating system unchanged. Special characters such as ;, /, :, $, %,
etc. are left unexpanded and intact in the variable value.

Values assigned to variables using setenv are picked up by any process
that is spawned using the MATLAB system, unix, dos or ! functions.
You can retrieve any value set with setenv by using getenv(name).

Examples % Set and retrieve a new value for the environment variable TEMP:

setenv('TEMP', 'C:\TEMP');
getenv('TEMP')

% Append the Perl\bin folder to your system PATH variable:

16. UNIX is a registered trademark of The Open Group in the United States and
other countries.

2-3494



setenv

setenv('PATH', [getenv('PATH') ';D:\Perl\bin']);

See Also getenv, system, unix, dos, !

2-3495

../ref/specialcharacters.html


setfield

Purpose Assign values to structure array field

Syntax struct = setfield(struct,'field',value)
struct =
setfield(struct,{sIndx1,...,sIndxM},'field',{fIndx1,

...,fIndxN},value)

Description struct = setfield(struct,'field',value), where struct is a
1-by-1 structure, sets the contents of the specified field, equivalent to
struct.field = value. If struct does not contain the specified field,
the setfield function creates the field and assigns the specified value.
Pass field references as strings.

struct =
setfield(struct,{sIndx1,...,sIndxM},'field',{fIndx1,...,fIndxN},value)
sets the contents of the specified field, equivalent to
struct(sIndx1,...,sIndxM).field(fIndx1,...,fIndxN) = value.
The setfield function supports multiple sets of field and fIndx
inputs. If structure struct or any of the fields is a nonscalar structure,
the Indx inputs associated with that input are required. Otherwise, the
Indx inputs are optional. If you specify a single colon operator for an
index input, enclose it in single quotation marks: ':'.

Tips • For most cases, add data to a structure array by indexing rather than
using the setfield function. For more information, see “Indexing
into a Struct Array” and “Creating Field Names Dynamically”.

• Call setfield to simplify references to structure arrays with nested
fields, as shown in the Examples section.

Examples Add values to a structure that contains nested fields:

grades = [];
level = 5;
semester = 'Fall';
subject = 'Math';
student = 'John_Doe';

2-3496



setfield

fieldnames = {semester subject student}
newGrades_Doe = [85, 89, 76, 93, 85, 91, 68, 84, 95, 73];

grades = setfield(grades, {level}, ...
fieldnames{:}, {10, 21:30}, ...
newGrades_Doe);

% View the new contents.
grades(level).(semester).(subject).(student)(10, 21:30)

Using the structure defined in the previous example, remove the tenth
row of the specified field:

grades = setfield(grades, {level}, fieldnames{:}, {10,':'}, []);

See Also getfield | fieldnames | isfield | orderfields | rmfield

How To • “Guidelines for Naming Structure Fields”

• “Creating Field Names Dynamically”

• “Indexing into a Struct Array”

2-3497



setinterpmethod

Purpose Set default interpolation method for timeseries object

Syntax ts = setinterpmethod(ts,Method)
ts = setinterpmethod(ts,FHandle)
ts = setinterpmethod(ts,InterpObj),

Description ts = setinterpmethod(ts,Method) sets the default interpolation
method for timeseries object ts, where Method is a string. Method in
ts. Method is either 'linear' or 'zoh' (zero-order hold). For example:

ts = timeseries(rand(100,1),1:100);
ts = setinterpmethod(ts,'zoh');

ts = setinterpmethod(ts,FHandle) sets the default interpolation
method for timeseries object ts, where FHandle is a function handle
to the interpolation method defined by the function handle FHandle.
For example:

ts = timeseries(rand(100,1),1:100);
myFuncHandle = @(new_Time,Time,Data)...

interp1(Time,Data,new_Time,...
'linear','extrap');

ts = setinterpmethod(ts,myFuncHandle);
ts = resample(ts,[-5:0.1:10]);
plot(ts);

Note For FHandle, you must use three input arguments. The order of
input arguments must be new_Time, Time, and Data. The single output
argument must be the interpolated data only.

ts = setinterpmethod(ts,InterpObj), where InterpObj is a
tsdata.interpolation object that directly replaces the interpolation
object stored in ts. For example:

ts = timeseries(rand(100,1),1:100);

2-3498



setinterpmethod

myFuncHandle = @(new_Time,Time,Data)...
interp1(Time,Data,new_Time,...

'linear','extrap');
myInterpObj = tsdata.interpolation(myFuncHandle);
ts = setinterpmethod(ts,myInterpObj);

This method is case sensitive.

See Also getinterpmethod, timeseries, tsprops

2-3499



setpixelposition

Purpose Set component position in pixels

Syntax setpixelposition(handle,position)
setpixelposition(handle,position,recursive)

Description setpixelposition(handle,position) sets the position of the
component specified by handle, to the specified position relative to its
parent. position is a four-element vector that specifies the location
and size of the component: [pixels from left, pixels from bottom, pixels
across, pixels high].

setpixelposition(handle,position,recursive) sets the position
as above. If Boolean recursive is true, the position is set relative to
the parent figure of handle.

Example This example first creates a push button within a panel.

f = figure('Position',[300 300 300 200]);
p = uipanel('Position',[.2 .2 .6 .6]);
h1 = uicontrol(p,'Style','PushButton','Units','normalized',...

'String','Push Button','Position',[.1 .1 .5 .2]);

2-3500



setpixelposition

The example then retrieves the position of the push button and changes
its position with respect to the panel.

pos1 = getpixelposition(h1);
setpixelposition(h1,pos1 + [10 10 25 25]);

2-3501



setpixelposition

See Also getpixelposition, uicontrol, uipanel

2-3502



setpref

Purpose Set preference

Syntax setpref('group','pref',val)
setpref('group',{'pref1','pref2',...,'prefn'},{val1,val2,...,

valn})

Description setpref('group','pref',val) sets the preference specified by group
and pref to the value val. Setting a preference that does not yet exist
causes it to be created.

group labels a related collection of preferences. You can choose any
name that is a legal variable name, and is descriptive enough to be
unique, e.g., 'MathWorks_GUIDE_ApplicationPrefs'. The input
argument pref identifies an individual preference in that group, and
must be a legal variable name.

setpref('group',{'pref1','pref2',...,'prefn'},{val1,val2,...,valn})
sets each preference specified in the cell array of names to the
corresponding value.

Note Preference values are persistent and maintain their values
between MATLAB sessions. Where they are stored is system dependent.

Examples addpref('mytoolbox','version','0.0')
setpref('mytoolbox','version','1.0')
getpref('mytoolbox','version')

ans =
1.0

See Also addpref, getpref, ispref, rmpref, uigetpref, uisetpref

2-3503



setstr

Purpose Set string flag

Note setstr will be removed in a future version. Use char instead.

Description This MATLAB 4 function has been renamed char in MATLAB 5.

2-3504



Tiff.setSubDirectory

Purpose Make subIFD specified by byte offset current IFD

Syntax tiffobj.setSubDirectory(offset)

Description tiffobj.setSubDirectory(offset) sets the subimage file directory
(subIFD) specified by offset the current IFD. The offset value is given
in bytes. Use this method when you want to access subIFDs linked
through the SubIFD tag.

Examples Open a TIFF file and read the value of the SubIFD tag in the current
IFD. The SubIFD tag contains byte offsets that specify the location of
subIFDs in the IFD. Replace myfile.tif with the name of a TIFF file
on your MATLAB path. The TIFF file should contain subIFDs.

t = Tiff('myfile.tif','r');
%
% Read the value of the SubIFD tag to get subdirectory offsets.
offsets = t.getTag('SubIFD');
%
% Set one of the subdirectories (if more than one) as the current d
t.setSubDirectory(offsets(1));

References This method corresponds to the TIFFSetSubDirectory function in the
LibTIFF C API. To use this method, you must be familiar with LibTIFF
version 3.7.1, as well as the TIFF specification and technical notes.
View this documentation at LibTIFF - TIFF Library and Utilities.

See Also Tiff.setDirectory

Tutorials • “Exporting Image Data and Metadata to TIFF Files”

• “Reading Image Data and Metadata from TIFF Files”

2-3505

http://www.remotesensing.org/libtiff/


Tiff.setTag

Purpose Set value of tag

Syntax tiffobj.setTag(tagId,tagValue)
tiffobj.setTag(tagStruct)

Description tiffobj.setTag(tagId,tagValue) sets the value of the TIFF tag
specified by tagId to the value specified by tagValue. You can specify
tagId as a character string ('ImageWidth') or using the numeric
tag identifier defined by the TIFF specification (256). To see a list of
all the tags with their numeric identifiers, view the value of the Tiff
object TagID property. Use the TagID property to specify the value of a
tag. For example, Tiff.TagID.ImageWidth is equivalent to the tag’s
numeric identifier.

tiffobj.setTag(tagStruct) sets the values of all of the tags with
name/value fields in tagStruct. The names of fields in tagstruct must
be the name of TIFF tags.

Examples Create a structure with fields named after TIFF tags and assign values
to the fields. Pass this structure to the setTag method to set the values
of these tags. Replace myfile.tif with the name of a TIFF file on your
MATLAB path.

t = Tiff('myfile.tif', 'r+');

tagStruct.ImageWidth = 1600;
tagStruct.ImageLength = 3200;
tagStruct.Photometric = Tiff.Photometric.RGB;
tagStruct.BitPerSample = 8;
tagStruct.SamplesPerPixel = 3;
tagStruct.TileWidth = 160;
tagStruct.TileLength = 320;
tagStruct.PlanarConfiguration = Tiff.PlanarConfiguration.Chunky;
tagStruct.Software = 'MATLAB';
t.setTag(tagStruct);

2-3506



Tiff.setTag

References This method corresponds to the TIFFSetField function in the LibTIFF
C API. To use this method, you must be familiar with LibTIFF version
3.7.1, as well as the TIFF specification and technical notes. View this
documentation at LibTIFF - TIFF Library and Utilities.

See Also Tiff.getTag

Tutorials • “Exporting Image Data and Metadata to TIFF Files”

• “Reading Image Data and Metadata from TIFF Files”

2-3507

http://www.remotesensing.org/libtiff/


settimeseriesnames

Purpose Change name of timeseries object in tscollection

Syntax tsc = settimeseriesnames(tsc,old,new)

Description tsc = settimeseriesnames(tsc,old,new) replaces the old name of
timeseries object with the new name in tsc.

See Also tscollection

2-3508



setxor

Purpose Find set exclusive OR of two vectors

Syntax c = setxor(A, B)
c = setxor(A, B, 'rows')
[c, ia, ib] = setxor(...)

Description c = setxor(A, B) returns the values that are not in the intersection
of A and B. Inputs A and B can be numeric or character vectors or cell
arrays of strings. The resulting vector is sorted.

c = setxor(A, B, 'rows'), when A and B are matrices with the same
number of columns, returns the rows that are not in the intersection
of A and B.

[c, ia, ib] = setxor(...) also returns index vectors ia and ib
such that c is a sorted combination of the elements c = a(ia) and c =
b(ib) or, for row combinations, c = a(ia,:) and c = b(ib,:).

Examples a = [-1 0 1 Inf -Inf NaN];
b = [-2 pi 0 Inf];
c = setxor(a, b)

c =
-Inf -2.0000 -1.0000 1.0000 3.1416 NaN

See Also intersect, ismember, issorted, setdiff, union, unique

2-3509



shading

Purpose Set color shading properties

Syntax shading flat
shading faceted
shading interp
shading(axes_handle,...)

Description The shading function controls the color shading of surface and patch
graphics objects.

shading flat each mesh line segment and face has a constant color
determined by the color value at the endpoint of the segment or the
corner of the face that has the smallest index or indices.

shading faceted flat shading with superimposed black mesh lines.
This is the default shading mode.

shading interp varies the color in each line segment and face by
interpolating the colormap index or true color value across the line
or face.

shading(axes_handle,...) applies the shading type to the objects in
the axes specified by axes_handle, instead of the current axes.

Examples Compare a flat, faceted, and interpolated-shaded sphere.

subplot(3,1,1)
sphere(16)
axis square
shading flat
title('Flat Shading')

subplot(3,1,2)
sphere(16)
axis square
shading faceted
title('Faceted Shading')

subplot(3,1,3)

2-3510



shading

sphere(16)
axis square
shading interp
title('Interpolated Shading')

Algorithm shading sets the EdgeColor and FaceColor properties of all surface
and patch graphics objects in the current axes. shading sets the
appropriate values, depending on whether the surface or patch objects
represent meshes or solid surfaces.

See Also fill, fill3, hidden, light, lighting, mesh, patch, pcolor, surf

The EdgeColor and FaceColor properties for patch and surface
graphics objects.

“Color Operations” on page 1-108 for related functions

2-3511



shg

Purpose Show most recent graph window

Syntax shg

Description shg makes the current figure visible and raises it above all other figures
on the screen. This is identical to using the command figure(gca).

See Also figure, gca, gcf

2-3512



shiftdim

Purpose Shift dimensions

Syntax B = shiftdim(X,n)
[B,nshifts] = shiftdim(X)

Description B = shiftdim(X,n) shifts the dimensions of X by n. When n is positive,
shiftdim shifts the dimensions to the left and wraps the n leading
dimensions to the end. When n is negative, shiftdim shifts the
dimensions to the right and pads with singletons.

[B,nshifts] = shiftdim(X) returns the array B with the same
number of elements as X but with any leading singleton dimensions
removed. A singleton dimension is any dimension for which
size(A,dim) = 1. nshifts is the number of dimensions that are
removed.

If X is a scalar, shiftdim has no effect.

Examples The shiftdim command is handy for creating functions that, like sum or
diff, work along the first nonsingleton dimension.

a = rand(1,1,3,1,2);
[b,n] = shiftdim(a); % b is 3-by-1-by-2 and n is 2.
c = shiftdim(b,-n); % c == a.
d = shiftdim(a,3); % d is 1-by-2-by-1-by-1-by-3.

See Also circshift, reshape, squeeze, permute, ipermute

2-3513



showplottool

Purpose Show or hide figure plot tool

GUI
Alternatives

Click the larger Plotting Tools icon on the figure toolbar to

collectively enable plotting tools, and the smaller icon to collectively
disable them. Individually select the Figure Palette, Plot Browser,
and Property Editor tools from the figure’s View menu. For details,
see “Plotting Tools — Interactive Plotting” in the MATLAB Graphics
documentation.

Syntax showplottool('tool')
showplottool('on','tool')
showplottool('off','tool')
showplottool('toggle','tool')
showplottool(figure_handle,...)

Description showplottool('tool') shows the specified plot tool on the current
figure. tool can be one of the following strings:

• figurepalette

• plotbrowser

• propertyeditor

2-3514



showplottool

showplottool('on','tool') shows the specified plot tool on the
current figure.

showplottool('off','tool') hides the specified plot tool on the
current figure.

showplottool('toggle','tool') toggles the visibility of the specified
plot tool on the current figure.

showplottool(figure_handle,...) operates on the specified figure
instead of the current figure.

Note When you dock, undock, resize, or reposition a plotting tool and
then close it, it will still be configured as you left it the next time you
open it. There is no command to reset plotting tools to their original,
default locations.

See Also figurepalette, plotbrowser, plottools, propertyeditor

2-3515



shrinkfaces

Purpose Reduce size of patch faces

Syntax shrinkfaces(p,sf)
nfv = shrinkfaces(p,sf)
nfv = shrinkfaces(fv,sf)
shrinkfaces(p)
nfv = shrinkfaces(f,v,sf)
[nf,nv] = shrinkfaces(...)

Description shrinkfaces(p,sf) shrinks the area of the faces in patch p to shrink
factor sf. A shrink factor of 0.6 shrinks each face to 60% of its original
area. If the patch contains shared vertices, the MATLAB software
creates nonshared vertices before performing the face-area reduction.

nfv = shrinkfaces(p,sf) returns the face and vertex data in the
struct nfv, but does not set the Faces and Vertices properties of patch
p.

nfv = shrinkfaces(fv,sf) uses the face and vertex data from the
struct fv.

shrinkfaces(p) and shrinkfaces(fv) (without specifying a shrink
factor) assume a shrink factor of 0.3.

nfv = shrinkfaces(f,v,sf) uses the face and vertex data from the
arrays f and v.

[nf,nv] = shrinkfaces(...) returns the face and vertex data in two
separate arrays instead of a struct.

Examples This example uses the flow data set, which represents the speed profile
of a submerged jet within an infinite tank (type help flow for more
information). Two isosurfaces provide a before and after view of the
effects of shrinking the face size.

• First reducevolume samples the flow data at every other point and
then isosurface generates the faces and vertices data.

2-3516



shrinkfaces

• The patch command accepts the face/vertex struct and draws the
first (p1) isosurface.

• Use the daspect, view, and axis commands to set up the view and
then add a title.

• The shrinkfaces command modifies the face/vertex data and passes
it directly to patch.

[x,y,z,v] = flow;
[x,y,z,v] = reducevolume(x,y,z,v,2);
fv = isosurface(x,y,z,v,-3);
p1 = patch(fv);
set(p1,'FaceColor','red','EdgeColor',[.5,.5,.5]);
daspect([1 1 1]); view(3); axis tight
title('Original')

figure
p2 = patch(shrinkfaces(fv,.3));
set(p2,'FaceColor','red','EdgeColor',[.5,.5,.5]);
daspect([1 1 1]); view(3); axis tight
title('After Shrinking')

2-3517



shrinkfaces

2-3518



shrinkfaces

See Also isosurface, patch, reducevolume, daspect, view, axis

“Volume Visualization” on page 1-111 for related functions

2-3519



sign

Purpose Signum function

Syntax Y = sign(X)

Description Y = sign(X) returns an array Y the same size as X, where each element
of Y is:

• 1 if the corresponding element of X is greater than zero

• 0 if the corresponding element of X equals zero

• -1 if the corresponding element of X is less than zero

For nonzero complex X, sign(X) = X./abs(X).

See Also abs, conj, imag, real

2-3520



sin

Purpose Sine of argument in radians

Syntax Y = sin(X)

Description Y = sin(X) returns the circular sine of the elements of X. The sin
function operates element-wise on arrays. The function’s domains and
ranges include complex values. All angles are in radians.

Definitions The sine of an angle is:

sin( )x
e e

i

ix ix
= − −

2
For complex x:

sin( ) sin( )cosh( ) cos( )sinh( )x iy x y i x y+ = +

Examples Graph the sine function over the domain − ≤ ≤ x .

x = -pi:0.01:pi;
plot(x,sin(x)), grid on

2-3521



sin

References sin uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc. business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also sind

2-3522

http://www.netlib.org


sind

Purpose Sine of argument in degrees

Syntax Y = sind(X)

Description Y = sind(X) is the sine of the elements of X, expressed in degrees.

Examples For integers n, sind(n*180) is exactly zero, whereas sin(n*pi) reflects
the accuracy of the floating point value of pi.

isequal(sind(180),sin(pi))

See Also sin

2-3523



single

Purpose Convert to single precision

Syntax B = single(A)

Description B = single(A) converts the matrix A to single precision, returning
that value in B. A can be any numeric object (such as a double). If
A is already single precision, single has no effect. Single-precision
quantities require less storage than double-precision quantities, but
have less precision and a smaller range.

The single class is primarily meant to be used to store single-precision
values. Hence most operations that manipulate arrays without
changing their elements are defined. Examples are reshape, size, the
relational operators, subscripted assignment, and subscripted reference.

You can define your own methods for the single class by placing the
appropriately named method in an @single folder within a folder on
your path.

Examples a = magic(4);
b = single(a);

whos
Name Size Bytes Class

a 4x4 128 double array
b 4x4 64 single array

See Also double

2-3524



sinh

Purpose Hyperbolic sine of argument in radians

Syntax Y = sinh(X)

Description The sinh function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Y = sinh(X) returns the hyperbolic sine of the elements of X.

Examples Graph the hyperbolic sine function over the domain .

x = -5:0.01:5;
plot(x,sinh(x)), grid on

Definition The hyperbolic sine can be defined as

2-3525



sinh

Algorithm sinh uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc. business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also sin, sind, asin, asinh, asind

2-3526

http://www.netlib.org


size

Purpose Array dimensions

Syntax d = size(X)
[m,n] = size(X)
m = size(X,dim)
[d1,d2,d3,...,dn] = size(X),

Description d = size(X) returns the sizes of each dimension of array X in a vector
d with ndims(X) elements. If X is a scalar, which MATLAB software
regards as a 1-by-1 array, size(X) returns the vector [1 1].

[m,n] = size(X) returns the size of matrix X in separate variables
m and n.

m = size(X,dim) returns the size of the dimension of X specified by
scalar dim.

[d1,d2,d3,...,dn] = size(X), for n > 1, returns the sizes of the
dimensions of the array X in the variables d1,d2,d3,...,dn, provided the
number of output arguments n equals ndims(X). If n does not equal
ndims(X), the following exceptions hold:

n < ndims(X) di equals the size of the ith dimension of X for
, but dn equals the product of the sizes of

the remaining dimensions of X, that is, dimensions
n through ndims(X).

n > ndims(X) size returns ones in the “extra” variables, that is,
those corresponding to ndims(X)+1 through n.

Note For a Java array, size returns the length of the Java array as the
number of rows. The number of columns is always 1. For a Java array
of arrays, the result describes only the top level array.

Examples Example 1

The size of the second dimension of rand(2,3,4) is 3.

2-3527



size

m = size(rand(2,3,4),2)

m =
3

Here the size is output as a single vector.

d = size(rand(2,3,4))

d =
2 3 4

Here the size of each dimension is assigned to a separate variable.

[m,n,p] = size(rand(2,3,4))
m =

2

n =
3

p =
4

Example 2

If X = ones(3,4,5), then

[d1,d2,d3] = size(X)

d1 = d2 = d3 =
3 4 5

But when the number of output variables is less than ndims(X):

[d1,d2] = size(X)

d1 = d2 =
3 20

2-3528



size

The “extra” dimensions are collapsed into a single product.

If n > ndims(X), the “extra” variables all represent singleton
dimensions:

[d1,d2,d3,d4,d5,d6] = size(X)

d1 = d2 = d3 =
3 4 5

d4 = d5 = d6 =
1 1 1

See Also exist, length, numel, whos

2-3529



size (Map)

Purpose size of containers.Map object

Syntax d = size(M)
d = size(M, dim)
[d1, d2, ..., dn] = size(M)

Description d = size(M) returns the number of key-value pairs in dimensions 1
and 2 of map M. Output d is a two-element row vector [n,1], where n
is the number of key-value pairs.

d = size(M, dim) returns the number of key-value pairs if dim is 1,
and otherwise returns 1.

[d1, d2, ..., dn] = size(M) returns [n, 1, ..., 1] where n is
the number of key-value pairs in map M.

Read more about Map Containers in the MATLAB Programming
Fundamentals documentation.

Examples Create a Map object containing the names of several US states and the
capital city of each:

US_Capitals = containers.Map( ...
{'Arizona', 'Nebraska', 'Nevada', 'New York', ...
'Georgia', 'Alaska', 'Vermont', 'Oregon'}, ...

{'Phoenix', 'Lincoln', 'Carson City', 'Albany', ...
'Atlanta', 'Juneau', 'Montpelier', 'Salem'})

Get the dimensions of the Map object array:

size(US_Capitals)
ans =

8 1

Use the map to find the capital of one of these states:

state = 'Georgia';
sprintf(' The capital of %s is %s', ...

state, US_Capitals(state))

2-3530



size (Map)

ans =
The capital of Georgia is Atlanta

See Also containers.Map, keys(Map), values(Map), length(Map), isKey(Map),
remove(Map), handle

2-3531



size (serial)

Purpose Size of serial port object array

Syntax d = size(obj)
[m,n] = size(obj)
[m1,m2,m3,...,mn] = size(obj)
m = size(obj,dim)

Description d = size(obj) returns the two-element row vector d containing the
number of rows and columns in the serial port object, obj.

[m,n] = size(obj) returns the number of rows, m and columns, n in
separate output variables.

[m1,m2,m3,...,mn] = size(obj) returns the length of the first n
dimensions of obj.

m = size(obj,dim) returns the length of the dimension specified by
the scalar dim. For example, size(obj,1) returns the number of rows.

See Also Functions

length

2-3532



size (timeseries)

Purpose Size of timeseries object

Syntax size(ts)

Description size(ts) returns [n 1], where n is the length of the time vector for
timeseries object ts.

Remarks If you want the size of the whole data set, use the following syntax:

size(ts.data)

If you want the size of each data sample, use the following syntax:

getdatasamplesize(ts)

See Also getdatasamplesize, isempty (timeseries), length (timeseries)

2-3533



TriRep.size

Purpose Size of triangulation matrix

Syntax size(TR)

Description size(TR) provides size information for a triangulation matrix. The
matrix is of size mtri-by-nv, where mtri is the number of simplices and
nv is the number of vertices per simplex (triangle/tetrahedron, etc).

Input
Arguments

TR Triangulation matrix

Definitions A simplex is a triangle/tetrahedron or higher-dimensional equivalent.

See Also size

2-3534



size (tscollection)

Purpose Size of tscollection object

Syntax size(tsc)

Description size(tsc) returns [n m], where n is the length of the time vector and
m is the number of tscollection members.

See Also length (tscollection), isempty (tscollection), tscollection

2-3535



slice

Purpose Volumetric slice plot

GUI
Alternatives

To graph selected variables, use the Plot Selector in the
Workspace Browser, or use the Figure Palette Plot Catalog. Manipulate
graphs in plot edit mode with the Property Editor. For details, see
Plotting Tools — Interactive Plotting in the MATLAB Graphics
documentation and Creating Graphics from the Workspace Browser in
the MATLAB Desktop Tools documentation.

Syntax slice(V,sx,sy,sz)
slice(X,Y,Z,V,sx,sy,sz)
slice(V,XI,YI,ZI)
slice(X,Y,Z,V,XI,YI,ZI)
slice(...,'method')
slice(axes_handle,...)
h = slice(...)

Description slice displays orthogonal slice planes through volumetric data.

slice(V,sx,sy,sz) draws slices along the x, y, z directions in the
volume V at the points in the vectors sx, sy, and sz. V is an m-by-n-by-p
volume array containing data values at the default location X = 1:n,
Y = 1:m, Z = 1:p. Each element in the vectors sx, sy, and sz defines
a slice plane in the x-, y-, or z-axis direction.

slice(X,Y,Z,V,sx,sy,sz) draws slices of the volume V. X, Y, and Z
are three-dimensional arrays specifying the coordinates for V. X, Y,
and Z must be monotonic and orthogonally spaced (as if produced by
the function meshgrid). The color at each point is determined by 3-D
interpolation into the volume V.

slice(V,XI,YI,ZI) draws data in the volume V for the slices defined
by XI, YI, and ZI. XI, YI, and ZI are matrices that define a surface,

2-3536



slice

and the volume is evaluated at the surface points. XI, YI, and ZI must
all be the same size.

slice(X,Y,Z,V,XI,YI,ZI) draws slices through the volume V along
the surface defined by the arrays XI, YI, ZI.

slice(...,'method') specifies the interpolation method. 'method' is
'linear', 'cubic', or 'nearest'.

• linear specifies trilinear interpolation (the default).

• cubic specifies tricubic interpolation.

• nearest specifies nearest-neighbor interpolation.

slice(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes object (gca). The axes
clim property is set to span the finite values of V.

h = slice(...) returns a vector of handles to surface graphics
objects.

Remarks The color drawn at each point is determined by interpolation into the
volume V.

Examples Visualize the function

v xe
x y z

=
− − −( )2 2 2

over the range –2 ≤ x ≤ 2, –2 ≤y ≤2, – 2 ≤ z ≤2:

[x,y,z] = meshgrid(-2:.2:2,-2:.25:2,-2:.16:2);
v = x.*exp(-x.^2-y.^2-z.^2);
xslice = [-1.2,.8,2]; yslice = 2; zslice = [-2,0];
slice(x,y,z,v,xslice,yslice,zslice)
colormap hsv

2-3537



slice

Slicing At Arbitrary Angles

You can also create slices that are oriented in arbitrary planes. To do
this,

• Create a slice surface in the domain of the volume (surf, linspace).

• Orient this surface with respect to the axes (rotate).

• Get the XData, YData, and ZData of the surface (get).

• Use this data to draw the slice plane within the volume.

For example, these statements slice the volume in the first example
with a rotated plane. Placing these commands within a for loop
“passes” the plane through the volume along the z-axis.

for i = -2:.5:2
hsp = surf(linspace(-2,2,20),linspace(-2,2,20),zeros(20)+i);

2-3538



slice

rotate(hsp,[1,-1,1],30)
xd = get(hsp,'XData');
yd = get(hsp,'YData');
zd = get(hsp,'ZData');
delete(hsp)
slice(x,y,z,v,[-2,2],2,-2) % Draw some volume boundaries
hold on
slice(x,y,z,v,xd,yd,zd)
hold off
axis tight
view(-5,10)
drawnow

end

The following picture illustrates three positions of the same slice surface
as it passes through the volume.

2-3539



slice

Slicing with a Nonplanar Surface

You can slice the volume with any surface. This example probes the
volume created in the previous example by passing a spherical slice
surface through the volume.

[xsp,ysp,zsp] = sphere;
slice(x,y,z,v,[-2,2],2,-2) % Draw some volume boundaries

for i = -3:.2:3
hsp = surface(xsp+i,ysp,zsp);
rotate(hsp,[1 0 0],90)
xd = get(hsp,'XData');
yd = get(hsp,'YData');
zd = get(hsp,'ZData');
delete(hsp)
hold on
hslicer = slice(x,y,z,v,xd,yd,zd);
axis tight
xlim([-3,3])
view(-10,35)
drawnow
delete(hslicer)
hold off

end

The following picture illustrates three positions of the spherical slice
surface as it passes through the volume.

2-3540



slice

See Also interp3, meshgrid

“Volume Visualization” on page 1-111 for related functions

Exploring Volumes with Slice Planes for more examples

2-3541



smooth3

Purpose Smooth 3-D data

Syntax

Description W = smooth3(V) smooths the input data V and returns the smoothed
data in W.

W = smooth3(V,'filter') filter determines the convolution kernel
and can be the strings

• 'gaussian'

• 'box' (default)

W = smooth3(V,'filter',size) sets the size of the convolution kernel
(default is [3 3 3]). If size is scalar, then size is interpreted as [size,
size, size].

W = smooth3(V,'filter',size,sd) sets an attribute of the
convolution kernel. When filter is gaussian, sd is the standard
deviation (default is .65).

Examples This example smooths some random 3-D data and then creates an
isosurface with end caps.

rand('seed',0)
data = rand(10,10,10);
data = smooth3(data,'box',5);
p1 = patch(isosurface(data,.5), ...

'FaceColor','blue','EdgeColor','none');
p2 = patch(isocaps(data,.5), ...

'FaceColor','interp','EdgeColor','none');
isonormals(data,p1)
view(3); axis vis3d tight
camlight; lighting phong

2-3542



smooth3

See Also isocaps, isonormals, isosurface, patch

“Volume Visualization” on page 1-111 for related functions

See Displaying an Isosurface for another example.

2-3543



snapnow

Purpose Force snapshot of image for inclusion in published document

GUI
Alternative

As an alternative to snapnow, open a MATLAB code file and select
Cell > Insert Text Markup > Force Snapshot to insert the snapnow
command into the file.

Syntax snapnow

Description The snapnow command forces a snapshot of the image or plot that
the code has most recently generated for presentation in a published
document. The output appears in the published document at the end of
the cell that contains the snapnow command. When used outside the
context of publishing a file, snapnow has the same behavior as drawnow.
That is, if you run a file that contains the snapnow command, the
MATLAB software interprets it as though it were a drawnow command.

Example This example demonstrates the difference between publishing code that
contains the snapnow command and running that code. The first image
shows the results of publishing the code and the second image shows
the results of running the code.

Suppose you have a file that contains the following code:

%% Scale magic Data and
%% Display as Image:

for i=1:3
i
imagesc(magic(i))
snapnow

end

When you publish the code to HTML, the published document contains
a title, a table of contents, the commented text, the code, and each of the
three images produced by the for loop, along with a display of the value
of i corresponding to each image. (In the published document shown,
the size of the images have been reduced.)

2-3544



snapnow

2-3545



snapnow

When you run the code, a single Figure window opens and MATLAB
updates the image within this window as it evaluates each iteration of
the for loop. (Concurrently, the Command Window displays the value of
i.) Each successive image replaces the one that preceded it, so that the
Figure window appears as follows when the code evaluation completes.

2-3546



snapnow

See Also drawnow

“Forcing a Snapshot of Output in MATLAB Files for Publishing”

2-3547



sort

Purpose Sort array elements in ascending or descending order

Syntax B = sort(A)
B = sort(A,dim)
B = sort(...,mode)
[B,IX] = sort(A,...)

Description B = sort(A) sorts the elements along different dimensions of an array,
and arranges those elements in ascending order.

If A is a ... sort(A) ...

Vector Sorts the elements of A.

Matrix Sorts each column of A.

Multidimensional array Sorts A along the first non-singleton
dimension, and returns an array of sorted
vectors.

Cell array of strings Sorts the strings in ascending ASCII
dictionary order, and returns a vector cell
array of strings. You cannot use the dim or
mode options with a cell array.

Integer, floating-point, logical, and character arrays are permitted.
Floating-point arrays can be complex. For elements of A with identical
values, the order of these elements is preserved in the sorted list.
When A is complex, the elements are sorted by magnitude, i.e., abs(A),
and where magnitudes are equal, further sorted by phase angle, i.e.,
angle(A), on the interval . If A includes any NaN elements, sort
places these at the high end.

B = sort(A,dim) sorts the elements along the dimension of A specified
by a scalar dim.

B = sort(...,mode) sorts the elements in the specified direction,
depending on the value of mode.

2-3548



sort

’ascend’ Ascending order (default)

’descend’ Descending order

[B,IX] = sort(A,...) also returns an array of indices IX, where
size(IX) == size(A). If A is a vector, B = A(IX). If A is an m-by-n
matrix, then each column of IX is a permutation vector of the
corresponding column of A, such that

for j = 1:n
B(:,j) = A(IX(:,j),j);

end

If A has repeated elements of equal value, the returned indices preserve
the original ordering.

Sorting Complex Entries

If A has complex entries r and s, sort orders them according to the
following rule: r appears before s in sort(A) if either of the following
hold:

• abs(r) < abs(s)

• abs(r) = abs(s) and angle(r)<angle(s)

where

For example,

v = [1 -1 i -i];
angle(v)

ans =

0 3.1416 1.5708 -1.5708
sort(v)

ans =

2-3549



sort

0 - 1.0000i 1.0000
0 + 1.0000i -1.0000

Note sort uses a different rule for ordering complex numbers than
do the relational operators. See the Relational Operators reference
page for more information. For more information about how MATLAB
software treats complex numbers, see “Numbers” in the MATLAB
Getting Started Guide.

Examples Example 1

Sort horizontal vector A:

A = [78 23 10 100 45 5 6];

sort(A)
ans =

5 6 10 23 45 78 100

Example 2

Sort matrix A in each dimension:

A = [ 3 7 5
0 4 2 ];

sort(A,1)

ans =
0 4 2
3 7 5

sort(A,2)

ans =
3 5 7

2-3550



sort

0 2 4

Sort it again, this time returning an array of indices for the result:

[B, IX] = sort(A, 2)

B =
3 5 7
0 2 4

IX =
1 3 2
1 3 2

Example 3

Sort each column of matrix A in descending order:

A = [ 3 7 5
6 8 3
0 4 2 ];

sort(A,1,'descend')

ans =
6 8 5
3 7 3
0 4 2

This is equivalent to

sort(A,'descend')

ans =
6 8 5
3 7 3
0 4 2

See Also issorted, max, mean, median, min, sortrows, unique

2-3551



sortrows

Purpose Sort rows in ascending order

Syntax B = sortrows(A)
B = sortrows(A,column)
[B,index] = sortrows(A,...)

Description B = sortrows(A) sorts the rows of A in ascending order. Argument A
must be either a matrix or a column vector.

For strings, this is the familiar dictionary sort. When A is complex, the
elements are sorted by magnitude, and, where magnitudes are equal,
further sorted by phase angle on the interval .

B = sortrows(A,column) sorts the matrix based on the columns
specified in the vector column. If an element of column is positive,
the MATLAB software sorts the corresponding column of matrix A
in ascending order; if an element of column is negative, MATLAB
sorts the corresponding column in descending order. For example,
sortrows(A,[2 -3]) sorts the rows of A first in ascending order for the
second column, and then by descending order for the third column.

[B,index] = sortrows(A,...) also returns an index vector index.

If A is a column vector, then B = A(index). If A is an m-by-n matrix,
then B = A(index,:).

Examples Start with an arbitrary matrix, A:

A=floor(gallery('uniformdata',[6 7],0)*100);
A(1:4,1)=95; A(5:6,1)=76; A(2:4,2)=7; A(3,3)=73
A =

95 45 92 41 13 1 84
95 7 73 89 20 74 52
95 7 73 5 19 44 20
95 7 40 35 60 93 67
76 61 93 81 27 46 83
76 79 91 0 19 41 1

2-3552



sortrows

When called with only a single input argument, sortrows bases the
sort on the first column of the matrix. For any rows that have equal
elements in a particular column, (e.g., A(1:4,1) for this matrix), sorting
is based on the column immediately to the right, (A(1:4,2) in this case):

B = sortrows(A)
B =

76 61 93 81 27 46 83
76 79 91 0 19 41 1
95 7 40 35 60 93 67
95 7 73 5 19 44 20
95 7 73 89 20 74 52
95 45 92 41 13 1 84

When called with two input arguments, sortrows bases the sort
entirely on the column specified in the second argument. Rows that
have equal elements in the specified column, (e.g., A(2:4,:), if sorting
matrix A by column 2) remain in their original order:

C = sortrows(A,2)
C =

95 7 73 89 20 74 52
95 7 73 5 19 44 20
95 7 40 35 60 93 67
95 45 92 41 13 1 84
76 61 93 81 27 46 83
76 79 91 0 19 41 1

This example specifies two columns to sort by: columns 1 and 7. This
tells sortrows to sort by column 1 first, and then for any rows with
equal values in column 1, to sort by column 7:

D = sortrows(A,[1 7])
D =

76 79 91 0 19 41 1
76 61 93 81 27 46 83
95 7 73 5 19 44 20
95 7 73 89 20 74 52

2-3553



sortrows

95 7 40 35 60 93 67
95 45 92 41 13 1 84

Sort the matrix using the values in column 4 this time and in reverse
order:

E = sortrows(A, -4)
E =

95 7 73 89 20 74 52
76 61 93 81 27 46 83
95 45 92 41 13 1 84
95 7 40 35 60 93 67
95 7 73 5 19 44 20
76 79 91 0 19 41 1

See Also issorted, sort

2-3554



sound

Purpose Convert matrix of signal data to sound

Syntax sound(y,Fs)
sound(y,Fs,bits)

Description sound(y,Fs) sends audio signal y to the speaker at sample rate Fs.
If you do not specify a sample rate, sound plays at 8192 Hz. For
single-channel (mono) audio, y is an m-by-1 column vector, where m is
the number of audio samples. If your system supports stereo playback,
y can be an m-by-2 matrix, where the first column corresponds to the left
channel, and the second column corresponds to the right channel. The
sound function assumes that y contains floating-point numbers between
-1 and 1, and clips values outside that range.

sound(y,Fs,bits) specifies the bit depth (that is, the precision) of the
sample values. The possible values for bit depth depend on the audio
hardware available on your system. Most platforms support depths of 8
bits or 16 bits. If you do not specify bits, the sound function plays at
an 8-bit depth.

Tips • The sound function supports sound devices on all Windows and most
UNIX platforms.

• Most sound cards support sample rates between 5 kHz and 48 kHz.
Specifying a sample rate outside this range produces unexpected
results.

Examples Load the demo file gong.mat, which contains sample data y and rate
Fs, and listen to the audio:

load gong.mat;
sound(y, Fs);

Play an excerpt from Handel’s “Hallelujah Chorus” at twice the recorded
sample rate:

2-3555



sound

load handel.mat;
sound(y, 2*Fs);

See Also audioplayer | soundsc | wavread | wavwrite

How To • “Characteristics of Audio Files”

• “Playing Audio”

2-3556



soundsc

Purpose Scale data and play as sound

Syntax soundsc(y,Fs)
soundsc(y,Fs,bits)
soundsc(y,Fs,bits,range)

Description soundsc(y,Fs) sends audio signal y to the speaker at sample rate Fs.
If you do not specify a sample rate, soundsc plays at 8192 Hz. Like
the sound function, soundsc assumes that y contains floating-point
numbers. However, before playing the signal, soundsc scales the values
to fit in the range from -1.0 to 1.0, so that the audio is played as loudly
as possible without clipping.

soundsc(y,Fs,bits) specifies the bit depth (that is, the precision) of
the sample values. The possible values for bit depth depend on the
audio hardware available on your system. Most platforms support
depths of 8 bits or 16 bits. If you do not specify bits, the soundsc
function plays at an 8-bit depth.

soundsc(y,Fs,bits,range), where range is of the form [low high],
maps the values in y between low and high to the full sound range. The
default range is [min(y) max(y)]. Specifying Fs and bits is optional.

Tips • The soundsc function supports sound devices on all Windows and
most UNIX platforms.

• Most sound cards support sample rates between 5 kHz and 48 kHz.
Specifying a sample rate outside this range produces unexpected
results.

See Also audioplayer | sound | wavread | wavwrite

2-3557



spalloc

Purpose Allocate space for sparse matrix

Syntax S = spalloc(m,n,nzmax)

Description S = spalloc(m,n,nzmax) creates an all zero sparse matrix S of
size m-by-n with room to hold nzmax nonzeros. The matrix can then
be generated column by column without requiring repeated storage
allocation as the number of nonzeros grows.

spalloc(m,n,nzmax) is shorthand for

sparse([],[],[],m,n,nzmax)

Examples To generate efficiently a sparse matrix that has an average of at most
three nonzero elements per column

S = spalloc(n,n,3*n);
for j = 1:n

S(:,j) = [zeros(n-3,1)' round(rand(3,1))']';end

2-3558



sparse

Purpose Create sparse matrix

Syntax S = sparse(A)
S = sparse(i,j,s,m,n,nzmax)
S = sparse(i,j,s,m,n)
S = sparse(i,j,s)
S = sparse(m,n)

Description The sparse function generates matrices in the MATLAB sparse storage
organization.

S = sparse(A) converts a full matrix to sparse form by squeezing out
any zero elements. If S is already sparse, sparse(S) returns S.

S = sparse(i,j,s,m,n,nzmax) uses vectors i, j, and s to generate
an m-by-n sparse matrix such that S(i(k),j(k)) = s(k), with space
allocated for nzmax nonzeros. Vectors i, j, and s are all the same
length. Any elements of s that are zero are ignored, along with the
corresponding values of i and j. Any elements of s that have duplicate
values of i and j are added together.

Note If any value in i or j is larger than the maximum integer size,
2^31-1, then the sparse matrix cannot be constructed.

To simplify this six-argument call, you can pass scalars for the
argument s and one of the arguments i or j—in which case they are
expanded so that i, j, and s all have the same length.

S = sparse(i,j,s,m,n) uses nzmax = length(s).

S = sparse(i,j,s) uses m = max(i) and n = max(j). The maxima
are computed before any zeros in s are removed, so one of the rows of
[i j s] might be [m n 0].

S = sparse(m,n) abbreviates sparse([],[],[],m,n,0). This
generates the ultimate sparse matrix, an m-by-n all zero matrix.

2-3559



sparse

Remarks All of the MATLAB built-in arithmetic, logical, and indexing operations
can be applied to sparse matrices, or to mixtures of sparse and full
matrices. Operations on sparse matrices return sparse matrices and
operations on full matrices return full matrices.

In most cases, operations on mixtures of sparse and full matrices return
full matrices. The exceptions include situations where the result of a
mixed operation is structurally sparse, for example, A.*S is at least
as sparse as S.

Examples S = sparse(1:n,1:n,1) generates a sparse representation of the n-by-n
identity matrix. The same S results from S = sparse(eye(n,n)), but
this would also temporarily generate a full n-by-n matrix with most of
its elements equal to zero.

B = sparse(10000,10000,pi) is probably not very useful, but is legal
and works; it sets up a 10000-by-10000 matrix with only one nonzero
element. Don’t try full(B); it requires 800 megabytes of storage.

This dissects and then reassembles a sparse matrix:

[i,j,s] = find(S);
[m,n] = size(S);
S = sparse(i,j,s,m,n);

So does this, if the last row and column have nonzero entries:

[i,j,s] = find(S);
S = sparse(i,j,s);

See Also diag, find, full, issparse, nnz, nonzeros, nzmax, spones, sprandn,
sprandsym, spy

The sparfun directory

2-3560



spaugment

Purpose Form least squares augmented system

Syntax S = spaugment(A,c)
S = spaugment(A)

Description S = spaugment(A,c) creates the sparse, square, symmetric indefinite
matrix S = [c*I A; A' 0]. The matrix S is related to the least squares
problem

min norm(b - A*x)

by

r = b - A*x
S * [r/c; x] = [b; 0]

The optimum value of the residual scaling factor c, involves
min(svd(A)) and norm(r), which are usually too expensive to compute.

S = spaugment(A) without a specified value of c, uses
max(max(abs(A)))/1000.

Note In previous versions of MATLAB product, the augmented matrix
was used by sparse linear equation solvers, \ and /, for nonsquare
problems. Now, MATLAB software performs a least squares solve using
the qr factorization of A instead.

See Also spparms

2-3561



spconvert

Purpose Import matrix from sparse matrix external format

Syntax S = spconvert(D)

Description spconvert is used to create sparse matrices from a simple sparse
format easily produced by non-MATLAB sparse programs. spconvert
is the second step in the process:

1 Load an ASCII data file containing [i,j,v] or [i,j,re,im] as rows
into a MATLAB variable.

2 Convert that variable into a MATLAB sparse matrix.

S = spconvert(D) converts a matrix D with rows containing [i,j,s]
or [i,j,r,s] to the corresponding sparse matrix. D must have an
nnz or nnz+1 row and three or four columns. Three elements per row
generate a real matrix and four elements per row generate a complex
matrix. A row of the form [m n 0] or [m n 0 0] anywhere in D can be
used to specify size(S). If D is already sparse, no conversion is done, so
spconvert can be used after D is loaded from either a MAT-file or an
ASCII file.

Examples Suppose the ASCII file uphill.dat contains

1 1 1.000000000000000
1 2 0.500000000000000
2 2 0.333333333333333
1 3 0.333333333333333
2 3 0.250000000000000
3 3 0.200000000000000
1 4 0.250000000000000
2 4 0.200000000000000
3 4 0.166666666666667
4 4 0.142857142857143
4 4 0.000000000000000

Then the statements

2-3562



spconvert

load uphill.dat
H = spconvert(uphill)

H =
(1,1) 1.0000
(1,2) 0.5000
(2,2) 0.3333
(1,3) 0.3333
(2,3) 0.2500
(3,3) 0.2000
(1,4) 0.2500
(2,4) 0.2000
(3,4) 0.1667
(4,4) 0.1429

recreate sparse(triu(hilb(4))), possibly with roundoff errors. In this
case, the last line of the input file is not necessary because the earlier
lines already specify that the matrix is at least 4-by-4.

2-3563



spdiags

Purpose Extract and create sparse band and diagonal matrices

Syntax B = spdiags(A)
[B,d] = spdiags(A)
B = spdiags(A,d)
A = spdiags(B,d,A)
A = spdiags(B,d,m,n)

Description The spdiags function generalizes the function diag. Four different
operations, distinguished by the number of input arguments, are
possible.

B = spdiags(A) extracts all nonzero diagonals from the m-by-n matrix
A. B is a min(m,n)-by-p matrix whose columns are the p nonzero
diagonals of A.

[B,d] = spdiags(A) returns a vector d of length p, whose integer
components specify the diagonals in A.

B = spdiags(A,d) extracts the diagonals specified by d.

A = spdiags(B,d,A) replaces the diagonals specified by d with the
columns of B. The output is sparse.

A = spdiags(B,d,m,n) creates an m-by-n sparse matrix by taking the
columns of B and placing them along the diagonals specified by d.

Note In this syntax, if a column of B is longer than the diagonal it is
replacing, and m >= n, spdiags takes elements of super-diagonals
from the lower part of the column of B, and elements of sub-diagonals
from the upper part of the column of B. However, if m < n , then
super-diagonals are from the upper part of the column of B, and
sub-diagonals from the lower part. (See “Example 5A” on page 2-3570
and “Example 5B” on page 2-3572, below).

Arguments The spdiags function deals with three matrices, in various
combinations, as both input and output.

2-3564



spdiags

A An m-by-n matrix, usually (but not necessarily) sparse, with
its nonzero or specified elements located on p diagonals.

B A min(m,n)-by-p matrix, usually (but not necessarily) full,
whose columns are the diagonals of A.

d A vector of length p whose integer components specify the
diagonals in A.

Roughly, A, B, and d are related by

for k = 1:p
B(:,k) = diag(A,d(k))

end

Some elements of B, corresponding to positions outside of A, are not
defined by these loops. They are not referenced when B is input and
are set to zero when B is output.

How the Diagonals of A are Listed in the Vector d

An m-by-n matrix A has m+n-1diagonals. These are specified in the
vector d using indices from -m+1 to n-1. For example, if A is 5-by-6, it
has 10 diagonals, which are specified in the vector d using the indices -4,
-3 , ... 4, 5. The following diagram illustrates this for a vector of all ones.

2-3565



spdiags

Examples Example 1

For the following matrix,

A=[0 5 0 10 0 0;...
0 0 6 0 11 0;...
3 0 0 7 0 12;...
1 4 0 0 8 0;...
0 2 5 0 0 9]

A =

0 5 0 10 0 0
0 0 6 0 11 0
3 0 0 7 0 12
1 4 0 0 8 0
0 2 5 0 0 9

the command

[B, d] =spdiags(A)

returns

B =

0 0 5 10
0 0 6 11
0 3 7 12
1 4 8 0
2 5 9 0

d =

-3
-2
1

2-3566



spdiags

3

The columns of the first output B contain the nonzero diagonals of A.
The second output d lists the indices of the nonzero diagonals of A, as
shown in the following diagram. See “How the Diagonals of A are Listed
in the Vector d” on page 2-3565.

Note that the longest nonzero diagonal in A is contained in column 3
of B. The other nonzero diagonals of A have extra zeros added to their
corresponding columns in B, to give all columns of B the same length.
For the nonzero diagonals below the main diagonal of A, extra zeros are
added at the tops of columns. For the nonzero diagonals above the main
diagonal of A, extra zeros are added at the bottoms of columns. This is
illustrated by the following diagram.

2-3567



spdiags

Example 2

This example generates a sparse tridiagonal representation of the
classic second difference operator on n points.

e = ones(n,1);
A = spdiags([e -2*e e], -1:1, n, n)

Turn it into Wilkinson’s test matrix (see gallery):

A = spdiags(abs(-(n-1)/2:(n-1)/2)',0,A)

Finally, recover the three diagonals:

B = spdiags(A)

Example 3

The second example is not square.

A = [11 0 13 0
0 22 0 24

2-3568



spdiags

0 0 33 0
41 0 0 44
0 52 0 0
0 0 63 0
0 0 0 74]

Here m =7, n = 4, and p = 3.

The statement [B,d] = spdiags(A) produces d = [-3 0 2]' and

B = [41 11 0
52 22 0
63 33 13
74 44 24]

Conversely, with the above B and d, the expression spdiags(B,d,7,4)
reproduces the original A.

Example 4

This example shows how spdiags creates the diagonals when the
columns of B are longer than the diagonals they are replacing.

B = repmat((1:6)',[1 7])

B =

1 1 1 1 1 1 1
2 2 2 2 2 2 2
3 3 3 3 3 3 3
4 4 4 4 4 4 4
5 5 5 5 5 5 5
6 6 6 6 6 6 6

d = [-4 -2 -1 0 3 4 5];
A = spdiags(B,d,6,6);
full(A)

ans =

2-3569



spdiags

1 0 0 4 5 6
1 2 0 0 5 6
1 2 3 0 0 6
0 2 3 4 0 0
1 0 3 4 5 0
0 2 0 4 5 6

Example 5A

This example illustrates the use of the syntax A = spdiags(B,d,m,n),
under three conditions:

• m is equal to n

• m is greater than n

• m is less than n

The command used in this example is

A = full(spdiags(B, [-2 0 2], m, n))

where B is the 5-by-3 matrix shown below. The resulting matrix A
has dimensions m-by-n, and has nonzero diagonals at [-2 0 2] (a
sub-diagonal at -2, the main diagonal, and a super-diagonal at 2).

B =
1 6 11
2 7 12
3 8 13
4 9 14
5 10 15

The first and third columns of matrix B are used to create the sub- and
super-diagonals of A respectively. In all three cases though, these two
outer columns of B are longer than the resulting diagonals of A. Because
of this, only a part of the columns is used in A.

2-3570



spdiags

When m == n or m > n, spdiags takes elements of the super-diagonal
in A from the lower part of the corresponding column of B, and elements
of the sub-diagonal in A from the upper part of the corresponding
column of B.

When m < n, spdiags does the opposite, taking elements of the
super-diagonal in A from the upper part of the corresponding column
of B, and elements of the sub-diagonal in A from the lower part of the
corresponding column of B.

Part 1 — m is equal to n.

A = full(spdiags(B, [-2 0 2], 5, 5))
Matrix B Matrix A

1 6 11 6 0 13 0 0
2 7 12 0 7 0 14 0
3 8 13 == spdiags => 1 0 8 0 15
4 9 14 0 2 0 9 0
5 10 15 0 0 3 0 10

A(3,1), A(4,2), and A(5,3) are taken from the upper part of B(:,1).

A(1,3), A(2,4), and A(3,5) are taken from the lower part of B(:,3).

Part 2 — m is greater than n.

A = full(spdiags(B, [-2 0 2], 5, 4))
Matrix B Matrix A

1 6 11 6 0 13 0
2 7 12 0 7 0 14
3 8 13 == spdiags => 1 0 8 0
4 9 14 0 2 0 9
5 10 15 0 0 3 0

Same as in Part A.

2-3571



spdiags

Part 3 — m is less than n.

A = full(spdiags(B, [-2 0 2], 4, 5))
Matrix B Matrix A

1 6 11 6 0 11 0 0
2 7 12 0 7 0 12 0
3 8 13 == spdiags => 3 0 8 0 13
4 9 14 0 4 0 9 0
5 10 15

A(3,1) and A(4,2) are taken from the lower part of B(:,1).

A(1,3), A(2,4), and A(3,5) are taken from the upper part of B(:,3).

Example 5B

Extract the diagonals from the first part of this example back into a
column format using the command

B = spdiags(A)

You can see that in each case the original columns are restored (minus
those elements that had overflowed the super- and sub-diagonals of
matrix A).

Part 1.

Matrix A Matrix B

6 0 13 0 0 1 6 0
0 7 0 14 0 2 7 0
1 0 8 0 15 == spdiags => 3 8 13
0 2 0 9 0 0 9 14
0 0 3 0 10 0 10 15

Part 2.

Matrix A Matrix B

2-3572



spdiags

6 0 13 0 1 6 0
0 7 0 14 2 7 0
1 0 8 0 == spdiags => 3 8 13
0 2 0 9 0 9 14
0 0 3 0

Part 3.

Matrix A Matrix B

6 0 11 0 0 0 6 11
0 7 0 12 0 0 7 12
3 0 8 0 13 == spdiags => 3 8 13
0 4 0 9 0 4 9 0

See Also diag, speye

2-3573



specular

Purpose Calculate specular reflectance

Syntax R = specular(Nx,Ny,Nz,S,V)

Description R = specular(Nx,Ny,Nz,S,V) returns the reflectance of a surface with
normal vector components [Nx,Ny,Nz]. S and V specify the direction
to the light source and to the viewer, respectively. You can specify
these directions as three vectors[x,y,z] or two vectors [Theta Phi
(in spherical coordinates).

The specular highlight is strongest when the normal vector is in the
direction of (S+V)/2 where S is the source direction, and V is the view
direction.

The surface spread exponent can be specified by including a sixth
argument as in specular(Nx,Ny,Nz,S,V,spread).

2-3574



speye

Purpose Sparse identity matrix

Syntax S = speye(m,n)
S = speye(n)

Description S = speye(m,n) forms an m-by-n sparse matrix with 1s on the main
diagonal.

S = speye(n) abbreviates speye(n,n).

Examples I = speye(1000) forms the sparse representation of the 1000-by-1000
identity matrix, which requires only about 16 kilobytes of storage.
This is the same final result as I = sparse(eye(1000,1000)), but
the latter requires eight megabytes for temporary storage for the full
representation.

See Also spalloc, spones, spdiags, sprand, sprandn

2-3575



spfun

Purpose Apply function to nonzero sparse matrix elements

Syntax f = spfun(fun,S)

Description The spfun function selectively applies a function to only the nonzero
elements of a sparse matrix S, preserving the sparsity pattern of the
original matrix (except for underflow or if fun returns zero for some
nonzero elements of S).

f = spfun(fun,S) evaluates fun(S) on the nonzero elements of S.
fun is a function handle. See “Function Handles” in the MATLAB
Programming documentation for more information.

“Parameterizing Functions” in the MATLAB Mathematics
documentation, explains how to provide additional parameters to the
function fun, if necessary.

Remarks Functions that operate element-by-element, like those in the elfun
directory, are the most appropriate functions to use with spfun.

Examples Given the 4-by-4 sparse diagonal matrix

S = spdiags([1:4]',0,4,4)

S =
(1,1) 1
(2,2) 2
(3,3) 3
(4,4) 4

Because fun returns nonzero values for all nonzero element of S, f =
spfun(@exp,S) has the same sparsity pattern as S.

f =
(1,1) 2.7183
(2,2) 7.3891
(3,3) 20.0855
(4,4) 54.5982

2-3576



spfun

whereas exp(S) has 1s where S has 0s.

full(exp(S))

ans =
2.7183 1.0000 1.0000 1.0000
1.0000 7.3891 1.0000 1.0000
1.0000 1.0000 20.0855 1.0000
1.0000 1.0000 1.0000 54.5982

See Also function_handle (@)

2-3577



sph2cart

Purpose Transform spherical coordinates to Cartesian

Syntax [x,y,z] = sph2cart(THETA,PHI,R)

Description [x,y,z] = sph2cart(THETA,PHI,R) transforms the corresponding
elements of spherical coordinate arrays to Cartesian, or xyz, coordinates.
THETA, PHI, and R must all be the same size (or any of them can be
scalar). THETA and PHI are angular displacements in radians from the
positive x-axis and from the x-y plane, respectively.

Algorithm The mapping from spherical coordinates to three-dimensional Cartesian
coordinates is

See Also cart2pol, cart2sph, pol2cart

2-3578



sphere

Purpose Generate sphere

Syntax sphere
sphere(n)
[X,Y,Z] = sphere(n)

Description The sphere function generates the x-, y-, and z-coordinates of a unit
sphere for use with surf and mesh.

sphere generates a sphere consisting of 20-by-20 faces.

sphere(n) draws a surf plot of an n-by-n sphere in the current figure.

[X,Y,Z] = sphere(n) returns the coordinates of a sphere in three
matrices that are (n+1)-by-(n+1) in size. You draw the sphere with
surf(X,Y,Z) or mesh(X,Y,Z).

Examples Generate and plot a sphere.

sphere
axis equal

2-3579



sphere

Plot multiple spheres, translating centers away from the origin:

[x,y,z] = sphere;
surf(x,y,z) % sphere centered at origin
hold on
surf(x+3,y-2,z) % sphere centered at (3,-2,0)
surf(x,y+1,z-3) % sphere centered at (0,1,-3)
daspect([1 1 1])

2-3580



sphere

See Also cylinder, axis equal

“Polygons and Surfaces” on page 1-100 for related functions

2-3581



spinmap

Purpose Spin colormap

Syntax spinmap
spinmap(t)
spinmap(t,inc)
spinmap('inf')

Description The spinmap function shifts the colormap RGB values by some
incremental value. For example, if the increment equals 1, color 1
becomes color 2, color 2 becomes color 3, etc.

spinmap cyclically rotates the colormap for approximately five seconds
using an incremental value of 2.

spinmap(t) rotates the colormap for approximately 10*t seconds. The
amount of time specified by t depends on your hardware configuration
(e.g., if you are running MATLAB software over a network).

spinmap(t,inc) rotates the colormap for approximately 10*t seconds
and specifies an increment inc by which the colormap shifts. When inc
is 1, the rotation appears smoother than the default (i.e., 2). Increments
greater than 2 are less smooth than the default. A negative increment
(e.g., –2) rotates the colormap in a negative direction.

spinmap('inf') rotates the colormap for an infinite amount of time.
To break the loop, press Ctrl+C.

See Also colormap, colormapeditor

“Color Operations” on page 1-108 for related functions

2-3582



spline

Purpose Cubic spline data interpolation

Syntax yy = spline(x,Y,xx)
pp = spline(x,Y)

Description yy = spline(x,Y,xx) uses a cubic spline interpolation to find yy, the
values of the underlying function Y at the values of the interpolant xx.
For the interpolation, the independent variable is assumed to be the
final dimension of Y with the breakpoints defined by x.

The sizes of xx and yy are related as follows:

• If Y is a scalar or vector, yy has the same size as xx.

• If Y is an array that is not a vector,

- If xx is a scalar or vector, size(yy) equals [d1, d2, ..., dk,
length(xx)].

- If xx is an array of size [m1,m2,...,mj], size(yy) equals
[d1,d2,...,dk,m1,m2,...,mj].

pp = spline(x,Y) returns the piecewise polynomial form of the cubic
spline interpolant for later use with ppval and the spline utility unmkpp.
x must be a vector. Y can be a scalar, a vector, or an array of any
dimension, subject to the following conditions:

• If x and Y are vectors of the same size, the not-a-knot end conditions
are used.

• If x or Y is a scalar, it is expanded to have the same length as the
other and the not-a-knot end conditions are used. (See Exceptions
(1) below).

• If Y is a vector that contains two more values than x has entries,
the first and last value in Y are used as the endslopes for the cubic
spline. (See Exceptions (2) below.)

2-3583



spline

Exceptions

1 If Y is a vector that contains two more values than x has entries,
the first and last value in Y are used as the endslopes for the cubic
spline. If Y is a vector, this means

• f(x) = Y(2:end-1)

• df(min(x)) = Y(1)

• df(max(x)) = Y(end)

2 If Y is a matrix or an N-dimensional array with size(Y,N) equal to
length(x)+2, the following hold:

• f(x(j)) matches the value Y(:,...,:,j+1) for j=1:length(x)

• Df(min(x)) matches Y(:,:,...:,1)

• Df(max(x)) matches Y(:,:,...:,end)

Note You can also perform spline interpolation using the interp1
function with the command interp1(x,y,xx,'spline'). Note that
while spline performs interpolation on rows of an input matrix,
interp1 performs interpolation on columns of an input matrix.

Examples Example 1

This generates a sine curve, then samples the spline over a finer mesh.

x = 0:10;
y = sin(x);
xx = 0:.25:10;
yy = spline(x,y,xx);
plot(x,y,'o',xx,yy)

2-3584



spline

Example 2

This illustrates the use of clamped or complete spline interpolation
where end slopes are prescribed. Zero slopes at the ends of an
interpolant to the values of a certain distribution are enforced.

x = -4:4;
y = [0 .15 1.12 2.36 2.36 1.46 .49 .06 0];
cs = spline(x,[0 y 0]);
xx = linspace(-4,4,101);
plot(x,y,'o',xx,ppval(cs,xx),'-');

2-3585



spline

Example 3

The two vectors

t = 1900:10:1990;
p = [ 75.995 91.972 105.711 123.203 131.669 ...

150.697 179.323 203.212 226.505 249.633 ];

represent the census years from 1900 to 1990 and the corresponding
United States population in millions of people. The expression

spline(t,p,2000)

uses the cubic spline to extrapolate and predict the population in the
year 2000. The result is

ans =
270.6060

2-3586



spline

Example 4

The statements

x = pi*[0:.5:2];
y = [0 1 0 -1 0 1 0;

1 0 1 0 -1 0 1];
pp = spline(x,y);
yy = ppval(pp, linspace(0,2*pi,101));
plot(yy(1,:),yy(2,:),'-b',y(1,2:5),y(2,2:5),'or'), axis equal

generate the plot of a circle, with the five data points
y(:,2),...,y(:,6) marked with o’s. Note that this y contains two
more values (i.e., two more columns) than does x, hence y(:,1) and
y(:,end) are used as endslopes.

2-3587



spline

Example 5

The following code generates sine and cosine curves, then samples the
splines over a finer mesh.

x = 0:.25:1;
Y = [sin(x); cos(x)];
xx = 0:.1:1;
YY = spline(x,Y,xx);
plot(x,Y(1,:),'o',xx,YY(1,:),'-'); hold on;
plot(x,Y(2,:),'o',xx,YY(2,:),':'); hold off;

Algorithm A tridiagonal linear system (with, possibly, several right sides) is being
solved for the information needed to describe the coefficients of the
various cubic polynomials which make up the interpolating spline.
spline uses the functions ppval, mkpp, and unmkpp. These routines

2-3588



spline

form a small suite of functions for working with piecewise polynomials.
For access to more advanced features, see the M-file help for these
functions and the Spline Toolbox.

See Also interp1, ppval, mkpp, pchip, unmkpp

References [1] de Boor, C., A Practical Guide to Splines, Springer-Verlag, 1978.

2-3589

../../toolbox/splines/splines_product_page.html


spones

Purpose Replace nonzero sparse matrix elements with ones

Syntax R = spones(S)

Description R = spones(S) generates a matrix R with the same sparsity structure
as S, but with 1’s in the nonzero positions.

Examples c = sum(spones(S)) is the number of nonzeros in each column.

r = sum(spones(S'))' is the number of nonzeros in each row.

sum(c) and sum(r) are equal, and are equal to nnz(S).

See Also nnz, spalloc, spfun

2-3590



spparms

Purpose Set parameters for sparse matrix routines

Syntax spparms('key',value)
spparms
values = spparms
[keys,values] = spparms
spparms(values)
value = spparms('key')
spparms('default')
spparms('tight')

Description spparms('key',value) sets one or more of the tunable parameters
used in the sparse routines. In ordinary use, you should never need
to deal with this function.

The meanings of the key parameters are

'spumoni' Sparse Monitor flag:

0 Produces no diagnostic output, the default

1 Produces information about choice of algorithm
based on matrix structure, and about storage
allocation

2 Also produces very detailed information about the
sparse matrix algorithms

'thr_rel',
'thr_abs'

Minimum degree threshold is thr_rel*mindegree
+ thr_abs.

'exact_d' Nonzero to use exact degrees in minimum degree.
Zero to use approximate degrees.

'supernd' If positive, minimum degree amalgamates the
supernodes every supernd stages.

'rreduce' If positive, minimum degree does row reduction
every rreduce stages.

2-3591



spparms

'wh_frac' Rows with density > wh_frac are ignored in
colmmd.

'autommd' Nonzero to use minimum degree (MMD) orderings
with QR-based \ and /.

'autoamd' Nonzero to use colamd ordering with the UMFPACK
LU-based \ and /, and to use amd with CHOLMOD
Cholesky-based \ and /.

'piv_tol' Pivot tolerance used by the UMFPACK LU-based
\ and /.

'bandden' Band density used by LAPACK-based \ and /
for banded matrices. Band density is defined as
(# nonzeros in the band)/(# nonzeros in a full band).
If bandden = 1.0, never use band solver. If bandden
= 0.0, always use band solver. Default is 0.5.

'umfpack' Nonzero to use UMFPACK instead of the v4
LU-based solver in \ and /.

'sym_tol' Symmetric pivot tolerance used by UMFPACK.
See lu for more information about the role of the
symmetric pivot tolerance.

Note LU-based \ and / (UMFPACK) on square matrices use a modified
colamd or amd. Cholesky-based \ and / (CHOLMOD) on symmetric
positive definite matrices use amd. QR-based \ and / on rectangular
matrices use colmmd.

spparms, by itself, prints a description of the current settings.

values = spparms returns a vector whose components give the current
settings.

[keys,values] = spparms returns that vector, and also returns a
character matrix whose rows are the keywords for the parameters.

2-3592



spparms

spparms(values), with no output argument, sets all the parameters to
the values specified by the argument vector.

value = spparms('key') returns the current setting of one parameter.

spparms('default') sets all the parameters to their default settings.

spparms('tight') sets the minimum degree ordering parameters to
their tight settings, which can lead to orderings with less fill-in, but
which make the ordering functions themselves use more execution time.

The key parameters for default and tight settings are

Keyword Default Tight

values(1) 'spumoni' 0.0

values(2) 'thr_rel' 1.1 1.0

values(3) 'thr_abs' 1.0 0.0

values(4) 'exact_d' 0.0 1.0

values(5) 'supernd' 3.0 1.0

values(6) 'rreduce' 3.0 1.0

values(7) 'wh_frac' 0.5 0.5

values(8) 'autommd' 1.0

values(9) 'autoamd' 1.0

values(10) 'piv_tol' 0.1

values(11) 'bandden' 0.5

values(12) 'umfpack' 1.0

values(13) 'sym_tol' 0.001

Notes Sparse A\b on Symmetric Positive Definite A

Sparse A\b on symmetric positive definite A uses CHOLMOD in
conjunction with the amd reordering routine.

2-3593



spparms

The parameter 'autoamd' turns the amd reordering on or off within
the solver.

Sparse A\b on General Square A

Sparse A\b on general square A usually uses UMFPACK in conjunction
with amd or a modified colamd reordering routine.

The parameter 'umfpack' turns the use of the UMFPACK software
on or off within the solver.

If UMFPACK is used,

• The parameter 'piv_tol' controls pivoting within the solver.

• The parameter 'autoamd' turns amd and the modified colamd on
or off within the solver.

If UMFPACK is not used,

• An LU-based solver is used in conjunction with the colmmd reordering
routine.

• If UMFPACK is not used, then the parameter 'autommd' turns the
colmmd reordering routine on or off within the solver.

• If UMFPACK is not used and colmmd is used within the solver, then
the minimum degree parameters affect the reordering routine within
the solver.

Sparse A\b on Rectangular A

Sparse A\b on rectangular A uses a QR-based solve in conjunction with
the colmmd reordering routine.

The parameter 'autommd' turns the colmmd reordering on or off within
the solver.

If colmmd is used within the solver, then the minimum degree
parameters affect the reordering routine within the solver.

See Also \, chol, lu, qr, colamdsymamd

2-3594



spparms

References [1] Gilbert, John R., Cleve Moler, and Robert Schreiber, “Sparse
Matrices in MATLAB: Design and Implementation,” SIAM Journal on
Matrix Analysis and Applications, Vol. 13, 1992, pp. 333-356.

[2] Davis, T. A., UMFPACK Version 4.6 User Guide
(http://www.cise.ufl.edu/research/sparse/umfpack/),
Dept. of Computer and Information Science and Engineering, Univ.
of Florida, Gainesville, FL, 2002.

[3] Davis, T. A., CHOLMOD Version 1.0 User Guide
(http://www.cise.ufl.edu/research/sparse/cholmod), Dept. of
Computer and Information Science and Engineering, Univ. of Florida,
Gainesville, FL, 2005.

2-3595

http://www.cise.ufl.edu/research/sparse/umfpack
http://www.cise.ufl.edu/research/sparse/cholmod


sprand

Purpose Sparse uniformly distributed random matrix

Syntax R = sprand(S)
R = sprand(m,n,density)
R = sprand(m,n,density,rc)

Description R = sprand(S) has the same sparsity structure as S, but uniformly
distributed random entries.

R = sprand(m,n,density) is a random, m-by-n, sparse matrix with
approximately density*m*n uniformly distributed nonzero entries (0
<= density <= 1).

R = sprand(m,n,density,rc) also has reciprocal condition number
approximately equal to rc. R is constructed from a sum of matrices
of rank one.

If rc is a vector of length lr, where lr <= min(m,n), then R has rc
as its first lr singular values, all others are zero. In this case, R is
generated by random plane rotations applied to a diagonal matrix
with the given singular values. It has a great deal of topological and
algebraic structure.

sprand uses the internal state information set with the rand function.

See Also sprandn, sprandsym

2-3596



sprandn

Purpose Sparse normally distributed random matrix

Syntax R = sprandn(S)
R = sprandn(m,n,density)
R = sprandn(m,n,density,rc)

Description R = sprandn(S) has the same sparsity structure as S, but normally
distributed random entries with mean 0 and variance 1.

R = sprandn(m,n,density) is a random, m-by-n, sparse matrix with
approximately density*m*n normally distributed nonzero entries ((0
<= density <= 1).

R = sprandn(m,n,density,rc) also has reciprocal condition number
approximately equal to rc. R is constructed from a sum of matrices
of rank one.

If rc is a vector of length lr, where lr <= min(m,n), then R has rc
as its first lr singular values, all others are zero. In this case, R is
generated by random plane rotations applied to a diagonal matrix
with the given singular values. It has a great deal of topological and
algebraic structure.

sprandn uses the internal state information set with the randn function.

See Also sprand, sprandsym

2-3597



sprandsym

Purpose Sparse symmetric random matrix

Syntax R = sprandsym(S)
R = sprandsym(n,density)
R = sprandsym(n,density,rc)
R = sprandsym(n,density,rc,kind)

Description R = sprandsym(S) returns a symmetric random matrix whose lower
triangle and diagonal have the same structure as S. Its elements are
normally distributed, with mean 0 and variance 1.

R = sprandsym(n,density) returns a symmetric random, n-by-n,
sparse matrix with approximately density*n*n nonzeros; each entry is
the sum of one or more normally distributed random samples, and (0
<= density <= 1).

R = sprandsym(n,density,rc) returns a matrix with a reciprocal
condition number equal to rc. The distribution of entries is nonuniform;
it is roughly symmetric about 0; all are in .

If rc is a vector of length n, then R has eigenvalues rc. Thus, if rc is
a positive (nonnegative) vector then R is a positive definite matrix. In
either case, R is generated by random Jacobi rotations applied to a
diagonal matrix with the given eigenvalues or condition number. It has
a great deal of topological and algebraic structure.

R = sprandsym(n,density,rc,kind) returns a positive definite
matrix. Argument kind can be:

• 1 to generate R by random Jacobi rotation of a positive definite
diagonal matrix. R has the desired condition number exactly.

• 2 to generate an R that is a shifted sum of outer products. R has the
desired condition number only approximately, but has less structure.

• 3 to generate an R that has the same structure as the matrix S and
approximate condition number 1/rc. density is ignored.

See Also sprand, sprandn

2-3598



sprank

Purpose Structural rank

Syntax r = sprank(A)

Description r = sprank(A) is the structural rank of the sparse matrix A. For all
values of A,

sprank(A) >= rank(full(A))

In exact arithmetic, sprank(A) == rank(full(sprandn(A))) with
a probability of one.

Examples A = [1 0 2 0
2 0 4 0 ];

A = sparse(A);

sprank(A)

ans =
2

rank(full(A))

ans =
1

See Also dmperm

2-3599



sprintf

Purpose Format data into string

Syntax str = sprintf(format, A, ...)
[str, errmsg] = sprintf(format, A, ...)

Description str = sprintf(format, A, ...) applies the format to all elements
of array A and any additional array arguments in column order, and
returns the results to string str.

[str, errmsg] = sprintf(format, A, ...) returns an error
message string when the operation is unsuccessful. Otherwise, errmsg
is empty.

Input
Arguments

format

String in single quotation marks that describes the format of the
output fields. Can include combinations of the following:

• Percent sign followed by a conversion character, such as '%s'
for strings.

• Operators that describe field width, precision, and other
options.

• Literal text to print.

• Escape characters, including:

'' Single quotation mark

%% Percent character

\\ Backslash

\a Alarm

\b Backspace

\f Form feed

\n New line

2-3600



sprintf

\r Carriage return

\t Horizontal tab

\v Vertical tab

\xN Hexadecimal number, N

\N Octal number, N

Conversion characters and optional operators appear in the
following order (includes spaces for clarity):

���������	�
����


������������������������������

�����
 ��������������!����

"
��#$�

The following table lists the available conversion characters and
subtypes.

Value Type Conversion Details

%d or %i Base 10 values

%ld or %li 64-bit base 10 values

Integer, signed

%hd or %hi 16-bit base 10 values

2-3601



sprintf

Value Type Conversion Details

%u Base 10

%o Base 8 (octal)

%x Base 16 (hexadecimal),
lowercase letters a–f

%X Same as %x, uppercase
letters A–F

%lu
%lo
%lx or %lX

64-bit values, base 10, 8, or
16

Integer,
unsigned

%hu
%ho
%hx or %hX

16-bit values, base 10, 8, or
16

%f Fixed-point notation

%e Exponential notation, such
as 3.141593e+00

%E Same as %e, but uppercase,
such as 3.141593E+00

%g The more compact of %e or
%f, with no trailing zeros

%G The more compact of %E or
%f, with no trailing zeros

%bx or %bX
%bo
%bu

Double-precision
hexadecimal, octal, or
decimal value
Example: %bx prints pi as
400921fb54442d18

Floating-point
number

2-3602



sprintf

Value Type Conversion Details

%tx or %tX
%to
%tu

Single-precision
hexadecimal, octal, or
decimal value
Example: %tx prints pi as
40490fdb

%c Single characterCharacters

%s String of characters

Additional operators include:

• Field width

Minimum number of characters to print. Can be a number, or
an asterisk (*) to refer to an argument in the input list. For
example, the input list ('%12d', intmax) is equivalent to
('%*d', 12, intmax).

• Precision

For %f, %e, or %E: Number of digits to the right of the
decimal point.
Example: '%6.4f' prints pi as
'3.1416'

For %g or %G Number of significant digits.
Example: '%6.4g' prints pi as
' 3.142'

Can be a number, or an asterisk (*) to refer to an argument in
the input list. For example, the input list ('%6.4f', pi) is
equivalent to ('%*.*f', 6, 4, pi).

• Flags

2-3603



sprintf

Action Flag Example

Left-justify. ' ' %-5.2f

Print sign character (+ or ). '+' %+5.2f

Insert a space before the value. ' ' % 5.2f

Pad with zeros. '0' %05.2f

Modify selected numeric conversions:

• For %o, %x, or %X, print 0, 0x, or 0X
prefix.

- For %f, %e, or %E, print decimal point
even when precision is 0.

- For %g or %G, do not remove trailing
zeros or decimal point.

'#' %#5.0f

• Identifier

Order for processing inputs. Use the syntax n$, where n
represents the position of the value in the input list.

For example, '%3$s %2$s %1$s %2$s' prints inputs 'A', 'B',
'C' as follows: C B A B.

The following limitations apply to conversions:

• Numeric conversions print only the real component of complex
numbers.

• If you apply an integer or string conversion to a numeric value
that contains a fraction, MATLAB overrides the specified
conversion, and uses %e.

• If you apply a string conversion (%s) to integer values,
MATLAB:

- Issues a warning.

2-3604



sprintf

- Converts values that correspond to valid character codes to
characters. For example, '%s' converts [65 66 67] to ABC.

• Different platforms display exponential notation (such as %e)
with a different number of digits in the exponent.

Platform Example

Windows 1.23e+004

UNIX 1.23e+04

• Different platforms display negative zero (-0) differently.

Conversion Character

Platform %e or %E %f %g or %G

Windows 0.000000e+000 0.000000 0

Others -0.000000e+00 -0.000000 -0

A

Numeric or character array.

Examples Format floating-point numbers:

sprintf('%0.5f',1/eps) % 4503599627370496.00000
sprintf('%0.5g',1/eps) % 4.5036e+15

Explicitly convert double-precision values to integers:

sprintf('%d',round(pi)) % 3

Combine literal text with array values:

sprintf('The array is %dx%d.',2,3) % The array is 2x3

2-3605



sprintf

On a Windows system, convert PC-style exponential notation (three
digits in the exponent) to UNIX style notation (two digits):

a = sprintf('%e', 12345.678);
if ispc

a = strrep(a, 'e+0', 'e+');
end

References [1] Kernighan, B. W., and D. M. Ritchie, The C Programming Language,
Second Edition, Prentice-Hall, Inc., 1988.

[2] ANSI specification X3.159-1989: “Programming Language C,” ANSI,
1430 Broadway, New York, NY 10018.

See Also char | fprintf | int2str | num2str | sscanf

How To • “Formatting Strings”

2-3606



spy

Purpose Visualize sparsity pattern

Syntax spy(S)
spy(S,markersize)
spy(S,'LineSpec')
spy(S,'LineSpec',markersize)

Description plots the

spy(S) sparsity pattern of any matrix S.

spy(S,markersize), where markersize is an integer, plots the sparsity
pattern using markers of the specified point size.

spy(S,'LineSpec'), where LineSpec is a string, uses the specified
plot marker type and color.

spy(S,'LineSpec',markersize) uses the specified type, color, and
size for the plot markers.

S is usually a sparse matrix, but full matrices are acceptable, in which
case the locations of the nonzero elements are plotted.

Note spy replaces format +, which takes much more space to display
essentially the same information.

Examples This example plots the 60-by-60 sparse adjacency matrix of the
connectivity graph of the Buckminster Fuller geodesic dome. This
matrix also represents the soccer ball and the carbon-60 molecule.

B = bucky;
spy(B)

2-3607



spy

See Also find, gplot, LineSpec, symamd, symrcm

2-3608



sqrt

Purpose Square root

Syntax B = sqrt(X)

Description B = sqrt(X) returns the square root of each element of the array X.
For the elements of X that are negative or complex, sqrt(X) produces
complex results.

Remarks See sqrtm for the matrix square root.

Examples sqrt((-2:2)')
ans =

0 + 1.4142i
0 + 1.0000i
0

1.0000
1.4142

See Also sqrtm, realsqrt

2-3609



sqrtm

Purpose Matrix square root

Syntax X = sqrtm(A)
[X, resnorm] = sqrtm(A)
[X, alpha, condest] = sqrtm(A)

Description X = sqrtm(A) is the principal square root of the matrix A, i.e. X*X = A.

X is the unique square root for which every eigenvalue has nonnegative
real part. If A has any eigenvalues with negative real parts then a
complex result is produced. If A is singular then A may not have a
square root. A warning is printed if exact singularity is detected.

[X, resnorm] = sqrtm(A) does not print any warning, and returns the
residual, norm(A-X^2,'fro')/norm(A,'fro').

[X, alpha, condest] = sqrtm(A) returns a stability factor alpha
and an estimate condest of the matrix square root condition number
of X. The residual norm(A-X^2,'fro')/norm(A,'fro') is bounded
approximately by n*alpha*eps and the Frobenius norm relative
error in X is bounded approximately by n*alpha*condest*eps, where
n = max(size(A)).

Remarks If X is real, symmetric and positive definite, or complex, Hermitian and
positive definite, then so is the computed matrix square root.

Some matrices, like X = [0 1; 0 0], do not have any square roots, real
or complex, and sqrtm cannot be expected to produce one.

Examples Example 1

A matrix representation of the fourth difference operator is

X =
5 -4 1 0 0

-4 6 -4 1 0
1 -4 6 -4 1
0 1 -4 6 -4
0 0 1 -4 5

2-3610



sqrtm

This matrix is symmetric and positive definite. Its unique positive
definite square root, Y = sqrtm(X), is a representation of the second
difference operator.

Y =
2 -1 -0 -0 -0

-1 2 -1 0 -0
0 -1 2 -1 0

-0 0 -1 2 -1
-0 -0 -0 -1 2

Example 2

The matrix

X =
7 10

15 22

has four square roots. Two of them are

Y1 =
1.5667 1.7408
2.6112 4.1779

and

Y2 =
1 2
3 4

The other two are -Y1 and -Y2. All four can be obtained from the
eigenvalues and vectors of X.

[V,D] = eig(X);
D =

0.1386 0
0 28.8614

2-3611



sqrtm

The four square roots of the diagonal matrix D result from the four
choices of sign in

S =
–0.3723 0

0 –5.3723

All four Ys are of the form

Y = V*S/V

The sqrtm function chooses the two plus signs and produces Y1, even
though Y2 is more natural because its entries are integers.

See Also expm, funm, logm

2-3612



squeeze

Purpose Remove singleton dimensions

Syntax B = squeeze(A)

Description B = squeeze(A) returns an array B with the same elements as A, but
with all singleton dimensions removed. A singleton dimension is any
dimension for which size(A,dim) = 1. Two-dimensional arrays are
unaffected by squeeze; if A is a row or column vector or a scalar (1-by-1)
value, then B = A.

Examples Consider the 2-by-1-by-3 array Y = rand(2,1,3). This array has a
singleton column dimension — that is, there’s only one column per page.

Y =

Y(:,:,1) = Y(:,:,2) =
0.5194 0.0346
0.8310 0.0535

Y(:,:,3) =
0.5297
0.6711

The command Z = squeeze(Y) yields a 2-by-3 matrix:

Z =
0.5194 0.0346 0.5297
0.8310 0.0535 0.6711

Consider the 1-by-1-by-5 array mat=repmat(1,[1,1,5]). This array
has only one scalar value per page.

mat =

mat(:,:,1) = mat(:,:,2) =

1 1

2-3613



squeeze

mat(:,:,3) = mat(:,:,4) =

1 1

mat(:,:,5) =

1

The command squeeze(mat) yields a 5-by-1 matrix:

squeeze(mat)

ans =

1
1
1
1
1

size(squeeze(mat))

ans =

5 1

See Also reshape, shiftdim

2-3614



ss2tf

Purpose Convert state-space filter parameters to transfer function form

Syntax [b,a] = ss2tf(A,B,C,D,iu)

Description ss2tf converts a state-space representation of a given system to an
equivalent transfer function representation.

[b,a] = ss2tf(A,B,C,D,iu) returns the transfer function

of the system

from the iu-th input. Vector a contains the coefficients of the
denominator in descending powers of s. The numerator coefficients are
returned in array b with as many rows as there are outputs y. ss2tf
also works with systems in discrete time, in which case it returns the
z-transform representation.

The ss2tf function is part of the standard MATLAB language.

Algorithm The ss2tf function uses poly to find the characteristic polynomial
det(sI-A) and the equality:

2-3615



sscanf

Purpose Read formatted data from string

Syntax A = sscanf(str, format)
A = sscanf(str, format, sizeA)
[A, count] = sscanf(...)
[A, count, errmsg] = sscanf(...)
[A, count, errmsg, nextindex] = sscanf(...)

Description A = sscanf(str, format) reads data from string str, converts it
according to the format, and returns the results in array A. The sscanf
function reapplies the format until either reaching the end of str or
failing to match the format. If sscanf cannot match the format to the
data, it reads only the portion that matches into A and stops processing.
If str is a character array with more than one row, sscanf reads the
characters in column order.

A = sscanf(str, format, sizeA) reads sizeA elements into A, where
sizeA can be an integer or can have the form [m,n].

[A, count] = sscanf(...) returns the number of elements that
sscanf successfully reads.

[A, count, errmsg] = sscanf(...) returns an error message string
when the operation is unsuccessful. Otherwise, errmsg is an empty
string.

[A, count, errmsg, nextindex] = sscanf(...) returns one more
than the number of characters scanned in str.

Input
Arguments

format

String enclosed in single quotation marks that describes each type
of element (field). Includes one or more of the following specifiers.

2-3616



sscanf

Field Type Specifier Details

%d Base 10Integer, signed

%i Base determined from the
values. Defaults to base 10. If
initial digits are 0x or 0X, it is
base 16. If initial digit is 0, it is
base 8.

%u Base 10

%o Base 8 (octal)

Integer,
unsigned

%x Base 16 (hexadecimal)

%f

%e

Floating-point
number

%g

Floating-point fields can contain
any of the following (not case
sensitive): Inf, -Inf, NaN, or
-NaN.

%s Read series of characters, until
find white space.

%c Read any single character,
including white space.
(To read multiple characters,
specify field length.)

Character string

%[...] Read only characters in
the brackets, until the first
nonmatching character or white
space.

Optionally:

• To skip fields, insert an asterisk (*) after the percent sign (%).
For example, to skip integers, specify %*d.

• To specify the maximum width of a field, insert a number. For
example, %10c reads exactly 10 characters at a time, including
white space.

2-3617



sscanf

• To skip a specific set of characters, insert the literal characters
in the format. For example, to read only the floating-point
number from 'pi=3.14159', specify a format of 'pi=%f'.

sizeA

Dimensions of the output array A. Specify in one of the following
forms:

inf Read to the end of the input string. (default)

n Read at most n elements.

[m,n] Read at most m*n elements in column order. n can
be inf, but m cannot.

When the format includes %s, A can contain more than n columns.
n refers to elements, not characters.

str

Character string.

Output
Arguments

A

An array. If the format includes:

• Only numeric specifiers, A is numeric, of class double. If sizeA
is inf or n, then A is a column vector. If the input contains
fewer than sizeA elements, MATLAB pads A with zeros.

• Only character or string specifiers (%c or %s), A is a character
array. If sizeA is inf or n, A is a row vector. If the input
contains fewer than sizeA characters, MATLAB pads A with
char(0).

• A combination of numeric and character specifiers, A is
numeric, of class double. MATLAB converts each character
to its numeric equivalent. This conversion occurs even when
the format explicitly skips all numeric values (for example,
a format of '%*d %s').

2-3618



sscanf

If MATLAB cannot match the input to the format, and the format
contains both numeric and character specifiers, A can be numeric
or character. The class of A depends on the values MATLAB reads
before processing stops.

count

Number of elements sscanf reads into A.

errmsg

An error message string when sscanf cannot open the specified
file. Otherwise, an empty string.

nextindex

sscanf counts the number of characters sscanf reads from str,
and then adds one.

Examples Example 1

Read multiple floating-point values from a string:

s = '2.7183 3.1416';
A = sscanf(s,'%f')
A =

2.7183
3.1416

Example 2

Read an octal integer from a string, identified by the '0' prefix, using
%i to preserve the sign:

sscanf('-010','%i')
ans =

-8

2-3619



sscanf

Example 3

Read numeric values from a two-dimensional character array. By
default, sscanf reads characters in column order. To preserve the
original order of the values, read one row at a time.

mixed = ['abc 45 6 ghi'; 'def 7 89 jkl'];

[nrows, ncols] = size(mixed);
for k = 1:nrows

nums(k,:) = sscanf(mixed(k,:), '%*s %d %d %*s', [1, inf]);
end;

% type the variable name to see the result
nums =

45 6
7 89

Example 4

sscanf finds one match for %s

[str count] = sscanf('ThisIsOneString', '%s')
str =

ThisIsOneString
count =

1

sscanf finds four matches for %s. Because it does not match space
characters, there are no spaces in the output string:

[str count] = sscanf('These Are Four Strings', '%s')
str =

TheseAreFourStrings
count =

4

2-3620



sscanf

sscanf finds five word matches for %s and four space character matches
for %c. Because the %c specifier does match a space character, the
output string does include spaces:

[str count] = sscanf('Five strings and four spaces', '%s%c')
str =

Five strings and four spaces
count =

9

sscanf finds three word matches for %s and two numeric matches for
%d. Because the format specifier has a mixed %d and %s format, sscanf
converts all nonnumeric characters to numeric:

[str count] = sscanf('5 strings and 4 spaces', '%d%s%s%d%s');
str'

Columns 1 through 9
5 115 116 114 105 110 103 115 97

Columns 10 through 18
110 100 4 115 112 97 99 101 115

count
count =

5

Example 5

[str, count] = sscanf('one two three', '%c')
str =

one two three
count =

13

[str, count] = sscanf('one two three', '%13c')
str =

one two three
count =

1

2-3621



sscanf

[str, count] = sscanf('one two three', '%s')
str =

onetwothree
count =

3

[str, count] = sscanf('one two three', '%1s')
str =

onetwothree
count =

11

Example 6

tempString = '78 F 72 F 64 F 66 F 49 F';

degrees = char(176);
tempNumeric = sscanf(tempString, ['%d' degrees 'F'])'
tempNumeric =

78 72 64 66 49

See Also fscanf | sprintf | textscan

2-3622



stairs

Purpose Stairstep graph

GUI
Alternatives

To graph selected variables, use the Plot Selector in the
Workspace Browser, or use the Figure Palette Plot Catalog. Manipulate
graphs in plot edit mode with the Property Editor. For details, see
Plotting Tools — Interactive Plotting in the MATLAB Graphics
documentation and Creating Graphics from the Workspace Browser in
the MATLAB Desktop Tools documentation.

Syntax stairs(Y)
stairs(X,Y)
stairs(...,LineSpec)
stairs(...,'PropertyName',propertyvalue)
stairs(axes_handle,...)
h = stairs(...)
[xb,yb] = stairs(Y,...)

Description Stairstep graphs are useful for drawing time-history graphs of digitally
sampled data.

stairs(Y) draws a stairstep graph of the elements of Y, drawing one
line per column for matrices. The axes ColorOrder property determines
the color of the lines.

When Y is a vector, the x-axis scale ranges from 1 to length(Y). When Y
is a matrix, the x-axis scale ranges from 1 to the number of rows in Y.

stairs(X,Y) plots the elements in Y at the locations specified in X.

X must be the same size as Y or, if Y is a matrix, X can be a row or
a column vector such that

length(X) = size(Y,1)

2-3623

../ref/axes_props.html#ColorOrder


stairs

stairs(...,LineSpec) specifies a line style, marker symbol, and color
for the graph. (See LineSpec for more information.)

stairs(...,'PropertyName',propertyvalue) creates the stairstep
graph, applying the specified property settings. See Stairseries
properties for a description of properties.

stairs(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes object (gca).

h = stairs(...) returns the handles of the stairseries objects
created (one per matrix column).

[xb,yb] = stairs(Y,...) does not draw graphs, but returns vectors
xb and yb such that plot(xb,yb) plots the stairstep graph.

Examples Create a stairstep plot of a sine wave.

x = linspace(-2*pi,2*pi,40);
stairs(x,sin(x))

2-3624



stairs

See Also bar, hist, stem

“Discrete Data Plots” on page 1-99 for related functions

Stairseries Properties for property descriptions

2-3625



Stairseries Properties

Purpose Define stairseries properties

Modifying
Properties

You can set and query graphics object properties using the set and get
commands or the Property Editor (propertyeditor).

Note that you cannot define default property values for stairseries
objects.

See Plot Objects for information on stairseries objects.

Stairseries
Property
Descriptions

This section provides a description of properties. Curly braces { } enclose
default values.

Annotation
hg.Annotation object Read Only

Control the display of stairseries objects in legends. The
Annotation property enables you to specify whether this
stairseries object is represented in a figure legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Once you have obtained the hg.LegendEntry object, you can set
its IconDisplayStyle property to control whether the stairseries
object is displayed in a figure legend:

2-3626



Stairseries Properties

IconDisplayStyle
Value

Purpose

on Include the stairseries object in a legend as
one entry, but not its children objects

off Do not include the stairseries or its children
in a legend (default)

children Include only the children of the stairseries
as separate entries in the legend

Setting the IconDisplayStyle Property

These commands set the IconDisplayStyle of a graphics object
with handle hobj to children, which causes each child object
to have an entry in the legend:

hAnnotation = get(hobj,'Annotation');
hLegendEntry = get(hAnnotation,'LegendInformation');
set(hLegendEntry,'IconDisplayStyle','children')

Using the IconDisplayStyle Property

See “Controlling Legends” for more information and examples.

BeingDeleted
on | {off} Read Only

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in
the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions
that act on a number of different objects. These functions might
not need to perform actions on objects if the objects are going to

2-3627



Stairseries Properties

be deleted, and therefore, can check the object’s BeingDeleted
property before acting.

BusyAction
cancel | {queue}

Callback routine interruption. The BusyAction property enables
you to control how MATLAB handles events that potentially
interrupt executing callbacks. If there is a callback function
executing, callbacks invoked subsequently always attempt to
interrupt it.

If the Interruptible property of the object whose callback is
executing is set to on (the default), then interruption occurs
at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the
object owning the executing callback) determines how MATLAB
handles the event. The choices are

• cancel— Discard the event that attempted to execute a second
callback routine.

• queue — Queue the event that attempted to execute a second
callback routine until the current callback finishes.

ButtonDownFcn
string or function handle

Button press callback function. A callback that executes whenever
you press a mouse button while the pointer is over this object, but
not over another graphics object. See the HitTestArea property
for information about selecting objects of this type.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

This property can be

• A string that is a valid MATLAB expression

2-3628



Stairseries Properties

• The name of a MATLAB file

• A function handle

Set this property to a function handle that references the callback.
The expressions execute in the MATLAB workspace.

See “Function Handle Callbacks” for information on how to use
function handles to define the callbacks.

The expression executes in the MATLAB workspace.

See Function Handle Callbacks for information on how to use function
handles to define the callbacks.

Children
array of graphics object handles

Children of the stairseries object. An array containing the handles
of all line objects parented to the stairseries object (whether
visible or not).

If a child object’s HandleVisibility property is callback or off,
its handle does not show up in this object’s Children property.
If you want the handle in the Children property, set the root
ShowHiddenHandles property to on. For example:

set(0,'ShowHiddenHandles','on')

Clipping
{on} | off

Clipping mode. MATLAB clips graphs to the axes plot box by
default. If you set Clipping to off, portions of graphs can be
displayed outside the axes plot box. This can occur if you create a
plot object, set hold to on, freeze axis scaling (axis manual), and
then create a larger plot object.

2-3629



Stairseries Properties

Color
ColorSpec

Color of the object. A three-element RGB vector or one of the
MATLAB predefined names, specifying the object’s color.

See the ColorSpec reference page for more information on
specifying color.

CreateFcn
string or function handle

Callback routine executed during object creation. This property
defines a callback that executes when MATLAB creates an object.
You must specify the callback during the creation of the object.
For example,

graphicfcn(y,'CreateFcn',@CallbackFcn)

where @CallbackFcn is a function handle that references the
callback function and graphicfcn is the plotting function which
creates this object.

MATLAB executes this routine after setting all other object
properties. Setting this property on an existing object has no
effect.

The handle of the object whose CreateFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

DeleteFcn
string or function handle

2-3630



Stairseries Properties

Callback executed during object deletion. A callback that executes
when this object is deleted (e.g., this might happen when you issue
a delete command on the object, its parent axes, or the figure
containing it). MATLAB executes the callback before destroying
the object’s properties so the callback routine can query these
values.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
can be queried using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

See the BeingDeleted property for related information.

DisplayName
string (default is empty string)

String used by legend for this stairseries object. The legend
function uses the string defined by the DisplayName property to
label this stairseries object in the legend.

• If you specify string arguments with the legend function,
DisplayName is set to this stairseries object’s corresponding
string and that string is used for the legend.

• If DisplayName is empty, legend creates a string of the form,
['data' n], where n is the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

• If you edit the string directly in an existing legend, DisplayName
is set to the edited string.

• If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

2-3631



Stairseries Properties

• To add programmatically a legend that uses the DisplayName
string, call legend with the toggle or show option.

See “Controlling Legends” for more examples.

EraseMode
{normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses
to draw and erase objects and their children. Alternative erase
modes are useful for creating animated sequences, where control
of the way individual objects are redrawn is necessary to improve
performance and obtain the desired effect.

• normal— Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all
objects are rendered correctly. This mode produces the most
accurate picture, but is the slowest. The other modes are faster,
but do not perform a complete redraw and are therefore less
accurate.

• none— Do not erase objects when they are moved or destroyed.
While the objects are still visible on the screen after erasing
with EraseMode none, you cannot print these objects because
MATLAB stores no information about their former locations.

• xor — Draw and erase the object by performing an exclusive
OR (XOR) with each pixel index of the screen behind it. Erasing
the object does not damage the color of the objects behind it.
However, the color of the erased object depends on the color of
the screen behind it and it is correctly colored only when it is
over the axes background color (or the figure background color
if the axes Color property is set to none). That is, it isn’t erased
correctly if there are objects behind it.

• background — Erase the graphics objects by redrawing them
in the axes background color, (or the figure background color
if the axes Color property is set to none). This damages other

2-3632



Stairseries Properties

graphics objects that are behind the erased object, but the
erased object is always properly colored.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB can mathematically combine
layers of colors (e.g., performing an XOR on a pixel color with that
of the pixel behind it) and ignore three-dimensional sorting to
obtain greater rendering speed. However, these techniques are
not applied to the printed output.

Set the axes background color with the axes Color property. Set
the figure background color with the figure Color property.

You can use the MATLAB getframe command or other screen
capture applications to create an image of a figure containing
nonnormal mode objects.

HandleVisibility
{on} | callback | off

Control access to object’s handle by command-line users and GUIs.
This property determines when an object’s handle is visible in
its parent’s list of children. HandleVisibility is useful for
preventing command-line users from accidentally accessing
objects that you need to protect for some reason.

• on—Handles are always visible when HandleVisibility is on.

• callback — Setting HandleVisibility to callback causes
handles to be visible from within callback routines or functions
invoked by callback routines, but not from within functions
invoked from the command line. This provides a means to
protect GUIs from command-line users, while allowing callback
routines to have access to object handles.

2-3633



Stairseries Properties

• off — Setting HandleVisibility to off makes handles
invisible at all times. This might be necessary when a callback
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string) and so temporarily
hides its own handles during the execution of that function.

Functions Affected by Handle Visibility

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

Properties Affected by Handle Visibility

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

Overriding Handle Visibility

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties). See also findall.

Handle Validity

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties and pass it to any
function that operates on handles.

2-3634



Stairseries Properties

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

HitTest
{on} | off

Selectable by mouse click. HitTest determines whether this object
can become the current object (as returned by the gco command
and the figure CurrentObject property) as a result of a mouse
click on the objects that compose the area graph. If HitTest
is off, clicking this object selects the object below it (which is
usually the axes containing it).

HitTestArea
on | {off}

Select the object by clicking lines or area of extent. This property
enables you to select plot objects in two ways:

• Select by clicking lines or markers (default).

• Select by clicking anywhere in the extent of the plot.

When HitTestArea is off, you must click the object’s lines or
markers (excluding the baseline, if any) to select the object. When
HitTestArea is on, you can select this object by clicking anywhere
within the extent of the plot (i.e., anywhere within a rectangle
that encloses it).

Interruptible
{on} | off

Callback routine interruption mode. The Interruptible property
controls whether an object’s callback can be interrupted by
callbacks invoked subsequently.

2-3635



Stairseries Properties

Only callbacks defined for the ButtonDownFcn property are
affected by the Interruptible property. MATLAB checks for
events that can interrupt a callback only when it encounters a
drawnow, figure, getframe, or pause command in the routine.
See the BusyAction property for related information.

Setting Interruptible to on allows any graphics object’s callback
to interrupt callback routines originating from a bar property.
Note that MATLAB does not save the state of variables or the
display (e.g., the handle returned by the gca or gcf command)
when an interruption occurs.

LineStyle
{-} | -- | : | -. | none

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

Specifier
String Line Style

- Solid line (default)

-- Dashed line

: Dotted line

-. Dash-dot line

none No line

You can use LineStyle none when you want to place a marker
at each point but do not want the points connected with a line
(see the Marker property).

LineWidth
scalar

2-3636



Stairseries Properties

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = 1/72 inch). The default LineWidth is 0.5
points.

Marker
character (see table)

Marker symbol. The Marker property specifies the type of markers
that are displayed at plot vertices. You can set values for the
Marker property independently from the LineStyle property.
Supported markers include those shown in the following table.

Marker Specifier Description

+ Plus sign

o Circle

* Asterisk

. Point

x Cross

s Square

d Diamond

^ Upward-pointing triangle

v Downward-pointing triangle

> Right-pointing triangle

< Left-pointing triangle

p Five-pointed star (pentagram)

h Six-pointed star (hexagram)

none No marker (default)

MarkerEdgeColor
ColorSpec | none | {auto}

2-3637



Stairseries Properties

Marker edge color. The color of the marker or the edge color for
filled markers (circle, square, diamond, pentagram, hexagram,
and the four triangles). ColorSpec defines the color to use. none
specifies no color, which makes nonfilled markers invisible. auto
sets MarkerEdgeColor to the same color as the Color property.

MarkerFaceColor
ColorSpec | {none} | auto

Marker face color. The fill color for markers that are closed shapes
(circle, square, diamond, pentagram, hexagram, and the four
triangles). ColorSpec defines the color to use. none makes the
interior of the marker transparent, allowing the background to
show through. auto sets the fill color to the axes color, or to the
figure color if the axes Color property is set to none (which is the
factory default for axes objects).

MarkerSize
size in points

Marker size. A scalar specifying the size of the marker in points.
The default value for MarkerSize is 6 points (1 point = 1/72 inch).
Note that MATLAB draws the point marker (specified by the '.'
symbol) at one-third the specified size.

Parent
handle of parent axes, hggroup, or hgtransform

Parent of this object. This property contains the handle of the
object’s parent. The parent is normally the axes, hggroup, or
hgtransform object that contains the object.

See “Objects That Can Contain Other Objects” for more
information on parenting graphics objects.

Selected
on | {off}

2-3638



Stairseries Properties

Is object selected? When you set this property to on, MATLAB
displays selection "handles" at the corners and midpoints if the
SelectionHighlight property is also on (the default). You
can, for example, define the ButtonDownFcn callback to set this
property to on, thereby indicating that this particular object
is selected. This property is also set to on when an object is
manually selected in plot edit mode.

SelectionHighlight
{on} | off

Objects are highlighted when selected. When the Selected
property is on, MATLAB indicates the selected state by
drawing four edge handles and four corner handles. When
SelectionHighlight is off, MATLAB does not draw the handles
except when in plot edit mode and objects are selected manually.

Tag
string

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This is
particularly useful when you are constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callbacks.
You can define Tag as any string.

For example, you might create an areaseries object and set the
Tag property.

t = area(Y,'Tag','area1')

When you want to access objects of a given type, you can use
findobj to find the object’s handle. The following statement
changes the FaceColor property of the object whose Tag is area1.

set(findobj('Tag','area1'),'FaceColor','red')

2-3639



Stairseries Properties

Type
string (read only)

Type of graphics object. This property contains a string that
identifies the class of the graphics object. For stairseries objects,
Type is ’hggroup’. The following statement finds all the hggroup
objects in the current axes object.

t = findobj(gca,'Type','hggroup');

UIContextMenu
handle of a uicontextmenu object

Associate a context menu with this object. Assign this property
the handle of a uicontextmenu object created in the object’s
parent figure. Use the uicontextmenu function to create the
context menu. MATLAB displays the context menu whenever
you right-click over the object.

UserData
array

User-specified data. This property can be any data you want to
associate with this object (including cell arrays and structures).
The object does not set values for this property, but you can access
it using the set and get functions.

Visible
{on} | off

Visibility of this object and its children. By default, a new object’s
visibility is on. This means all children of the object are visible
unless the child object’s Visible property is set to off. Setting an
object’s Visible property to off prevents the object from being
displayed. However, the object still exists and you can set and
query its properties.

XData
array

2-3640



Stairseries Properties

X-axis location of stairs. The stairs function uses XData to label
the x-axis. XData can be either a matrix equal in size to YData or
a vector equal in length to the number of rows in YData. That is,
length(XData) == size(YData,1).

If you do not specify XData (i.e., the input argument x), the stairs
function uses the indices of YData to create the stairstep graph.
See the XDataMode property for related information.

XDataMode
{auto} | manual

Use automatic or user-specified x-axis values. If you specify
XData (by setting the XData property or specifying the x input
argument), MATLAB sets this property to manual and uses the
specified values to label the x-axis.

If you set XDataMode to auto after having specified XData,
MATLAB resets the x-axis ticks to 1:size(YData,1) or to the
column indices of the ZData, overwriting any previous values for
XData.

XDataSource
string (MATLAB variable)

Link XData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
XData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change XData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

2-3641



Stairseries Properties

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

YData
scalar, vector, or matrix

Stairs plot data. YData contains the data plotted in the stairstep
graph. Each value in YData is represented by a marker in the
stairstep graph. If YData is a matrix, the stairs function creates
a line for each column in the matrix.

The input argument y in the stairs function calling syntax
assigns values to YData.

YDataSource
string (MATLAB variable)

Link YData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
YData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change YData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

2-3642



Stairseries Properties

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

2-3643



start

Purpose Start timer(s) running

Syntax start(obj)

Description start(obj) starts the timer running, represented by the timer object,
obj. If obj is an array of timer objects, start starts all the timers. Use
the timer function to create a timer object.

start sets the Running property of the timer object, obj, to 'on',
initiates TimerFcn callbacks, and executes the StartFcn callback.

The timer stops running if one of the following conditions apply:

• The first TimerFcn callback completes, if ExecutionMode is
'singleShot'.

• The number of TimerFcn callbacks specified in TasksToExecute have
been executed.

• The stop(obj) command is issued.

• An error occurred while executing a TimerFcn callback.

See Also timer, stop

2-3644



startat

Purpose Start timer(s) running at specified time

Syntax startat(obj,time)
startat(obj,S)
startat(obj,S,pivotyear)
startat(obj,Y,M,D)
startat(obj,[Y,M,D])
startat(obj,Y,M,D,H,MI,S)
startat(obj,[Y,M,D,H,MI,S])

Description startat(obj,time) starts the timer represented by timer object
objrunning at the time specified by the serial date number time. If obj
is an array of timer objects, startat starts all the timers running at the
specified time. To create a timer object, use the timer function. You
can set the starting time to any serial date number less than or equal
to 25 days from the current date.

startat sets the Running property of the timer object, obj, to 'on',
initiates TimerFcn callbacks, and executes the StartFcn callback.

The serial date number, time, indicates the number of days that have
elapsed since 1-Jan-0000 (starting at 1). See datenum for additional
information about serial date numbers.

startat(obj,S) starts the timer running at the time specified by the
date string S. The date string must use date format 0, 1, 2, 6, 13, 14,
15, 16, or 23, as defined by the datestr function. Date strings with
two-character years are interpreted to be within the 100 years centered
on the current year.

startat(obj,S,pivotyear) uses the specified pivot year as the
starting year of the 100-year range in which a two-character year
resides. The default pivot year is the current year minus 50 years.

startat(obj,Y,M,D) startat(obj,[Y,M,D]) start the timer at the
year (Y), month (M), and day (D) specified. Y, M, and D must be arrays of
the same size (or they can be a scalar).

startat(obj,Y,M,D,H,MI,S) startat(obj,[Y,M,D,H,MI,S]) start
the timer at the year (Y), month (M), day (D), hour (H), minute (MI), and

2-3645



startat

second (S) specified. Y, M, D, H, MI, and S must be arrays of the same size
(or they can be a scalar). Values outside the normal range of each array
are automatically carried to the next unit (for example, month values
greater than 12 are carried to years). Month values less than 1 are set
to be 1; all other units can wrap and have valid negative values.

The timer stops running if one of the following conditions apply:

• The number of TimerFcn callbacks specified in TasksToExecute have
been executed.

• The stop(obj) command is issued.

• An error occurred while executing a TimerFcn callback.

Examples This example uses a timer object to execute a function at a specified
time.

t1=timer('TimerFcn','disp(''it is 10 o''''clock'')');
startat(t1,'10:00:00');

This example uses a timer to display a message when an hour has
elapsed.

t2=timer('TimerFcn','disp(''It has been an hour now.'')');
startat(t2,now+1/24);

See Also datenum, datestr, now, timer, start, stop

2-3646



startup

Purpose Startup file for user-defined options

Syntax startup

Description startup executes commands of your choosing when the MATLAB
program starts.

Create a startup.m file in your MATLAB startup folder and put in
the file any commands you want executed at MATLAB startup. For
example, your startup.m file might include physical constants, defaults
for Handle Graphics properties, engineering conversion factors, or
anything else you want predefined in your workspace.

Algorithm The MATLAB program executes the matlabrc.m file when it starts.
matlabrc.m invokes startup.m, if it exists on the MATLAB search path.

You can extend this process to create additional startup files, if needed.

The MathWorks does not recommend modifying the matlabrc.m file,
except perhaps by system administrators in network configurations.

See Also finish, matlabrc, matlabroot, path, quit, userpath

See “Specifying Startup Options Using the Startup File for the
MATLAB Program, startup.m” and Preferences in the MATLAB
Desktop Tools and Development Environment documentation.

2-3647



std

Purpose Standard deviation

Syntax s = std(X)
s = std(X,flag)
s = std(X,flag,dim)

Definition There are two common textbook definitions for the standard deviation
s of a data vector X.

where

and is the number of elements in the sample. The two forms of the
equation differ only in versus in the divisor.

Description s = std(X), where X is a vector, returns the standard deviation using
(1) above. The result s is the square root of an unbiased estimator of the
variance of the population from which X is drawn, as long as X consists
of independent, identically distributed samples.

If X is a matrix, std(X) returns a row vector containing the standard
deviation of the elements of each column of X. If X is a multidimensional
array, std(X) is the standard deviation of the elements along the first
nonsingleton dimension of X.

2-3648



std

s = std(X,flag) for flag = 0, is the same as std(X). For flag = 1,
std(X,1) returns the standard deviation using (2) above, producing the
second moment of the set of values about their mean.

s = std(X,flag,dim) computes the standard deviations along the
dimension of X specified by scalar dim. Set flag to 0 to normalize Y by
n-1; set flag to 1 to normalize by n.

Examples For matrix X

X =
1 5 9

7 15 22
s = std(X,0,1)
s =

4.2426 7.0711 9.1924
s = std(X,0,2)
s =

4.000
7.5056

See Also corrcoef, cov, mean, median, var

2-3649



std (timeseries)

Purpose Standard deviation of timeseries data

Syntax ts_std = std(ts)
ts_std = std(ts,'PropertyName1',PropertyValue1,...)

Description ts_std = std(ts) returns the standard deviation of the time-series
data. When ts.Data is a vector, ts_std is the standard deviation of
ts.Data values. When ts.Data is a matrix, ts_std is the standard
deviation of each column of ts.Data (when IsTimeFirst is true and
the first dimension of ts is aligned with time). For the N-dimensional
ts.Data array, std always operates along the first nonsingleton
dimension of ts.Data.

ts_std = std(ts,'PropertyName1',PropertyValue1,...)
specifies the following optional input arguments:

• 'MissingData' property has two possible values, 'remove' (default)
or 'interpolate', indicating how to treat missing data during the
calculation.

• 'Quality' values are specified by a vector of integers, indicating
which quality codes represent missing samples (for vector data) or
missing observations (for data arrays with two or more dimensions).

• 'Weighting' property has two possible values, 'none' (default) or
'time'.
When you specify 'time', larger time values correspond to larger
weights.

Examples 1 Load a 24-by-3 data array.

load count.dat

2 Create a timeseries object with 24 time values.

count_ts = timeseries(count,1:24,'Name','CountPerSecond')

2-3650



std (timeseries)

3 Calculate the standard deviation of each data column for this
timeseries object.

std(count_ts)

ans =

25.3703 41.4057 68.0281

The standard deviation is calculated independently for each data
column in the timeseries object.

See Also iqr (timeseries), mean (timeseries), median (timeseries), var
(timeseries), timeseries

2-3651



stem

Purpose Plot discrete sequence data

GUI
Alternatives

To graph selected variables, use the Plot Selector in the
Workspace Browser, or use the Figure Palette Plot Catalog. Manipulate
graphs in plot edit mode with the Property Editor. For details, see
Plotting Tools — Interactive Plotting in the MATLAB Graphics
documentation and Creating Graphics from the Workspace Browser in
the MATLAB Desktop Tools documentation.

Syntax stem(Y)
stem(X,Y)
stem(...,'fill')
stem(...,LineSpec)
stem(axes_handle,...)
h = stem(...)

Description A two-dimensional stem plot displays data as lines extending from a
baseline along the x-axis. A circle (the default) or other marker whose
y-position represents the data value terminates each stem.

stem(Y) plots the data sequence Y as stems that extend from equally
spaced and automatically generated values along the x-axis. When Y is
a matrix, stem plots all elements in a row against the same x value.

stem(X,Y) plots X versus the columns of Y. X and Y must be vectors or
matrices of the same size. Additionally, X can be a row or a column
vector and Y a matrix with length(X) rows.

stem(...,'fill') specifies whether to color the circle at the end of
the stem.

stem(...,LineSpec) specifies the line style, marker symbol, and color
for the stem and top marker (the baseline is not affected). See LineSpec
for more information.

2-3652



stem

stem(axes_handle,...) plots into the axes object with the handle
axes_handle instead of into the current axes object (gca).

h = stem(...) returns a vector of stemseries object handles in h, one
handle per column of data in Y.

Examples Single Series of Data

This example creates a stem plot representing the cosine of 10 values
linearly spaced between 0 and 2π. Note that the line style of the
baseline is set by first getting its handle from the stemseries object’s
BaseLine property.

t = linspace(-2*pi,2*pi,10);
h = stem(t,cos(t),'fill','--');
set(get(h,'BaseLine'),'LineStyle',':')
set(h,'MarkerFaceColor','red')

2-3653



stem

The following diagram illustrates the parent-child relationship in the
previous stem plot. Note that the stemseries object contains two line
objects used to draw the stem lines and the end markers. The baseline
is a separate line object.

2-3654



stem

If you do not want the baseline to show, you can remove it with the
following command:

delete(get(stem_handle,'Baseline'))

where stem_handle is the handle for the stemseries object. You can use
similar code to change the color or style of the baseline, specifying any
line property and value, for example,

set(get(stem_handle,'Baseline'),'LineWidth',3)

Two Series of Data on One Graph

The following example creates a stem plot from a two-column matrix.
In this case, the stem function creates two stemseries objects, one of
each column of data. Both objects’ handles are returned in the output
argument h.

• h(1) is the handle to the stemseries object plotting the expression
exp(-.07*x).*cos(x).

• h(2) is the handle to the stemseries object plotting the expression
exp(.05*x).*cos(x).

x = 0:25;
y = [exp(-.07*x).*cos(x);exp(.05*x).*cos(x)]';
h = stem(x,y);

2-3655



stem

set(h(1),'MarkerFaceColor','blue')
set(h(2),'MarkerFaceColor','red','Marker','square')

The following diagram illustrates the parent-child relationship in the
previous stem plot. Note that each column in the input matrix y results
in the creation of a stemseries object, which contains two line objects
(one for the stems and one for the markers). The baseline is shared
by both stemseries objects.

2-3656



stem

See Also bar, plot, stairs

Stemseries properties for property descriptions

2-3657



stem3

Purpose Plot 3-D discrete sequence data

GUI
Alternatives

To graph selected variables, use the Plot Selector in the
Workspace Browser, or use the Figure Palette Plot Catalog. Manipulate
graphs in plot edit mode with the Property Editor. For details, see
Plotting Tools — Interactive Plotting in the MATLAB Graphics
documentation and Creating Graphics from the Workspace Browser in
the MATLAB Desktop Tools documentation.

Syntax stem3(Z)
stem3(X,Y,Z)
stem3(...,'fill')
stem3(...,LineSpec)
h = stem3(...)

Description Three-dimensional stem plots display lines extending from the x-y
plane. A circle (the default) or other marker symbol whose z-position
represents the data value terminates each stem.

stem3(Z) plots the data sequence Z as stems that extend from the x-y
plane. x and y are generated automatically. When Z is a row vector,
stem3 plots all elements at equally spaced x values against the same y
value. When Z is a column vector, stem3 plots all elements at equally
spaced y values against the same x value.

stem3(X,Y,Z) plots the data sequence Z at values specified by X and Y.
X, Y, and Z must all be vectors or matrices of the same size.

stem3(...,'fill') specifies whether to color the interior of the circle
at the end of the stem.

stem3(...,LineSpec) specifies the line style, marker symbol, and
color for the stems. See LineSpec for more information.

h = stem3(...) returns handles to stemseries graphics objects.

2-3658



stem3

Examples Create a three-dimensional stem plot to visualize a function of two
variables.

X = linspace(0,1,10);
Y = X./2;
Z = sin(X) + cos(Y);
stem3(X,Y,Z,'fill')
view(-25,30)

See Also bar, plot, stairs, stem

“Discrete Data Plots” on page 1-99 for related functions

Stemseries Properties for descriptions of properties

Three-Dimensional Stem Plots for more examples

2-3659



Stemseries Properties

Purpose Define stemseries properties

Modifying
Properties

You can set and query graphics object properties using the set and get
commands or with the property editor (propertyeditor).

Note that you cannot define default properties for stemseries objects.

See Plot Objects for information on stemseries objects.

Stemseries
Property
Descriptions

This section provides a description of properties. Curly braces { } enclose
default values.

Annotation
hg.Annotation object Read Only

Control the display of stemseries objects in legends. The
Annotation property enables you to specify whether this
stemseries object is represented in a figure legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Once you have obtained the hg.LegendEntry object, you can set
its IconDisplayStyle property to control whether the stemseries
object is displayed in a figure legend:

IconDisplayStyle
Value

Purpose

on Include the stemseries object in a legend as
one entry, but not its children objects

off Do not include the stemseries or its children
in a legend (default)

children Include only the children of the stemseries
as separate entries in the legend

2-3660



Stemseries Properties

Setting the IconDisplayStyle Property

These commands set the IconDisplayStyle of a graphics object
with handle hobj to children, which causes each child object
to have an entry in the legend:

hAnnotation = get(hobj,'Annotation');
hLegendEntry = get(hAnnotation,'LegendInformation');
set(hLegendEntry,'IconDisplayStyle','children')

Using the IconDisplayStyle Property

See “Controlling Legends” for more information and examples.

BaseLine
handle of baseline

Handle of the baseline object. This property contains the handle of
the line object used as the baseline. You can set the properties of
this line using its handle. For example, the following statements
create a stem plot, obtain the handle of the baseline from the
stemseries object, and then set line properties that make the
baseline a dashed, red line.

stem_handle = stem(randn(10,1));
baseline_handle = get(stem_handle,'BaseLine');
set(baseline_handle,'LineStyle','--','Color','red')

BaseValue
y-axis value

Y-axis value where baseline is drawn. You can specify the value
along the y-axis at which the MATLAB software draws the
baseline.

BeingDeleted
on | {off} Read Only

2-3661



Stemseries Properties

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in
the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions
that act on a number of different objects. These functions might
not need to perform actions on objects if the objects are going to
be deleted, and therefore, can check the object’s BeingDeleted
property before acting.

BusyAction
cancel | {queue}

Callback routine interruption. The BusyAction property enables
you to control how MATLAB handles events that potentially
interrupt executing callbacks. If there is a callback function
executing, callbacks invoked subsequently always attempt to
interrupt it.

If the Interruptible property of the object whose callback is
executing is set to on (the default), then interruption occurs
at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the
object owning the executing callback) determines how MATLAB
handles the event. The choices are

• cancel— Discard the event that attempted to execute a second
callback routine.

• queue — Queue the event that attempted to execute a second
callback routine until the current callback finishes.

ButtonDownFcn
string or function handle

2-3662



Stemseries Properties

Button press callback function. A callback that executes whenever
you press a mouse button while the pointer is over this object, but
not over another graphics object. See the HitTestArea property
for information about selecting objects of this type.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

This property can be

• A string that is a valid MATLAB expression

• The name of a MATLAB file

• A function handle

Set this property to a function handle that references the callback.
The expressions execute in the MATLAB workspace.

See “Function Handle Callbacks” for information on how to use
function handles to define the callbacks.

Children
array of graphics object handles

Children of the stemseries object. An array containing the handles
of all line objects parented to the stemseries object (whether
visible or not).

If a child object’s HandleVisibility property is callback or off,
its handle does not show up in this object’s Children property.
If you want the handle in the Children property, set the root
ShowHiddenHandles property to on. For example:

set(0,'ShowHiddenHandles','on')

Clipping
{on} | off

2-3663



Stemseries Properties

Clipping mode. MATLAB clips graphs to the axes plot box by
default. If you set Clipping to off, portions of graphs can be
displayed outside the axes plot box. This can occur if you create a
plot object, set hold to on, freeze axis scaling (axis manual), and
then create a larger plot object.

Color
ColorSpec

Color of stem lines. A three-element RGB vector or one of the
MATLAB predefined names, specifying the line color. See the
ColorSpec reference page for more information on specifying
color.

For example, the following statement would produce a stem plot
with red lines.

h = stem(randn(10,1),'Color','r');

CreateFcn
string or function handle

Callback routine executed during object creation. This property
defines a callback that executes when MATLAB creates an object.
You must specify the callback during the creation of the object.
For example,

graphicfcn(y,'CreateFcn',@CallbackFcn)

where @CallbackFcn is a function handle that references the
callback function and graphicfcn is the plotting function which
creates this object.

MATLAB executes this routine after setting all other object
properties. Setting this property on an existing object has no
effect.

2-3664



Stemseries Properties

The handle of the object whose CreateFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

DeleteFcn
string or function handle

Callback executed during object deletion. A callback that executes
when this object is deleted (e.g., this might happen when you issue
a delete command on the object, its parent axes, or the figure
containing it). MATLAB executes the callback before destroying
the object’s properties so the callback routine can query these
values.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
can be queried using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

See the BeingDeleted property for related information.

DisplayName
string (default is empty string)

String used by legend for this stemseries object. The legend
function uses the string defined by the DisplayName property to
label this stemseries object in the legend.

• If you specify string arguments with the legend function,
DisplayName is set to this stemseries object’s corresponding
string and that string is used for the legend.

• If DisplayName is empty, legend creates a string of the form,
['data' n], where n is the number assigned to the object

2-3665



Stemseries Properties

based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

• If you edit the string directly in an existing legend, DisplayName
is set to the edited string.

• If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

• To add programmatically a legend that uses the DisplayName
string, call legend with the toggle or show option.

See “Controlling Legends” for more examples.

EraseMode
{normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses
to draw and erase objects and their children. Alternative erase
modes are useful for creating animated sequences, where control
of the way individual objects are redrawn is necessary to improve
performance and obtain the desired effect.

• normal— Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all
objects are rendered correctly. This mode produces the most
accurate picture, but is the slowest. The other modes are faster,
but do not perform a complete redraw and are therefore less
accurate.

• none— Do not erase objects when they are moved or destroyed.
While the objects are still visible on the screen after erasing
with EraseMode none, you cannot print these objects because
MATLAB stores no information about their former locations.

• xor — Draw and erase the object by performing an exclusive
OR (XOR) with each pixel index of the screen behind it. Erasing
the object does not damage the color of the objects behind it.
However, the color of the erased object depends on the color of

2-3666



Stemseries Properties

the screen behind it and it is correctly colored only when it is
over the axes background color (or the figure background color
if the axes Color property is set to none). That is, it isn’t erased
correctly if there are objects behind it.

• background — Erase the graphics objects by redrawing them
in the axes background color, (or the figure background color
if the axes Color property is set to none). This damages other
graphics objects that are behind the erased object, but the
erased object is always properly colored.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB can mathematically combine
layers of colors (e.g., performing an XOR on a pixel color with that
of the pixel behind it) and ignore three-dimensional sorting to
obtain greater rendering speed. However, these techniques are
not applied to the printed output.

Set the axes background color with the axes Color property. Set
the figure background color with the figure Color property.

You can use the MATLAB getframe command or other screen
capture applications to create an image of a figure containing
nonnormal mode objects.

HandleVisibility
{on} | callback | off

Control access to object’s handle by command-line users and GUIs.
This property determines when an object’s handle is visible in
its parent’s list of children. HandleVisibility is useful for
preventing command-line users from accidentally accessing
objects that you need to protect for some reason.

2-3667



Stemseries Properties

• on—Handles are always visible when HandleVisibility is on.

• callback — Setting HandleVisibility to callback causes
handles to be visible from within callback routines or functions
invoked by callback routines, but not from within functions
invoked from the command line. This provides a means to
protect GUIs from command-line users, while allowing callback
routines to have access to object handles.

• off — Setting HandleVisibility to off makes handles
invisible at all times. This might be necessary when a callback
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string) and so temporarily
hides its own handles during the execution of that function.

Functions Affected by Handle Visibility

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

Properties Affected by Handle Visibility

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

Overriding Handle Visibility

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties). See also findall.

2-3668



Stemseries Properties

Handle Validity

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties and pass it to any
function that operates on handles.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

HitTest
{on} | off

Selectable by mouse click. HitTest determines whether this object
can become the current object (as returned by the gco command
and the figure CurrentObject property) as a result of a mouse
click on the objects that compose the area graph. If HitTest
is off, clicking this object selects the object below it (which is
usually the axes containing it).

HitTestArea
on | {off}

Select the object by clicking lines or area of extent. This property
enables you to select plot objects in two ways:

• Select by clicking lines or markers (default).

• Select by clicking anywhere in the extent of the plot.

When HitTestArea is off, you must click the object’s lines or
markers (excluding the baseline, if any) to select the object. When
HitTestArea is on, you can select this object by clicking anywhere
within the extent of the plot (i.e., anywhere within a rectangle
that encloses it).

2-3669



Stemseries Properties

Interruptible
{on} | off

Callback routine interruption mode. The Interruptible property
controls whether an object’s callback can be interrupted by
callbacks invoked subsequently.

Only callbacks defined for the ButtonDownFcn property are
affected by the Interruptible property. MATLAB checks for
events that can interrupt a callback only when it encounters a
drawnow, figure, getframe, or pause command in the routine.
See the BusyAction property for related information.

Setting Interruptible to on allows any graphics object’s callback
to interrupt callback routines originating from a bar property.
Note that MATLAB does not save the state of variables or the
display (e.g., the handle returned by the gca or gcf command)
when an interruption occurs.

LineStyle
{-} | -- | : | -. | none

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

Specifier
String Line Style

- Solid line (default)

-- Dashed line

: Dotted line

-. Dash-dot line

none No line

2-3670



Stemseries Properties

You can use LineStyle none when you want to place a marker
at each point but do not want the points connected with a line
(see the Marker property).

LineWidth
scalar

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = 1/72 inch). The default LineWidth is 0.5
points.

Marker
character (see table)

Marker symbol. The Marker property specifies the type of markers
that are displayed at plot vertices. You can set values for the
Marker property independently from the LineStyle property.
Supported markers include those shown in the following table.

Marker Specifier Description

+ Plus sign

o Circle

* Asterisk

. Point

x Cross

s Square

d Diamond

^ Upward-pointing triangle

v Downward-pointing triangle

> Right-pointing triangle

< Left-pointing triangle

p Five-pointed star (pentagram)

2-3671



Stemseries Properties

Marker Specifier Description

h Six-pointed star (hexagram)

none No marker (default)

MarkerEdgeColor
ColorSpec | none | {auto}

Marker edge color. The color of the marker or the edge color for
filled markers (circle, square, diamond, pentagram, hexagram,
and the four triangles). ColorSpec defines the color to use. none
specifies no color, which makes nonfilled markers invisible. auto
sets MarkerEdgeColor to the same color as the Color property.

MarkerFaceColor
ColorSpec | {none} | auto

Marker face color. The fill color for markers that are closed shapes
(circle, square, diamond, pentagram, hexagram, and the four
triangles). ColorSpec defines the color to use. none makes the
interior of the marker transparent, allowing the background to
show through. auto sets the fill color to the axes color, or to the
figure color if the axes Color property is set to none (which is the
factory default for axes objects).

MarkerSize
size in points

Marker size. A scalar specifying the size of the marker in points.
The default value for MarkerSize is 6 points (1 point = 1/72 inch).
Note that MATLAB draws the point marker (specified by the '.'
symbol) at one-third the specified size.

Parent
handle of parent axes, hggroup, or hgtransform

2-3672



Stemseries Properties

Parent of this object. This property contains the handle of the
object’s parent. The parent is normally the axes, hggroup, or
hgtransform object that contains the object.

See “Objects That Can Contain Other Objects” for more
information on parenting graphics objects.

Selected
on | {off}

Is object selected? When you set this property to on, MATLAB
displays selection "handles" at the corners and midpoints if the
SelectionHighlight property is also on (the default). You
can, for example, define the ButtonDownFcn callback to set this
property to on, thereby indicating that this particular object
is selected. This property is also set to on when an object is
manually selected in plot edit mode.

SelectionHighlight
{on} | off

Objects are highlighted when selected. When the Selected
property is on, MATLAB indicates the selected state by
drawing four edge handles and four corner handles. When
SelectionHighlight is off, MATLAB does not draw the handles
except when in plot edit mode and objects are selected manually.

Tag
string

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This is
particularly useful when you are constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callbacks.

For example, you might create a stemseries object and set the
Tag property:

2-3673



Stemseries Properties

t = stem(Y,'Tag','stem1')

When you want to access the stemseries object, you can use
findobj to find the stemseries object’s handle. The following
statement changes the MarkerFaceColor property of the object
whose Tag is stem1.

set(findobj('Tag','stem1'),'MarkerFaceColor','red')

Type
string (read only)

Type of graphics object. This property contains a string that
identifies the class of the graphics object. For stemseries objects,
Type is 'hggroup'. The following statement finds all the hggroup
objects in the current axes object.

t = findobj(gca,'Type','hggroup');

UIContextMenu
handle of a uicontextmenu object

Associate a context menu with this object. Assign this property
the handle of a uicontextmenu object created in the object’s
parent figure. Use the uicontextmenu function to create the
context menu. MATLAB displays the context menu whenever
you right-click over the object.

UserData
array

User-specified data. This property can be any data you want to
associate with this object (including cell arrays and structures).
The object does not set values for this property, but you can access
it using the set and get functions.

Visible
{on} | off

2-3674



Stemseries Properties

Visibility of this object and its children. By default, a new object’s
visibility is on. This means all children of the object are visible
unless the child object’s Visible property is set to off. Setting an
object’s Visible property to off prevents the object from being
displayed. However, the object still exists and you can set and
query its properties.

XData
array

X-axis location of stems. The stem function draws an individual
stem at each x-axis location in the XData array. XData can
be either a matrix equal in size to YData or a vector equal in
length to the number of rows in YData. That is, length(XData)
== size(YData,1). XData does not need to be monotonically
increasing.

If you do not specify XData (i.e., the input argument x), the stem
function uses the indices of YData to create the stem plot. See the
XDataMode property for related information.

XDataMode
{auto} | manual

Use automatic or user-specified x-axis values. If you specify
XData (by setting the XData property or specifying the x input
argument), MATLAB sets this property to manual and uses the
specified values to label the x-axis.

If you set XDataMode to auto after having specified XData,
MATLAB resets the x-axis ticks to 1:size(YData,1) or to the
column indices of the ZData, overwriting any previous values for
XData.

XDataSource
string (MATLAB variable)

2-3675



Stemseries Properties

Link XData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
XData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change XData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

YData
scalar, vector, or matrix

Stem plot data. YData contains the data plotted as stems. Each
value in YData is represented by a marker in the stem plot. If
YData is a matrix, MATLAB creates a series of stems for each
column in the matrix.

The input argument y in the stem function calling syntax assigns
values to YData.

YDataSource
string (MATLAB variable)

2-3676



Stemseries Properties

Link YData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
YData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change YData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

ZData
vector of coordinates

Z-coordinates. A data defining the stems for 3-D stem graphs.
XData and YData (if specified) must be the same size.

ZDataSource
string (MATLAB variable)

Link ZData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
ZData.

2-3677



Stemseries Properties

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change ZData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

2-3678



stop

Purpose Stop timer(s)

Syntax stop(obj)

Description stop(obj) stops the timer, represented by the timer object, obj. If obj
is an array of timer objects, the stop function stops them all. Use the
timer function to create a timer object.

The stop function sets the Running property of the timer object, obj,
to 'off', halts further TimerFcn callbacks, and executes the StopFcn
callback.

See Also timer, start

2-3679



stopasync

Purpose Stop asynchronous read and write operations

Syntax stopasync(obj)

Description stopasync(obj) stops any asynchronous read or write operation that is
in progress for the serial port object, obj.

Remarks You can write data asynchronously using the fprintf or fwrite
function. You can read data asynchronously using the readasync
function, or by configuring the ReadAsyncMode property to
continuous. In-progress asynchronous operations are indicated by the
TransferStatus property.

If obj is an array of serial port objects and one of the objects cannot be
stopped, the remaining objects in the array are stopped and a warning
is returned. After an object stops:

• Its TransferStatus property is configured to idle.

• Its ReadAsyncMode property is configured to manual.

• The data in its output buffer is flushed.

Data in the input buffer is not flushed. You can return this data to the
MATLAB workspace using any of the synchronous read functions. If
you execute the readasync function, or configure the ReadAsyncMode
property to continuous, then the new data is appended to the existing
data in the input buffer.

See Also Functions

fprintf, fwrite, readasync

Properties

ReadAsyncMode, TransferStatus

2-3680



str2double

Purpose Convert string to double-precision value

Syntax X = str2double('str')
X = str2double(C)

Description X = str2double('str') converts the string str, which should be an
ASCII character representation of a real or complex scalar value, to
the MATLAB double-precision representation. The string can contain
digits, a comma (thousands separator), a decimal point, a leading + or -
sign, an e preceding a power of 10 scale factor, and an i for a complex
unit.

If str does not represent a valid scalar value, str2double returns NaN.

X = str2double(C) converts the strings in the cell array of strings C to
double precision. The matrix X returned will be the same size as C.

Examples Here are some valid str2double conversions.

str2double('123.45e7')
str2double('123 + 45i')
str2double('3.14159')
str2double('2.7i - 3.14')
str2double({'2.71' '3.1415'})
str2double('1,200.34')

See Also char, hex2num, num2str, str2num

2-3681



str2func

Purpose Construct function handle from function name string

Syntax str2func('str')

Description str2func('str') constructs a function handle fhandle for the function
named in the string 'str'. The contents of str can be the name of a
file that defines a MATLAB function, or the name of an anonymous
function.

You can create a function handle fh using any of the following four
methods:

• Create a handle to a named function:

fh = @functionName;
fh = str2func(functionName);

• Create a handle to an anonymous function:

fh = @(x)functionDef(x);
fh = str2func('@(x)functionDef(x)');

You can create an array of function handles from strings by creating
the handles individually with str2func, and then storing these handles
in a cell array.

Remarks Nested functions are not accessible to str2func. To construct a
function handle for a nested function, you must use the function handle
constructor, @.

Any variables and their values originally stored in a function handle
when it was created are lost if you convert the function handle to a
string and back again using the func2str and str2func functions.

Examples Example 1

To convert the string, 'sin', into a handle for that function, type

fh = str2func('sin')

2-3682



str2func

fh =
@sin

Example 2

If you pass a function name string in a variable, the function that
receives the variable can convert the function name to a function handle
using str2func. The example below passes the variable, funcname,
to function makeHandle, which then creates a function handle. Here
is the function:

function fh = makeHandle(funcname)
fh = str2func(funcname);

This is the code that calls makeHandle to construct the function handle:

makeHandle('sin')
ans =

@sin

Example 3

To call str2func on a cell array of strings, use the cellfun function.
This returns a cell array of function handles:

fh_array = cellfun(@str2func, {'sin' 'cos' 'tan'}, ...
'UniformOutput', false);

fh_array{2}(5)
ans =

0.2837

Example 4

In the following example, the myminbnd function expects to receive
either a function handle or string in the first argument. If you pass a
string, myminbnd constructs a function handle from it using str2func,
and then uses that handle in a call to fminbnd:

function myminbnd(fhandle, lower, upper)
if ischar(fhandle)

2-3683



str2func

disp 'converting function string to function handle ...'
fhandle = str2func(fhandle);

end
fminbnd(fhandle, lower, upper)

Whether you call myminbnd with a function handle or function name
string, the function can handle the argument appropriately:

myminbnd('humps', 0.3, 1)
converting function string to function handle ...
ans =

0.6370

Example 5

The dirByType function shown here creates an anonymous function
called dirCheck. What the anonymous function does depends upon the
value of the dirType argument passed in to the primary function. The
example demonstrates one possible use of str2func with anonymous
functions:

function dirByType(dirType)
switch(dirType)

case 'class', leadchar = '@';
case 'package', leadchar = '+';
otherwise disp('ERROR: Unrecognized type'), return;

end

dirfile = @(fs)isdir(fs.name);
dirCheckStr = ['@(fs)strcmp(fs.name(1,1),''', leadchar, ''')'];
dirCheckFun = str2func(dirCheckStr);
s = dir; filecount = length(s);

for k=1:filecount
fstruct = s(k);
if dirfile(fstruct) && dirCheckFun(fstruct)

fprintf('%s folder: %s\n', dirType, fstruct.name)
end

end

2-3684



str2func

Generate a list of class and package folders:

dirByType('class')
class folder: @Point
class folder: @asset
class folder: @bond

dirByType('package')
package folder: +containers
package folder: +event
package folder: +mypkg

See Also function_handle, func2str, functions

2-3685



str2mat

Purpose Form blank-padded character matrix from strings

Note str2mat will be removed in a future version. Use char instead.

Syntax S = str2mat(T1, T2, T3, ...)

Description S = str2mat(T1, T2, T3, ...) forms the matrix S containing the
text strings T1, T2, T3, ... as rows. The function automatically
pads each string with blanks in order to form a valid matrix. Each text
parameter, Ti, can itself be a string matrix. This allows the creation of
arbitrarily large string matrices. Empty strings are significant.

Remarks str2mat differs from strvcat in that empty strings produce blank rows
in the output. In strvcat, empty strings are ignored.

Examples x = str2mat('36842', '39751', '38453', '90307');

whos x
Name Size Bytes Class

x 4x5 40 char array

x(2,3)

ans =

7

See Also char

2-3686



str2num

Purpose Convert string to number

Syntax x = str2num('str')
[x, status] = str2num('str')

Description
Note str2num uses the eval function to convert the input argument.
Side effects can occur if the string contains calls to functions. Using
str2double can avoid some of these side effects.

x = str2num('str') converts the string str, which is an ASCII
character representation of a numeric value, to numeric representation.
str2num also converts string matrices to numeric matrices. If the input
string does not represent a valid number or matrix, str2num(str)
returns the empty matrix in x.

The input string can contain one or more numbers separated by spaces,
commas, or semicolons, such as ’5’, ’10,11,12’, or ’5,10;15,20’. In
addition to numerical values and delimiters, the input string can also
include a decimal point, leading + or - signs, the letter e or d preceding
a power of 10 scale factor, or the letter i or j indicating a complex or
imaginary number.

The following table shows several examples of valid inputs to str2num:

String Input Numeric
Output

Output Class

'500' 500 1-by-1 scalar double

’500 250 125 67’ 500, 250, 125,
67

1-by-4 row vector of double

’500; 250; 125;
62.5’

500.0000
250.0000
125.0000
62.5000

4-by-1 column vector of
double

2-3687



str2num

String Input Numeric
Output

Output Class

’1 23 6 21; 53:56’ 1 23 6 21
53 54 55 56

2-by-5 matrix of double

’12e-3 5.9e-3’ 0.0120 0.0059 vector of double

’uint16(500)’ 500 16–bit unsigned integer

If the input string does not represent a valid number or matrix,
str2num(str) returns the empty matrix in x.

[x, status] = str2num('str') returns the status of the conversion
in logical status, where status equals logical 1 (true) if the conversion
succeeds, and logical 0 (false) otherwise.

Space characters can be significant. For instance, str2num('1+2i')
and str2num('1 + 2i') produce x = 1+2i, while str2num('1 +2i')
produces x = [1 2i]. You can avoid these problems by using the
str2double function.

Examples Input a character string that contains a single number. The output is
a scalar double:

A = str2num('500')
A =

500

class(A)
ans =

double

Repeat this operation, but this time using an unsigned 16–bit integer:

A = str2num('uint16(500)')
A =

500

class(A)

2-3688



str2num

ans =
uint16

Try three different ways of specifying a row vector. Each returns the
same answer:

str2num('2 4 6 8') % Separate with spaces.
ans =

2 4 6 8

str2num('2,4,6,8') % Separate with commas.
ans =

2 4 6 8

str2num('[2 4 6 8]') % Enclose in brackets.
ans =

2 4 6 8

Note that the first two of these commands do not need the MATLAB
square bracket operator to create a matrix. The str2num function
inserts the brackets for you if they are needed.

Use a column vector this time:

str2num('2; 4; 6; 8')
ans =

2
4
6
8

And now a 2-by-2 matrix:

str2num('2 4; 6 8')
ans =

2 4
6 8

2-3689



str2num

See Also num2str, str2double, hex2num, sscanf, sparse, char, special
characters

2-3690



strcat

Purpose Concatenate strings horizontally

Syntax combinedStr = strcat(s1, s2, ..., sN)

Description combinedStr = strcat(s1, s2, ..., sN) horizontally concatenates
strings in arrays s1, s2, ..., sN. Inputs can be combinations of single
strings, strings in scalar cells, character arrays with the same number
of rows, and same-sized cell arrays of strings. If any input is a cell
array, combinedStr is a cell array of strings. Otherwise, combinedStr
is a character array.

Tips • For character array inputs, strcat removes trailing ASCII
white-space characters: space, tab, vertical tab, newline,
carriage return, and form-feed. To preserve trailing spaces when
concatenating character arrays, use horizontal array concatenation,
[s1, s2, ..., sN]. See the final example in the following section.

• For cell array inputs, strcat does not remove trailing white space.

• When combining nonscalar cell arrays and multi-row character
arrays, cell arrays must be column vectors with the same number
of rows as the character arrays.

Examples Concatenate two cell arrays:

a = {'abcde', 'fghi'};
b = {'jkl', 'mn'};

ab = strcat(a, b)

MATLAB returns

ab =
'abcdejkl' 'fghimn'

Combine cell arrays a and b from the previous example with a scalar
cell:

2-3691



strcat

c = {'Q'};
abc = strcat(a, b, c)

MATLAB returns

abc =
'abcdejklQ' 'fghimnQ'

Compare the use of strcat and horizontal array concatenation with
strings that contain trailing spaces:

a = 'hello ';
b = 'goodbye';

using_strcat = strcat(a, b)
using_arrayop = [a, b] % Equivalent to horzcat(a, b)

MATLAB returns

using_strcat =
hellogoodbye

using_arrayop =
hello goodbye

See Also cat | vertcat | horzcat | cellstr | special character

2-3692



strcmp, strcmpi

Purpose Compare strings

Syntax TF = strcmp('str1', 'str2')
TF = strcmp('str', C)
TF = strcmp(C1, C2)

Each of these syntaxes applies to both strcmp and strcmpi. The strcmp
function is case sensitive in matching strings, while strcmpi is not.

Description Although the following descriptions show only strcmp, they apply to
strcmpi as well. The two functions are the same except that strcmpi
compares strings without sensitivity to letter case:

TF = strcmp('str1', 'str2') compares the strings str1 and str2
and returns logical 1 (true) if they are identical, and returns logical
0 (false) otherwise. str1 and str2 can be character arrays of any
dimension, but strcmp does not return true unless the sizes of both
arrays are equal, and the contents of the two arrays are the same.

TF = strcmp('str', C) compares string str to the each element of
cell array C, where str is a character vector (or a 1-by-1 cell array) and
C is a cell array of strings. The function returns TF, a logical array that
is the same size as C and contains logical 1 (true) for those elements
of C that are a match, and logical 0 (false) for those elements that are
not. The order of the first two input arguments is not important.

TF = strcmp(C1, C2) compares each element of C1 to the same
element in C2, where C1 and C2 are equal-size cell arrays of strings.
Input C1 or C2 can also be a character array with the right number of
rows. The function returns TF, a logical array that is the same size as
C1 and C2, and contains logical 1 (true) for those elements of C1 and C2
that are a match, and logical 0 (false) for those elements that are not.

Remarks These functions are intended for comparison of character data. When
used to compare numeric data, they return logical 0.

Any leading and trailing blanks in either of the strings are explicitly
included in the comparison.

2-3693



strcmp, strcmpi

The value returned by strcmp and strcmpi is not the same as the C
language convention.

strcmp and strcmpi support international character sets.

Examples Example 1

Perform a simple comparison of two strings:

strcmp('Yes', 'No')
ans =

0
strcmp('Yes', 'Yes')
ans =

1

Example 2

Create 3 cell arrays of strings:

A = {'MATLAB','SIMULINK'; ...
'Toolboxes', 'The MathWorks'};

B = {'Handle Graphics', 'Real Time Workshop'; ...
'Toolboxes', 'The MathWorks'};

C = {'handle graphics', 'Signal Processing'; ...
' Toolboxes', 'The MATHWORKS'};

Compare cell arrays A and B with sensitivity to case:

strcmp(A, B)
ans =

0 0
1 1

Compare cell arrays B and C without sensitivity to case. Note that
'Toolboxes' doesn’t match because of the leading space characters in
C{2,1} that do not appear in B{2,1}:

2-3694



strcmp, strcmpi

strcmpi(B, C)
ans =

1 0
0 1

Example 3

Compare a string vector to a cell array of strings, a string vector to
a string array, and a string array to a cell array of strings. Start by
creating a cell array of strings (cellArr), a string array containing the
same strings plus space characters for padding s(strArr), and a string
vector containing one of the strings plus padding (strVec):

cellArr = { ...
'There are 10 kinds of people in the world,'; ...
'those who understand binary math,'; ...
'and those who don''t.'};

strArr = char(cellArr);
strVec = strArr(2,:)
strVec =

those who understand binary math,

Remove the space padding from the string vector and compare it to the
cell array. The MATLAB software compares the string with each row of
the cell array, finding a match on the second row:

strcmp(deblank(strVec), cellArr)
ans =

0
1
0

Compare the string vector with the string array. Unlike the case above,
MATLAB does not compare the string vector with each row of the string
array. It compares the entire contents of one against the entire contents
of the other:

strcmp(strVec, strArr)

2-3695



strcmp, strcmpi

ans =
0

Lastly, compare each row of the three-row string array against the
same rows of the cell array. MATLAB finds them all to be equivalent.
Note that in this case you do not have to remove the space padding
from the string array:

strcmp(strArr, cellArr)
ans =

1
1
1

See Also strncmp, strncmpi, strfind, regexp, regexpi, regexprep,
regexptranslate

2-3696



stream2

Purpose Compute 2-D streamline data

Syntax XY = stream2(x,y,u,v,startx,starty)
XY = stream2(u,v,startx,starty)
XY = stream2(...,options)

Description XY = stream2(x,y,u,v,startx,starty) computes streamlines from
vector data u and v. The arrays x and y define the coordinates for u and
v and must be monotonic and 2-D plaid (such as the data produced
by meshgrid). startx and starty define the starting positions of the
streamlines. The section "Specifying Starting Points for Stream Plots"
provides more information on defining starting points.

The returned value XY contains a cell array of vertex arrays.

XY = stream2(u,v,startx,starty) assumes the arrays x and y are
defined as [x,y] = meshgrid(1:n,1:m) where [m,n] = size(u).

XY = stream2(...,options) specifies the options used when creating
the streamlines. Define options as a one- or two-element vector
containing the step size or the step size and the maximum number
of vertices in a streamline:

[stepsize]

or

[stepsize, max_number_vertices]

If you do not specify a value, MATLAB software uses the default:

• Step size = 0.1 (one tenth of a cell)

• Maximum number of vertices = 10000

Use the streamline command to plot the data returned by stream2.

Examples This example draws 2-D streamlines from data representing air
currents over regions of North America.

2-3697



stream2

load wind

[sx,sy] = meshgrid(80,20:10:50);

streamline(stream2(x(:,:,5),y(:,:,5),u(:,:,5),v(:,:,5),sx,sy));

See Also coneplot, stream3, streamline

“Volume Visualization” on page 1-111 for related functions

Specifying Starting Points for Stream Plots for related information

2-3698



stream3

Purpose Compute 3-D streamline data

Syntax XYZ = stream3(X,Y,Z,U,V,W,startx,starty,startz)
XYZ = stream3(U,V,W,startx,starty,startz)
XYZ = stream3(...,options)

Description XYZ = stream3(X,Y,Z,U,V,W,startx,starty,startz) computes
streamlines from vector data U, V, W. The arrays X, Y, Z define the
coordinates for U, V, W and must be monotonic and 3-D plaid (such as the
data produced by meshgrid). startx, starty, and startz define the
starting positions of the streamlines. The section "Specifying Starting
Points for Stream Plots" provides more information on defining starting
points.

The returned value XYZ contains a cell array of vertex arrays.

XYZ = stream3(U,V,W,startx,starty,startz) assumes the arrays
X, Y, and Z are defined as [X,Y,Z] = meshgrid(1:N,1:M,1:P) where
[M,N,P] = size(U).

XYZ = stream3(...,options) specifies the options used when
creating the streamlines. Define options as a one- or two-element
vector containing the step size or the step size and the maximum
number of vertices in a streamline:

[stepsize]

or

[stepsize, max_number_vertices]

If you do not specify values, MATLAB software uses the default:

• Step size = 0.1 (one tenth of a cell)

• Maximum number of vertices = 10000

Use the streamline command to plot the data returned by stream3.

2-3699



stream3

Examples This example draws 3-D streamlines from data representing air
currents over regions of North America.

load wind
[sx sy sz] = meshgrid(80,20:10:50,0:5:15);
streamline(stream3(x,y,z,u,v,w,sx,sy,sz))
view(3)

See Also coneplot, stream2, streamline

“Volume Visualization” on page 1-111 for related functions

Specifying Starting Points for Stream Plots for related information

2-3700



streamline

Purpose Plot streamlines from 2-D or 3-D vector data

GUI
Alternatives

To graph selected variables, use the Plot Selector in the
Workspace Browser, or use the Figure Palette Plot Catalog. Manipulate
graphs in plot edit mode with the Property Editor. For details, see
Plotting Tools — Interactive Plotting in the MATLAB Graphics
documentation and Creating Graphics from the Workspace Browser in
the MATLAB Desktop Tools documentation.

Syntax streamline(X,Y,Z,U,V,W,startx,starty,startz)
streamline(U,V,W,startx,starty,startz)
streamline(XYZ)
streamline(X,Y,U,V,startx,starty)
streamline(U,V,startx,starty)
streamline(XY)
streamline(...,options)
streamline(axes_handle,...)
h = streamline(...)

Description streamline(X,Y,Z,U,V,W,startx,starty,startz) draws
streamlines from 3-D vector data U, V, W. The arrays X, Y, Z define the
coordinates for U, V, W and must be monotonic and 3-D plaid (such as
the data produced by meshgrid). startx, starty, startz define the
starting positions of the streamlines. The section Specifying Starting
Points for Stream Plots provides more information on defining starting
points.

streamline(U,V,W,startx,starty,startz) assumes the arrays X,
Y, and Z are defined as [X,Y,Z] = meshgrid(1:N,1:M,1:P), where
[M,N,P] = size(U).

streamline(XYZ) assumes XYZ is a precomputed cell array of vertex
arrays (as produced by stream3).

2-3701



streamline

streamline(X,Y,U,V,startx,starty) draws streamlines from 2-D
vector data U, V. The arrays X, Y define the coordinates for U, V and must
be monotonic and 2-D plaid (such as the data produced by meshgrid).
startx and starty define the starting positions of the streamlines.
The output argument h contains a vector of line handles, one handle
for each streamline.

streamline(U,V,startx,starty) assumes the arrays X and Y are
defined as [X,Y] = meshgrid(1:N,1:M), where [M,N] = size(U).

streamline(XY) assumes XY is a precomputed cell array of vertex
arrays (as produced by stream2).

streamline(...,options) specifies the options used when creating
the streamlines. Define options as a one- or two-element vector
containing the step size or the step size and the maximum number
of vertices in a streamline:

[stepsize]

or

[stepsize, max_number_vertices]

If you do not specify values, MATLAB uses the default:

• Step size = 0.1 (one tenth of a cell)

• Maximum number of vertices = 1000

streamline(axes_handle,...) plots into the axes object with the
handle axes_handle instead of the into current axes object (gca).

h = streamline(...) returns a vector of line handles, one handle
for each streamline.

Examples This example draws streamlines from data representing air currents
over a region of North America. Loading the wind data set creates the
variables x, y, z, u, v, and w in the MATLAB workspace.

2-3702



streamline

The plane of streamlines indicates the flow of air from the west to
the east (the x-direction) beginning at x = 80 (which is close to
the minimum value of the x coordinates). The y- and z-coordinate
starting points are multivalued and approximately span the range of
these coordinates. meshgrid generates the starting positions of the
streamlines.

load wind
[sx,sy,sz] = meshgrid(80,20:10:50,0:5:15);
h = streamline(x,y,z,u,v,w,sx,sy,sz);
set(h,'Color','red')
view(3)

See Also coneplot, stream2, stream3, streamparticles

“Volume Visualization” on page 1-111 for related functions

Specifying Starting Points for Stream Plots for related information

Stream Line Plots of Vector Data for another example

2-3703



streamparticles

Purpose Plot stream particles

GUI
Alternatives

To graph selected variables, use the Plot Selector in the
Workspace Browser, or use the Figure Palette Plot Catalog. Manipulate
graphs in plot edit mode with the Property Editor. For details, see
Plotting Tools — Interactive Plotting in the MATLAB Graphics
documentation and Creating Graphics from the Workspace Browser in
the MATLAB Desktop Tools documentation.

Syntax streamparticles(vertices)
streamparticles(vertices,n)
streamparticles(...,'PropertyName',PropertyValue,...)
streamparticles(line_handle,...)
h = streamparticles(...)

Description streamparticles(vertices) draws stream particles of a vector field.
Stream particles are usually represented by markers and can show the
position and velocity of a streamline. vertices is a cell array of 2-D or
3-D vertices (as if produced by stream2 or stream3).

streamparticles(vertices,n) uses n to determine how many stream
particles to draw. The ParticleAlignment property controls how n
is interpreted.

• If ParticleAlignment is set to off (the default) and n is greater
than 1, approximately n particles are drawn evenly spaced over the
streamline vertices.

If n is less than or equal to 1, n is interpreted as a fraction of the
original stream vertices; for example, if n is 0.2, approximately 20%
of the vertices are used.

n determines the upper bound for the number of particles drawn.
The actual number of particles can deviate from n by as much as a
factor of 2.

2-3704



streamparticles

• If ParticleAlignment is on, n determines the number of particles on
the streamline having the most vertices and sets the spacing on the
other streamlines to this value. The default value is n = 1.

streamparticles(...,'PropertyName',PropertyValue,...)
controls the stream particles using named properties and specified
values. Any unspecified properties have default values. MATLAB
ignores the case of property names.

Stream Particle Properties

Animate — Stream particle motion [nonnegative integer]

The number of times to animate the stream particles. The default is 0,
which does not animate. Inf animates until you enter Ctrl+C.

FrameRate— Animation frames per second [nonnegative integer]

This property specifies the number of frames per second for the
animation. Inf, the default, draws the animation as fast as possible.
Note that the speed of the animation might be limited by the speed of
the computer. In such cases, the value of FrameRate cannot necessarily
be achieved.

ParticleAlignment— Align particles with streamlines [ on | {off} ]

Set this property to on to draw particles at the beginning of each
streamline. This property controls how streamparticles interprets
the argument n (number of stream particles).

Stream particles are line objects. In addition to stream particle
properties, you can specify any line object property, such as Marker
and EraseMode. streamparticles sets the following line properties
when called.

Line Property Value Set by streamparticles

EraseMode xor

LineStyle none

Marker o

2-3705



streamparticles

Line Property Value Set by streamparticles

MarkerEdgeColor none

MarkerFaceColor red

You can override any of these properties by specifying a property
name and value as arguments to streamparticles. For example, this
statement uses RGB values to set the MarkerFaceColor to medium
gray:

streamparticles(vertices,'MarkerFaceColor',[.5 .5 .5])

streamparticles(line_handle,...) uses the line object identified
by line_handle to draw the stream particles.

h = streamparticles(...) returns a vector of handles to the line
objects it creates.

Examples This example combines streamlines with stream particle animation.
The interpstreamspeed function determines the vertices along the
streamlines where stream particles will be drawn during the animation,
thereby controlling the speed of the animation. Setting the axes
DrawMode property to fast provides faster rendering.

load wind

[sx sy sz] = meshgrid(80,20:1:55,5);

verts = stream3(x,y,z,u,v,w,sx,sy,sz);

sl = streamline(verts);

iverts = interpstreamspeed(x,y,z,u,v,w,verts,.025);

axis tight; view(30,30); daspect([1 1 .125])

camproj perspective; camva(8)

set(gca,'DrawMode','fast')

box on

streamparticles(iverts,35,'animate',10,'ParticleAlignment','on')

The following picture is a static view of the animation.

2-3706



streamparticles

This example uses the streamlines in the z = 5 plane to animate the
flow along these lines with streamparticles.

load wind
daspect([1 1 1]); view(2)
[verts averts] = streamslice(x,y,z,u,v,w,[],[],[5]);
sl = streamline([verts averts]);
axis tight off;
set(sl,'Visible','off')
iverts = interpstreamspeed(x,y,z,u,v,w,verts,.05);
set(gca,'DrawMode','fast','Position',[0 0 1 1],'ZLim',[4.9 5.1])
set(gcf,'Color','black')
streamparticles(iverts, 200, ...

'Animate',100,'FrameRate',40, ...
'MarkerSize',10,'MarkerFaceColor','yellow')

See Also interpstreamspeed, stream3, streamline

“Volume Visualization” on page 1-111 for related functions

Creating Stream Particle Animations for more details

Specifying Starting Points for Stream Plots for related information

2-3707



streamribbon

Purpose 3-D stream ribbon plot from vector volume data

GUI
Alternatives

To graph selected variables, use the Plot Selector in the
Workspace Browser, or use the Figure Palette Plot Catalog. Manipulate
graphs in plot edit mode with the Property Editor. For details, see
Plotting Tools — Interactive Plotting in the MATLAB Graphics
documentation and Creating Graphics from the Workspace Browser in
the MATLAB Desktop Tools documentation.

Syntax streamribbon(X,Y,Z,U,V,W,startx,starty,startz)
streamribbon(U,V,W,startx,starty,startz)
streamribbon(vertices,X,Y,Z,cav,speed)
streamribbon(vertices,cav,speed)
streamribbon(vertices,twistangle)
streamribbon(...,width)
streamribbon(axes_handle,...)
h = streamribbon(...)

Description streamribbon(X,Y,Z,U,V,W,startx,starty,startz) draws stream
ribbons from vector volume data U, V, W. The arrays X, Y, Z define the
coordinates for U, V, W and must be monotonic and 3-D plaid (as if
produced by meshgrid). startx, starty, and startz define the starting
positions of the stream ribbons at the center of the ribbons. The section
Specifying Starting Points for Stream Plots provides more information
on defining starting points.

The twist of the ribbons is proportional to the curl of the vector field.
The width of the ribbons is calculated automatically.

streamribbon(U,V,W,startx,starty,startz) assumes X, Y, and Z
are determined by the expression

[X,Y,Z] = meshgrid(1:n,1:m,1:p)

2-3708



streamribbon

where [m,n,p] = size(U).

streamribbon(vertices,X,Y,Z,cav,speed) assumes precomputed
streamline vertices, curl angular velocity, and flow speed. vertices is a
cell array of streamline vertices (as produced by stream3). X, Y, Z, cav,
and speed are 3-D arrays.

streamribbon(vertices,cav,speed) assumes X, Y, and Z are
determined by the expression

[X,Y,Z] = meshgrid(1:n,1:m,1:p)

where [m,n,p] = size(cav).

streamribbon(vertices,twistangle) uses the cell array of vectors
twistangle for the twist of the ribbons (in radians). The size of each
corresponding element of vertices and twistangle must be equal.

streamribbon(...,width) sets the width of the ribbons to width.

streamribbon(axes_handle,...) plots into the axes object with the
handle axes_handle instead of into the current axes object (gca).

h = streamribbon(...) returns a vector of handles (one per start
point) to surface objects.

Examples This example uses stream ribbons to indicate the flow in the wind
data set. Inputs include the coordinates, vector field components, and
starting location for the stream ribbons.

load wind
[sx sy sz] = meshgrid(80,20:10:50,0:5:15);
streamribbon(x,y,z,u,v,w,sx,sy,sz);
% Define viewing and lighting
axis tight
shading interp;
view(3);
camlight; lighting gouraud

2-3709



streamribbon

This example uses precalculated vertex data (stream3), curl average

velocity (curl), and speed . Using precalculated data
enables you to use values other than those calculated from the single
data source. In this case, the speed is reduced by a factor of 10 compared
to the previous example.

load wind

2-3710



streamribbon

[sx sy sz] = meshgrid(80,20:10:50,0:5:15);
verts = stream3(x,y,z,u,v,w,sx,sy,sz);
cav = curl(x,y,z,u,v,w);
spd = sqrt(u.^2 + v.^2 + w.^2).*.1;
streamribbon(verts,x,y,z,cav,spd);
% Define viewing and lighting
axis tight
shading interp
view(3)
camlight; lighting gouraud

2-3711



streamribbon

This example specifies a twist angle for the stream ribbon.

t = 0:.15:15;
verts = {[cos(t)' sin(t)' (t/3)']};
twistangle = {cos(t)'};
streamribbon(verts,twistangle);
% Define viewing and lighting
axis tight

2-3712



streamribbon

shading interp;
view(3);
camlight; lighting gouraud

This example combines cone plots (coneplot) and stream ribbon plots
in one graph.

% Define 3-D arrays x, y, z, u, v, w

2-3713



streamribbon

xmin = -7; xmax = 7;
ymin = -7; ymax = 7;
zmin = -7; zmax = 7;
x = linspace(xmin,xmax,30);
y = linspace(ymin,ymax,20);
z = linspace(zmin,zmax,20);
[x y z] = meshgrid(x,y,z);
u = y; v = -x; w = 0*x+1;
[cx cy cz] = meshgrid(linspace(xmin,xmax,30),...
linspace(ymin,ymax,30),[-3 4]);

h = coneplot(x,y,z,u,v,w,cx,cy,cz,'quiver');
set(h,'color','k');
% Plot two sets of streamribbons
[sx sy sz] = meshgrid([-1 0 1],[-1 0 1],-6);
streamribbon(x,y,z,u,v,w,sx,sy,sz);
[sx sy sz] = meshgrid([1:6],[0],-6);
streamribbon(x,y,z,u,v,w,sx,sy,sz);
% Define viewing and lighting
shading interp
view(-30,10) ; axis off tight
camproj perspective; camva(66); camlookat;
camdolly(0,0,.5,'fixtarget')
camlight

2-3714



streamribbon

See Also curl, streamtube, streamline, stream3

“Volume Visualization” on page 1-111 for related functions

Displaying Curl with Stream Ribbons for another example

Specifying Starting Points for Stream Plots for related information

2-3715



streamslice

Purpose Plot streamlines in slice planes

Syntax streamslice(X,Y,Z,U,V,W,startx,starty,startz)
streamslice(U,V,W,startx,starty,startz)
streamslice(X,Y,U,V)
streamslice(U,V)
streamslice(...,density)
streamslice(...,'arrowsmode')
streamslice(...,'method')
streamslice(axes_handle,...)
h = streamslice(...)
[vertices arrowvertices] = streamslice(...)

Description streamslice(X,Y,Z,U,V,W,startx,starty,startz) draws
well-spaced streamlines (with direction arrows) from vector data U, V,
W in axis aligned x-, y-, z-planes starting at the points in the vectors
startx, starty, startz. (The section Specifying Starting Points for
Stream Plots provides more information on defining starting points.)
The arrays X, Y, Z define the coordinates for U, V, W and must be
monotonic and 3-D plaid (as if produced by meshgrid). U, V, W must be
m-by-n-by-p volume arrays.

Do not assume that the flow is parallel to the slice plane. For example,
in a stream slice at a constant z, the z component of the vector field W is
ignored when you are calculating the streamlines for that plane.

Stream slices are useful for determining where to start streamlines,
stream tubes, and stream ribbons.

streamslice(U,V,W,startx,starty,startz) assumes X, Y, and Z
are determined by the expression

[X,Y,Z] = meshgrid(1:n,1:m,1:p)

where [m,n,p] = size(U).

2-3716



streamslice

streamslice(X,Y,U,V) draws well-spaced streamlines (with direction
arrows) from vector volume data U, V. The arrays X, Y define the
coordinates for U, V and must be monotonic and 2-D plaid (as if produced
by meshgrid).

streamslice(U,V) assumes X, Y, and Z are determined by the
expression

[X,Y,Z] = meshgrid(1:n,1:m,1:p)

where [m,n,p] = size(U).

streamslice(...,density) modifies the automatic spacing of the
streamlines. density must be greater than 0. The default value is 1;
higher values produce more streamlines on each plane. For example, 2
produces approximately twice as many streamlines, while 0.5 produces
approximately half as many.

streamslice(...,'arrowsmode') determines if direction arrows are
present or not. arrowmode can be

• arrows— Draw direction arrows on the streamlines (default).

• noarrows — Do not draw direction arrows.

streamslice(...,'method') specifies the interpolation method to
use. method can be

• linear — Linear interpolation (default)

• cubic — Cubic interpolation

• nearest — Nearest-neighbor interpolation

See interp3 for more information on interpolation methods.

streamslice(axes_handle,...) plots into the axes object with the
handle axes_handle instead of into the current axes object (gca).

h = streamslice(...) returns a vector of handles to the line objects
created.

2-3717



streamslice

[vertices arrowvertices] = streamslice(...) returns two cell
arrays of vertices for drawing the streamlines and the arrows. You
can pass these values to any of the streamline drawing functions
(streamline, streamribbon, streamtube).

Examples This example creates a stream slice in the wind data set at z = 5.

load wind
streamslice(x,y,z,u,v,w,[],[],[5])
axis tight

2-3718



streamslice

This example uses streamslice to calculate vertex data for the
streamlines and the direction arrows. This data is then used by
streamline to plot the lines and arrows. Slice planes illustrating with

color the wind speed are drawn by slice in the same
planes.

load wind

2-3719



streamslice

[verts averts] = streamslice(u,v,w,10,10,10);
streamline([verts averts])
spd = sqrt(u.^2 + v.^2 + w.^2);
hold on;
slice(spd,10,10,10);
colormap(hot)
shading interp
view(30,50); axis(volumebounds(spd));
camlight; material([.5 1 0])

2-3720



streamslice

This example superimposes contour lines on a surface and then uses
streamslice to draw lines that indicate the gradient of the surface.
interp2 is used to find the points for the lines that lie on the surface.

z = peaks;
surf(z)
shading interp
hold on

2-3721



streamslice

[c ch] = contour3(z,20); set(ch,'edgecolor','b')
[u v] = gradient(z);
h = streamslice(-u,-v);
set(h,'color','k')
for i=1:length(h);
zi = interp2(z,get(h(i),'xdata'),get(h(i),'ydata'));
set(h(i),'zdata',zi);

end
view(30,50); axis tight

2-3722



streamslice

GUI
Alternatives

To graph selected variables, use the Plot Selector in the
Workspace Browser, or use the Figure Palette Plot Catalog. Manipulate
graphs in plot edit mode with the Property Editor. For details, see
Plotting Tools — Interactive Plotting in the MATLAB Graphics
documentation and Creating Graphics from the Workspace Browser in
the MATLAB Desktop Tools documentation.

2-3723



streamslice

See Also contourslice, slice, streamline, volumebounds

“Volume Visualization” on page 1-111 for related functions

Specifying Starting Points for Stream Plots for related information

2-3724



streamtube

Purpose Create 3-D stream tube plot

Syntax streamtube(X,Y,Z,U,V,W,startx,starty,startz)
streamtube(U,V,W,startx,starty,startz)
streamtube(vertices,X,Y,Z,divergence)
streamtube(vertices,divergence)
streamtube(vertices,width)
streamtube(vertices)
streamtube(...,[scale n])
streamtube(axes_handle,...)
h = streamtube(...z)

Description streamtube(X,Y,Z,U,V,W,startx,starty,startz) draws stream
tubes from vector volume data U, V, W. The arrays X, Y, Z define the
coordinates for U, V, W and must be monotonic and 3-D plaid (as if
produced by meshgrid). startx, starty, and startz define the starting
positions of the streamlines at the center of the tubes. The section
Specifying Starting Points for Stream Plots provides more information
on defining starting points.

The width of the tubes is proportional to the normalized divergence of
the vector field.

streamtube(U,V,W,startx,starty,startz) assumes X, Y, and Z are
determined by the expression

[X,Y,Z] = meshgrid(1:n,1:m,1:p)

where [m,n,p] = size(U).

streamtube(vertices,X,Y,Z,divergence) assumes precomputed
streamline vertices and divergence. vertices is a cell array of
streamline vertices (as produced by stream3). X, Y, Z, and divergence
are 3-D arrays.

2-3725



streamtube

streamtube(vertices,divergence) assumes X, Y, and Z are
determined by the expression

[X,Y,Z] = meshgrid(1:n,1:m,1:p)

where [m,n,p] = size(divergence).

streamtube(vertices,width) specifies the width of the tubes in the
cell array of vectors, width. The size of each corresponding element
of vertices and width must be equal. width can also be a scalar,
specifying a single value for the width of all stream tubes.

streamtube(vertices) selects the width automatically.

streamtube(...,[scale n]) scales the width of the tubes by scale.
The default is scale = 1. When the stream tubes are created, using
start points or divergence, specifying scale = 0 suppresses automatic
scaling. n is the number of points along the circumference of the tube.
The default is n = 20.

streamtube(axes_handle,...) plots into the axes object with the
handle axes_handle instead of into the current axes object (gca).

h = streamtube(...z) returns a vector of handles (one per start
point) to surface objects used to draw the stream tubes.

Examples This example uses stream tubes to indicate the flow in the wind data
set. Inputs include the coordinates, vector field components, and
starting location for the stream tubes.

load wind
[sx sy sz] = meshgrid(80,20:10:50,0:5:15);
streamtube(x,y,z,u,v,w,sx,sy,sz);
% Define viewing and lighting
view(3)
axis tight
shading interp;
camlight; lighting gouraud

2-3726



streamtube

This example uses precalculated vertex data (stream3) and divergence
(divergence).

load wind
[sx sy sz] = meshgrid(80,20:10:50,0:5:15);
verts = stream3(x,y,z,u,v,w,sx,sy,sz);
div = divergence(x,y,z,u,v,w);
streamtube(verts,x,y,z,-div);

2-3727



streamtube

% Define viewing and lighting
view(3)
axis tight
shading interp
camlight; lighting gouraud

2-3728



streamtube

GUI
Alternatives

To graph selected variables, use the Plot Selector in the
Workspace Browser, or use the Figure Palette Plot Catalog. Manipulate
graphs in plot edit mode with the Property Editor. For details, see
Plotting Tools — Interactive Plotting in the MATLAB Graphics
documentation and Creating Graphics from the Workspace Browser in
the MATLAB Desktop Tools documentation.

See Also divergence, streamribbon, streamline, stream3

“Volume Visualization” on page 1-111 for related functions

Displaying Divergence with Stream Tubes for another example

Specifying Starting Points for Stream Plots for related information

2-3729



strfind

Purpose Find one string within another

Syntax k = strfind(str, pattern)
k = strfind(cellstr, pattern)

Description k = strfind(str, pattern) searches the string str for occurrences of
a shorter string, pattern, and returns the starting index of each such
occurrence in the double array k. If pattern is not found in str, or if
pattern is longer than str, then strfind returns the empty array [].

k = strfind(cellstr, pattern) searches each string in cell array
of strings cellstr for occurrences of a shorter string, pattern, and
returns the starting index of each such occurrence in cell array k. If
pattern is not found in a string or if pattern is longer then all strings
in the cell array, then strfind returns the empty array [], for that
string in the cell array.

Tips • The search performed by strfind is case sensitive.

• Any leading and trailing blanks in pattern or in the strings being
searched are explicitly included in the comparison.

• The strfind function does not find empty strings ('') within a string.

Examples Use strfind to find a two-letter pattern in string S:

S = 'Find the starting indices of the pattern string';
strfind(S, 'in')
ans =

2 15 19 45

strfind(S, 'In')
ans =

[]

strfind(S, ' ')
ans =

5 9 18 26 29 33 41

2-3730



strfind

Use strfind on a cell array of strings:

cstr = {'How much wood would a woodchuck chuck';
'if a woodchuck could chuck wood?'};

idx = strfind(cstr, 'wood');

idx{:,:}
ans =

10 23
ans =

6 28

This means that 'wood' occurs at indices 10 and 23 in the first string
and at indices 6 and 28 in the second.

See Also strtok, strcmp, strncmp, strcmpi, strncmpi, regexp, regexpi,
regexprep

2-3731



strings

Purpose String handling

Syntax S = 'Any Characters'
S = [S1 S2 ...]
C = {S1 S2 ...}
S = strcat(S1, S2, ...)
S = char(S1, S2, ...)
S = char(X)
X = double(S)

Description S = 'Any Characters' creates a character array, or string. The string
is actually a vector that contains the numeric codes for the characters
(codes 0 to 127 are ASCII). The length of S is the number of characters.
A quotation within the string is indicated by two quotation marks.

S = [S1 S2 ...] concatenates character arrays S1, S2, etc. into a new
character array, S.

C = {S1 S2 ...} creates a cell array of strings. Separate each row of
the cell array with a semicolon (;).

S = strcat(S1, S2, ...) horizontally concatenates S1, S2, etc.,
which can be character arrays or cell arrays of strings. If the inputs
are character arrays, strcat removes trailing white space. For more
information, see the strcat reference page.

S = char(S1, S2, ...) vertically concatenates character arrays S1,
S2, etc., padding each input string as needed so that each row contains
the same number of characters.

S = char(X) converts an array that contains positive integers
representing numeric codes into a MATLAB character array.

X = double(S) converts the string to its equivalent integer numeric
codes.

Tips • To convert between character arrays and cell arrays of strings, use
char and cellstr. Most string functions support both types.

2-3732



strings

• To determine whether S is a character array or cell array, call
ischar(S) or iscellstr(S).

Examples Create a simple string that includes a single quote.

msg = 'You''re right!'

msg =
You're right!

Create the string name using two methods of concatenation.

name = ['Thomas' ' R. ' 'Lee']
name = strcat('Thomas',' R.',' Lee')

Create a character array of strings.

C = char('Hello','Goodbye','Yes','No')

C =
Hello
Goodbye
Yes
No

Create a cell array of strings.

S = {'Hello' 'Goodbye'; 'Yes' 'No'}

S =
'Hello' 'Goodbye'
'Yes' 'No'

See Also char, isstrprop, cellstr, ischar, isletter, isspace, iscellstr,
sprintf, sscanf, text, input

2-3733



strjust

Purpose Justify character array

Syntax T = strjust(S)
T = strjust(S, 'right')
T = strjust(S, 'left')
T = strjust(S, 'center')

Description T = strjust(S) or T = strjust(S, 'right') returns a right-justified
version of the character array S.

T = strjust(S, 'left') returns a left-justified version of S.

T = strjust(S, 'center') returns a center-justified version of S.

See Also deblank, strtrim

2-3734



strmatch

Purpose Find possible matches for string

Syntax x = strmatch(str, strarray)
x = strmatch(str, strarray, 'exact')

Description x = strmatch(str, strarray) looks through the rows of the character
array or cell array of strings strarray to find strings that begin with
the text contained in str, and returns the matching row indices. If
strmatch does not find str in strarray, x is an empty matrix ([]).
Any trailing space characters in str or strarray are ignored when
matching. strmatch is fastest when strarray is a character array.

x = strmatch(str, strarray, 'exact') compares str with each
row of strarray, looking for an exact match of the entire strings.
Any trailing space characters in str or strarray are ignored when
matching.

Examples The statement

x = strmatch('max', char('max', 'minimax', 'maximum'))

returns x = [1; 3] since rows 1 and 3 begin with 'max'. The statement

x = strmatch('max', char('max', 'minimax', 'maximum'),'exact')

returns x = 1, since only row 1 matches 'max' exactly.

See Also strcmp, strcmpi, strncmp, strncmpi, strfind, regexp, regexpi,
regexprep

2-3735



strncmp, strncmpi

Purpose Compare first n characters of strings

Syntax TF = strncmp('str1', 'str2', n)
TF = strncmp('str', C, n)
TF = strncmp(C1, C2, n)

Each of these syntaxes applies to both strncmp and strncmpi. The
strncmp function is case sensitive in matching strings, while strncmpi
is not.

Description Although the following descriptions show only strncmp, they apply to
strncmpi as well. The two functions are the same except that strncmpi
compares strings without sensitivity to letter case:

TF = strncmp('str1', 'str2', n) compares the first n characters of
strings str1 and str2 and returns logical 1 (true) if they are identical,
and returns logical 0 (false) otherwise. str1 and str2 can be character
arrays of any dimension.

TF = strncmp('str', C, n) compares the first n characters of str to
the first n characters of each element of cell array C, where str is a
character vector (or a 1-by-1 cell array), and C is a cell array of strings.
The function returns TF, a logical array that is the same size as C and
contains logical 1 (true) for those elements of C that are a match, and
logical 0 (false) for those elements that are not. The order of the first
two input arguments is not important.

TF = strncmp(C1, C2, n) compares each element of C1 to the same
element in C2, where C1 and C2 are equal-size cell arrays of strings.
Input C1 or C2 can also be a character array with the right number of
rows. The function attempts to match only the first n characters of each
string. The function returns TF, a logical array that is the same size as
C1 and C2, and contains logical 1 (true) for those elements of C1 and C2
that are a match, and logical 0 (false) for those elements that are not.

Remarks These functions are intended for comparison of character data. When
used to compare numeric data, they return logical 0.

2-3736



strncmp, strncmpi

Any leading and trailing blanks in either of the strings are explicitly
included in the comparison.

The value returned by strncmp and strncmpi is not the same as the C
language convention.

strncmp and strncmpi support international character sets.

Examples Example 1

From a list of 10 MATLAB functions, find those that apply to using a
camera:

function_list = {'calendar' 'case' 'camdolly' 'circshift' ...

'caxis' 'camtarget' 'cast' 'camorbit' ...

'callib' 'cart2sph'};

strncmp(function_list, 'cam', 3)

ans =

0 0 1 0 0 1 0 1 0 0

function_list{strncmp(function_list, 'cam', 3)}

ans =

camdolly

ans =

camtarget

ans =

camorbit

Example 2

Create two 5-by-10 string arrays str1 and str2 that are equal except
for the element at row 4, column 3. Using linear indexing, this is
element 14:

str1 = ['AAAAAAAAAA'; 'BBBBBBBBBB'; 'CCCCCCCCCC'; ...
'DDDDDDDDDD'; 'EEEEEEEEEE']

str1 =
AAAAAAAAAA
BBBBBBBBBB

2-3737



strncmp, strncmpi

CCCCCCCCCC
DDDDDDDDDD
EEEEEEEEEE

str2 = str1;
str2(4,3) = '-'
str2 =

AAAAAAAAAA
BBBBBBBBBB
CCCCCCCCCC
DD-DDDDDDD
EEEEEEEEEE

Because MATLAB compares the arrays in linear order (that is, column
by column rather than row by row), strncmp finds only the first 13
elements to be the same:

str1 A B C D E A B C D E A B C D E
str2 A B C D E A B C D E A B C - E

|
element 14

strncmp(str1, str2, 13)
ans =

1

strncmp(str1, str2, 14)
ans =

0

See Also strcmp, strcmpi, strfind, regexp, regexpi, regexprep,
regexptranslate

2-3738



strread

Purpose Read formatted data from string

Note strread will be removed in a future version. Use textscan
instead.

Syntax A = strread('str')
[A, B, ...] = strread('str')
[A, B, ...] = strread('str', 'format')
[A, B, ...] = strread('str', 'format', N)
[A, B, ...] = strread('str', 'format', N, param, value, ...)

Description A = strread('str') reads numeric data from input string str into a
1-by-N vector A, where N equals the number of whitespace-separated
numbers in str. Use this form only with strings containing numeric
data. See “Example 1” on page 2-3743 below.

[A, B, ...] = strread('str') reads numeric data from the string
input str into scalar output variables A, B, and so on. The number
of output variables must equal the number of whitespace-separated
numbers in str. Use this form only with strings containing numeric
data. See “Example 2” on page 2-3744 below.

[A, B, ...] = strread('str', 'format') reads data from str
into variables A, B, and so on using the specified format. The number
of output variables A, B, etc. must be equal to the number of format
specifiers (e.g., %s or %d) in the format argument. You can read all of
the data in str to a single output variable as long as you use only one
format specifier in the command. See “Example 4” on page 2-3744 and
“Example 5” on page 2-3745 below.

The table Formats for strread on page 2-3740 lists the valid format
specifiers. More information on using formats is available under
“Formats” on page 2-3743 in the Remarks section below.

[A, B, ...] = strread('str', 'format', N) reads data from str
reusing the format string N times, where N is an integer greater than
zero. If N is -1, strread reads the entire string. When str contains

2-3739



strread

only numeric data, you can set format to the empty string (''). See
“Example 3” on page 2-3744 below.

[A, B, ...] = strread('str', 'format', N, param, value,
...) customizes strread using param/value pairs, as listed in the table
Parameters and Values for strread on page 2-3741 below. When str
contains only numeric data, you can set format to the empty string ('').
The N argument is optional and may be omitted entirely. See “Example
7” on page 2-3746 below.

Formats for strread

Format Action Output

Literals

(ordinary
characters)

Ignore the matching characters.
For example, in a string that
has Dept followed by a number
(for department number), to
skip the Dept and read only
the number, use 'Dept' in the
format string.

None

%d Read a signed integer value. Double array

%u Read an integer value. Double array

%f Read a floating-point value. Double array

%s Read a white-space separated
string.

Cell array of strings

%q Read a double quoted string,
ignoring the quotes.

Cell array of strings

%c Read characters, including
white space.

Character array

%[...] Read the longest string
containing characters specified
in the brackets.

Cell array of strings

2-3740



strread

Formats for strread (Continued)

Format Action Output

%[^...] Read the longest nonempty
string containing characters
that are not specified in the
brackets.

Cell array of strings

%*... Ignore the characters following
*. See “Example 8” on page
2-3746 below.

No output

%w... Read field width specified by w.
The %f format supports %w.pf,
where w is the field width and p
is the precision.

Parameters and Values for strread

param value Action

Any from the list below:whitespace

\b
\n
\r
\t
\\
%%
''

Backspace
New line
Carriage return
Horizontal tab
Backslash
Percent sign
Single quotation
mark

Treats vector of
characters, *, as
white space. Default
is \b\r\n\t.

delimiter Delimiter character Specifies delimiter
character. Default
is one or more
whitespace
characters.

expchars Exponent characters Default is eEdD.

2-3741



strread

Parameters and Values for strread (Continued)

param value Action

bufsize Positive integer Specifies the
maximum string
length, in bytes.
Default is 4095.

commentstyle matlab Ignores characters
after %.

commentstyle shell Ignores characters
after #.

commentstyle c Ignores characters
between /* and */.

commentstyle c++ Ignores characters
after //.

emptyvalue Value to return for empty
numeric fields in delimited
files

Default is NaN.

Remarks If you terminate the input string with a newline character (\n), strread
returns arrays of equal size by padding arrays of lesser size with the
emptyvalue character:

[A,B,C] = strread(sprintf('5,7,1,9\n'),'%d%d%d', ...
'delimiter', ',', 'emptyvalue',NaN)

A =
5
9

B =
7

NaN
C =

1
NaN

2-3742



strread

If you remove the \n from the input string of this example, array A
continues to be a 2-by-1 array, but B and C are now 1-by-1.

Delimiters

If your data uses a character other than a space as a delimiter, you
must use the strread parameter 'delimiter' to specify the delimiter.
For example, if the string str used a semicolon as a delimiter, you
would use this command:

[names, types, x, y, answer] = strread(str,'%s %s %f ...
%d %s','delimiter',';')

Formats

The format string determines the number and types of return
arguments. The number of return arguments must match the number
of conversion specifiers in the format string.

The strread function continues reading str until the entire string is
read. If there are fewer format specifiers than there are entities in str,
strread reapplies the format specifiers, starting over at the beginning.
See “Example 5” on page 2-3745 below.

The format string supports a subset of the conversion specifiers and
conventions of the C language fscanf routine. White-space characters
in the format string are ignored.

Preserving White-Space

If you want to preserve leading and trailing spaces in a string, use the
whitespace parameter as shown here:

str = ' An example of preserving spaces ';

strread(str, '%s', 'whitespace', '')
ans =

' An example of preserving spaces '

Examples Example 1

Read numeric data into a 1-by-5 vector:

2-3743



strread

a = strread('0.41 8.24 3.57 6.24 9.27')
a =

0.4100 8.2400 3.5700 6.2400 9.2700

Example 2

Read numeric data into separate scalar variables:

[a b c d e] = strread('0.41 8.24 3.57 6.24 9.27')
a =

0.4100
b =

8.2400
c =

3.5700
d =

6.2400
e =

9.2700

Example 3

Read the only first three numbers in the string, also formatting as
floating point:

a = strread('0.41 8.24 3.57 6.24 9.27', '%4.2f', 3)

a =
0.4100
8.2400
3.5700

Example 4

Truncate the data to one decimal digit by specifying format %3.1f.
The second specifier, %*1d, tells strread not to read in the remaining
decimal digit:

a = strread('0.41 8.24 3.57 6.24 9.27', '%3.1f %*1d')

a =

2-3744



strread

0.4000
8.2000
3.5000
6.2000
9.2000

Example 5

Read six numbers into two variables, reusing the format specifiers:

[a b] = strread('0.41 8.24 3.57 6.24 9.27 3.29', '%f %f')

a =
0.4100
3.5700
9.2700

b =
8.2400
6.2400
3.2900

Example 6

Read string and numeric data to two output variables. Ignore commas
in the input string:

str = 'Section 4, Page 7, Line 26';

[name value] = strread(str, '%s %d,')
name =

'Section'
'Page'
'Line'

value =
4
7

26

2-3745



strread

Example 7

Read the string used in the last example, but this time delimiting with
commas instead of spaces:

str = 'Section 4, Page 7, Line 26';

[a b c] = strread(str, '%s %s %s', 'delimiter', ',')
a =

'Section 4'
b =

'Page 7'
c =

'Line 26'

Example 8

Read selected portions of the input string:

str = '<table border=5 width="100%" cellspacing=0>';

[border width space] = strread(str, ...
'%*s%*s %c %*s "%4s" %*s %c', 'delimiter', '= ')

border =
5

width =
'100%'

space =
0

Example 9

Read the string into two vectors, restricting the Answer values to T and
F. Also note that two delimiters (comma and space) are used here:

str = 'Answer_1: T, Answer_2: F, Answer_3: F';

[a b] = strread(str, '%s %[TF]', 'delimiter', ', ')
a =

'Answer_1:'

2-3746



strread

'Answer_2:'
'Answer_3:'

b =
'T'
'F'
'F'

See Also textscan, sscanf

2-3747



strrep

Purpose Find and replace substring

Syntax modifiedStr = strrep(origStr, oldSubstr, newSubstr)

Description modifiedStr = strrep(origStr, oldSubstr, newSubstr) replaces
all occurrences of the string oldSubstr within string origStr with
the string newSubstr.

Tips • strrep accepts input combinations of single strings, strings in scalar
cells, same-sized cell arrays of strings, and character arrays with
the same number of rows as cell array inputs. If any inputs are cell
arrays, strrep returns a cell array.

• The strrep function does not find empty strings for replacement.
That is, when origStr and oldSubstr both contain the empty string
(''), strrep does not replace '' with the contents of newSubstr.

• Before replacing strings, strrep finds all instances of oldSubstr
in origStr, like the strfind function. For overlapping patterns,
strrep performs multiple replacements. See the final example in the
Examples section.

Examples Replace text in a character array:

claim = 'This is a good example.';
new_claim = strrep(claim, 'good', 'great')

MATLAB returns:

new_claim =
This is a great example.

Replace text in a cell array:

c_files = {'c:\cookies.m'; ...
'c:\candy.m'; ...
'c:\calories.m'};

2-3748



strrep

d_files = strrep(c_files, 'c:', 'd:')

MATLAB returns:

d_files =
'd:\cookies.m'
'd:\candy.m'
'd:\calories.m'

Replace text in a cell array with values in a second cell array:

missing_info = {'Start: __'; ...
'End: __'};

dates = {'01/01/2001'; ...
'12/12/2002'};

complete = strrep(missing_info, '__', dates)

MATLAB returns:

complete =
'Start: 01/01/2001'
'End: 12/12/2002'

Compare the use of strrep and regexprep to replace a string with
a repeated pattern:

repeats = 'abc 2 def 22 ghi 222 jkl 2222';
indices = strfind(repeats, '22')

using_strrep = strrep(repeats, '22', '*')
using_regexprep = regexprep(repeats, '22', '*')

MATLAB returns:

2-3749



strrep

indices =
11 18 19 26 27 28

using_strrep =
abc 2 def * ghi ** jkl ***

using_regexprep =
abc 2 def * ghi *2 jkl **

See Also strfind | regexprep

2-3750



strtok

Purpose Selected parts of string

Syntax token = strtok(str)
token = strtok(str, delimiter)
[token, remain] = strtok('str', ...)

Description token = strtok(str) parses input string str from left to right,
returning part or all of that string in token. Using the white-space
character as a delimiter, the token output begins at the start of str,
skipping any delimiters that might appear at the start, and includes
all characters up to either the next delimiter or the end of the string.
White-space characters include space (ASCII 32), tab (ASCII 9), and
carriage return (ASCII 13).

The str argument can be a string of characters enclosed in single
quotation marks, a cell array of strings each enclosed in single quotation
marks, or a variable representing either of the two. If str is a cell
array of N strings, then token is a cell array of N tokens, with token{1}
derived from str{1}, token{2} from str{2}, and so on.

token = strtok(str, delimiter) is the same as the above syntax
except that you specify the delimiting character(s) yourself using the
delimiter character vector input. White-space characters are not
considered to be delimiters when using this syntax unless you include
them in the delimiter argument. If the delimiter input specifies
more than one character, MATLAB treats each character as a separate
delimiter; it does not treat the multiple characters as a delimiting
string. The number and order of characters in the delimiter argument
is unimportant. Do not use escape sequences as delimiters. For
example, use char(9) rather than '\t' for tab.

[token, remain] = strtok('str', ...) returns in remain that part
of str, if any, that follows token. If no delimiters are found in the
body of the input string, then the entire string (excluding any leading
delimiting characters) is returned in token, and remain is an empty
string (''). If str is a cell array of strings, token is a cell array of
tokens and remain is a cell array of string remainders.

2-3751



strtok

Examples Example 1

This example uses the default white-space delimiter. Note that space
characters at the start of the string are not included in the token
output, but the space character that follows token is included in remain:

s = ' This is a simple example.';
[token, remain] = strtok(s)

token =
This
remain =
is a simple example.

Example 2

Take a string of HTML code and break it down into segments delimited
by the < and > characters. Write a while loop to parse the string and
print each segment:

s = sprintf('%s%s%s%s', ...
'<ul class=continued><li class=continued>', ...
'<pre><a name="13474"></a>token = strtok', ...
'(''str'', delimiter)<a name="13475"></a>', ...
'token = strtok(''str'')');

remain = s;

while true
[str, remain] = strtok(remain, '<>');
if isempty(str), break; end
disp(sprintf('%s', str))

end

Here is the output:

ul class=continued
li class=continued
pre

2-3752



strtok

a name="13474"
/a
token = strtok('str', delimiter)
a name="13475"
/a
token = strtok('str')

Example 3

Using strtok on a cell array of strings returns a cell array of strings in
token and a character array in remain:

s = {'all in good time'; ...
'my dog has fleas'; ...
'leave no stone unturned'};

remain = s;

for k = 1:4
[token, remain] = strtok(remain);
token

end

Here is the output:

token =
'all'
'my'
'leave'

token =
'in'
'dog'
'no'

token =
'good'
'has'
'stone'

token =

2-3753



strtok

'time'
'fleas'
'unturned'

See Also strfind, strncmp, strcmp, textscan

2-3754



strtrim

Purpose Remove leading and trailing white space from string

Syntax S = strtrim(str)
C = strtrim(cstr)

Description S = strtrim(str) returns a copy of string str with all leading and
trailing white-space characters removed. A white-space character is one
for which the isspace function returns logical 1 (true).

C = strtrim(cstr) returns a copy of the cell array of strings cstr
with all leading and trailing white-space characters removed from each
string in the cell array.

Examples Remove the leading white-space characters (spaces and tabs) from str:

str = sprintf(' \t Remove leading white-space')
str =

Remove leading white-space

str = strtrim(str)
str =
Remove leading white-space

Remove leading and trailing white-space from the cell array of strings:

cstr = {' Trim leading white-space';
'Trim trailing white-space '};

cstr = strtrim(cstr)
cstr =

'Trim leading white-space'
'Trim trailing white-space'

See Also isspace, cellstr, deblank, strjust

2-3755



struct

Purpose Create structure array

Syntax s = struct('field1', values1, 'field2', values2, ...)
s = struct('field1', {}, 'field2', {}, ...)
s = struct
s = struct([])
s = struct(obj)

Description s = struct('field1', values1, 'field2', values2, ...) creates
a structure array with the specified fields and values. Each value input
(values1, values2, etc.), can either be a cell array or a scalar value.
Those that are cell arrays must all have the same dimensions.

The size of the resulting structure is the same size as the value cell
arrays, or 1-by-1 if none of the values is a cell array. Elements of the
value array inputs are placed into corresponding structure array
elements.

Note If any of the values fields is an empty cell array {}, the MATLAB
software creates an empty structure array in which all fields are also
empty.

Structure field names must begin with a letter, and are case-sensitive.
The rest of the name may contain letters, numerals, and underscore
characters. Use the namelengthmax function to determine the
maximum length of a field name.

s = struct('field1', {}, 'field2', {}, ...) creates an empty
structure with fields field1, field2, ...

s = struct creates a 1-by-1 structure with no fields.

s = struct([]) creates an empty structure with no fields.

s = struct(obj) creates a structure s that is identical to the
underlying structure in the input object obj. MATLAB does not convert

2-3756



struct

obj, but rather creates s as a new structure. This structure does not
retain the class information in obj.

Remarks Two Ways to Access Fields

The most common way to access the data in a structure is by specifying
the name of the field that you want to reference. Another means of
accessing structure data is to use dynamic field names. These names
express the field as a variable expression that MATLAB evaluates at
run-time.

Fields That Are Cell Arrays

To create fields that contain cell arrays, place the cell arrays within a
value cell array. For instance, to create a 1-by-1 structure, type

s = struct('strings',{{'hello','yes'}},'lengths',[5 3])
s =

strings: {'hello' 'yes'}
lengths: [5 3]

Specifying Cell Versus Noncell Values

When using the syntax

s = struct('field1', values1, 'field2', values2, ...)

the values inputs can be cell arrays or scalar values. For those values
that are specified as a cell array, MATLAB assigns each element
of values{m,n,...} to the corresponding field in each element of
structure s:

s(m,n,...).fieldN = valuesN{m,n,...}

For those values that are scalar, MATLAB assigns that single value to
the corresponding field for all elements of structure s:

s(m,n,...).fieldN = valuesN

See Example 3, below.

2-3757



struct

Examples Example 1

The command

s = struct('type', {'big','little'}, 'color', {'red'}, ...
'x', {3 4})

produces a structure array s:

s =
1x2 struct array with fields:

type
color
x

The value arrays have been distributed among the fields of s:

s(1)
ans =

type: 'big'
color: 'red'

x: 3
s(2)
ans =

type: 'little'
color: 'red'

x: 4

Example 2

Similarly, the command

a.b = struct('z', {});

produces an empty structure a.b with field z.

a.b
ans =

0x0 struct array with fields:
z

2-3758



struct

Example 3

This example initializes one field f1 using a cell array, and the other f2
using a scalar value:

s = struct('f1', {1 3; 2 4}, 'f2', 25)
s =
2x2 struct array with fields:

f1
f2

Field f1 in each element of s is assigned the corresponding value from
the cell array {1 3; 2 4}:

s.f1
ans =

1
ans =

2
ans =

3
ans =

4

Field f2 for all elements of s is assigned one common value because the
values input for this field was specified as a scalar:

s.f2
ans =

25
ans =

25
ans =

25
ans =

25

2-3759



struct

See Also isstruct | fieldnames | isfield | orderfields | getfield |
setfield | rmfield | substruct | deal | cell2struct | struct2cell
| namelengthmax

How To • “Creating a Structure”

• “Creating Field Names Dynamically”

• “Returning Data from a Struct Array”

2-3760



struct2cell

Purpose Convert structure to cell array

Syntax c = struct2cell(s)

Description c = struct2cell(s) converts the m-by-n structure s (with p fields) into
a p-by-m-by-n cell array c.

If structure s is multidimensional, cell array c has size [p size(s)].

Examples The commands

clear s, s.category = 'tree';
s.height = 37.4; s.name = 'birch';

create the structure

s =
category: 'tree'

height: 37.4000
name: 'birch'

Converting the structure to a cell array,

c = struct2cell(s)

c =
'tree'
[37.4000]
'birch'

See Also cell2struct, cell, iscell, struct, isstruct, fieldnames, dynamic
field names

2-3761



structfun

Purpose Apply function to each field of scalar structure

Syntax A = structfun(fun, S)
[A, B, ...] = structfun(fun, S)
[A, ...] = structfun(fun, S, 'param1', value1, ...)

Description A = structfun(fun, S) applies the function specified by fun to each
field of scalar structure S, and returns the results in array A. fun is
a function handle to a function that takes one input argument and
returns a scalar value. Return value A is a column vector that has one
element for each field in input structure S. The Nth element of A is the
result of applying fun to the Nth field of S, and the order of the fields
is the same as that returned by a call to fieldnames. (A is returned as
one or more scalar structures when the UniformOutput option is set
to false. See the table below.))

fun must return values of the same class each time it is called. If fun is
a handle to an overloaded function, then structfun follows MATLAB
dispatching rules in calling the function.

[A, B, ...] = structfun(fun, S) returns arrays A, B, ..., each
array corresponding to one of the output arguments of fun. structfun
calls fun each time with as many outputs as there are in the call to
structfun. fun can return output arguments having different classes,
but the class of each output must be the same each time fun is called.

[A, ...] = structfun(fun, S, 'param1', value1, ...) enables
you to specify optional parameter name/parameter value pairs.
Parameters are

2-3762



structfun

Parameter Value

'UniformOutput' Logical value indicating whether or not
the outputs of fun can be returned without
encapsulation in a structure. The default value
is true.

If equal to logical 1 (true), funmust return scalar
values that can be concatenated into an array.
The outputs can be any of the following types:
numeric, logical, char, struct, or cell.

If equal to logical 0 (false), structfun returns
a scalar structure or multiple scalar structures
having fields that are the same as the fields of
the input structure S. The values in the output
structure fields are the results of calling fun on
the corresponding values in the input structure B.
In this case, the outputs can be of any data type.

'ErrorHandler' Function handle specifying the function MATLAB
is to call if the call to fun fails. MATLAB calls
the error handling function with the following
input arguments:

• A structure, with the fields 'identifier',
'message', and 'index', respectively
containing the identifier of the error that
occurred, the text of the error message, and
the number of the field (in the same order as
returned by field names) at which the error
occurred.

• The input argument at which the call to the
function failed.

The error handling function should either
rethrow an error or return the same number
of outputs as fun. These outputs are then
returned as the outputs of structfun. If

2-3763



structfun

Parameter Value

'UniformOutput' is true, the outputs of the
error handler must also be scalars of the same
type as the outputs of fun.

For example,

function [A, B] = errorFunc(S, ...
varargin)

warning(S.identifier, S.message);
A = NaN; B = NaN;

If an error handler is not specified, the error
from the call to fun is rethrown.

Examples To create shortened weekday names from the full names, for example:
Create a structure with strings in several fields:

s.f1 = 'Sunday';
s.f2 = 'Monday';
s.f3 = 'Tuesday';
s.f4 = 'Wednesday';
s.f5 = 'Thursday';
s.f6 = 'Friday';
s.f7 = 'Saturday';

shortNames = structfun(@(x) ( x(1:3) ), s, ...
'UniformOutput', false);

See Also cellfun, arrayfun, function_handle, cell2mat, spfun

2-3764



strvcat

Purpose Concatenate strings vertically

Note strvcat will be removed in a future version. Use char instead.
Unlike strvcat, the char function does not ignore empty strings.

Syntax S = strvcat(t1, t2, t3, ...)
S = strvcat(c)

Description S = strvcat(t1, t2, t3, ...) forms the character array S
containing the text strings (or string matrices) t1,t2,t3,... as rows.
Spaces are appended to each string as necessary to form a valid matrix.
Empty arguments are ignored.

S = strvcat(c) when c is a cell array of strings, passes each element
of c as an input to strvcat. Empty strings in the input are ignored.

Remarks If each text parameter, ti, is itself a character array, strvcat appends
them vertically to create arbitrarily large string matrices.

Examples The command strvcat('Hello','Yes') is the same as ['Hello';'Yes
'], except that strvcat performs the padding automatically.

t1 = 'first'; t2 = 'string'; t3 = 'matrix'; t4 = 'second';

S1 = strvcat(t1, t2, t3) S2 = strvcat(t4, t2, t3)

S1 = S2 =

first second
string string
matrix matrix

S3 = strvcat(S1, S2)

S3 =

2-3765



strvcat

first
string
matrix
second
string
matrix

See Also strcat, cat, vertcat, horzcat, int2str, mat2str, num2str, strings,
special character []

2-3766



sub2ind

Purpose Convert subscripts to linear indices

Syntax linearInd = sub2ind(matrixSize, rowSub, colSub)
linearInd = sub2ind(arraySize, dim1Sub, dim2Sub, dim3Sub,

...)

Description linearInd = sub2ind(matrixSize, rowSub, colSub) returns the
linear index equivalents to the row and column subscripts rowSub and
colSub for a matrix of size matrixSize. The matrixSize input is a
2-element vector that specifies the number of rows and columns in the
matrix as [nRows, nCols]. The rowSub and colSub inputs are positive,
whole number scalars or vectors that specify one or more row-column
subscript pairs for the matrix. Example 3 demonstrates the use of
vectors for the rowSub and colSub inputs.

linearInd = sub2ind(arraySize, dim1Sub, dim2Sub, dim3Sub,
...) returns the linear index equivalents to the specified subscripts
for each dimension of an N-dimensional array of size arraySize. The
arraySize input is an n-element vector that specifies the number
of dimensions in the array. The dimNSub inputs are positive, whole
number scalars or vectors that specify one or more row-column
subscripts for the matrix.

The rowSub and colSub inputs must belong to the same class. The
linearInd output is the same class as the subscript inputs.

If needed, sub2ind assumes that unspecified trailing subscripts are
1. See Example 2, below.

Examples Example 1

This example converts the subscripts (2, 1, 2) for three-dimensional
array A to a single linear index. Start by creating a 3-by-4-by-2 array A:

rand('state', 0); % Initialize random number generator.
A = rand(3, 4, 2)

A(:,:,1) =
0.9501 0.4860 0.4565 0.4447

2-3767



sub2ind

0.2311 0.8913 0.0185 0.6154
0.6068 0.7621 0.8214 0.7919

A(:,:,2) =
0.9218 0.4057 0.4103 0.3529
0.7382 0.9355 0.8936 0.8132
0.1763 0.9169 0.0579 0.0099

Find the linear index corresponding to (2, 1, 2):

linearInd = sub2ind(size(A), 2, 1, 2)
linearInd =

14

Make sure that these agree:

A(2, 1, 2) A(14)
ans = and =

0.7382 0.7382

Example 2

Using the 3-dimensional array A defined in the previous example,
specify only 2 of the 3 subscript arguments in the call to sub2ind. The
third subscript argument defaults to 1.

The command

linearInd = sub2ind(size(A), 2, 4)
ans =

11

is the same as

linearInd = sub2ind(size(A), 2, 4, 1)
ans =

11

2-3768



sub2ind

Example 3

Using the same 3-dimensional input array A as in Example 1,
accomplish the work of five separate sub2ind commands with just one.

Replace the following commands:

sub2ind(size(A), 3, 3, 2);
sub2ind(size(A), 2, 4, 1);
sub2ind(size(A), 3, 1, 2);
sub2ind(size(A), 1, 3, 2);
sub2ind(size(A), 2, 4, 1);

with a single command:

sub2ind(size(A), [3 2 3 1 2], [3 4 1 3 4], [2 1 2 2 1])
ans =

21 11 15 19 11

Verify that these linear indices access the same array elements as their
subscripted counterparts:

[A(3,3,2), A(2,4,1), A(3,1,2), A(1,3,2), A(2,4,1)]
ans =

0.0579 0.6154 0.1763 0.4103 0.6154

A([21, 11, 15, 19, 11])
ans =

0.0579 0.6154 0.1763 0.4103 0.6154

See Also ind2sub | find | size

2-3769



subplot

Purpose Create axes in tiled positions

GUI
Alternatives

To add subplots to a figure, click one of the New Subplot icons in the
Figure Palette, and slide right to select an arrangement of subplots.
For details, see Plotting Tools — Interactive Plotting in the MATLAB
Graphics documentation.

Syntax h = subplot(m,n,p) or subplot(mnp)
subplot(m,n,p,'replace')
subplot(m,n,P)
subplot(h)
subplot('Position',[left bottom width height])
subplot(..., prop1, value1, prop2, value2, ...)
h = subplot(...)

Description subplot divides the current figure into rectangular panes that are
numbered rowwise. Each pane contains an axes object which you can
manipulate using Axes Properties. Subsequent plots are output to
the current pane.

h = subplot(m,n,p) or subplot(mnp) breaks the figure window
into an m-by-n matrix of small axes, selects the pth axes object for the
current plot, and returns the axes handle. The axes are counted along
the top row of the figure window, then the second row, etc. For example,

subplot(2,1,1), plot(income)
subplot(2,1,2), plot(outgo)

2-3770



subplot

plots income on the top half of the window and outgo on the bottom
half. If the CurrentAxes is nested in a uipanel, the panel is used as
the parent for the subplot instead of the current figure. The new axes
object becomes the current axes.

subplot(m,n,p,'replace') If the specified axes object already exists,
delete it and create a new axes.

subplot(m,n,P), where P is a vector, specifies an axes position that
covers all the subplot positions listed in P, including those spanned by P.
For example, subplot(2,3,[2 5]) creates one axes spanning positions
2 and 5 only (because there are no intervening locations in the grid),
while subplot(2,3,[2 6]) creates one axes spanning positions 2, 3,
5, and 6.

subplot(h) makes the axes object with handle h current for subsequent
plotting commands.

subplot('Position',[left bottom width height]) creates an axes
at the position specified by a four-element vector. left, bottom, width,
and height are in normalized coordinates in the range from 0.0 to 1.0.

subplot(..., prop1, value1, prop2, value2, ...) sets the
specified property-value pairs on the subplot axes object. Available
property/value pairs are described more fully in Axes Properties.
To add the subplot to a specific figure or uipanel, pass the handle as
the value for the Parent property. You cannot specify both a Parent
and a Position; that is, subplot('Position',[left bottom width
height], 'Parent',h) is not a valid syntax.

h = subplot(...) returns the handle to the new axes object.

Remarks If a subplot specification causes a new axis to overlap a existing axis, the
existing axis is deleted - unless the position of the new and existing axis
are identical. For example, the statement subplot(1,2,1) deletes all
existing axes overlapping the left side of the figure window and creates
a new axis on that side—unless there is an axes there with a position
that exactly matches the position of the new axes (and 'replace' was
not specified), in which case all other overlapping axes will be deleted
and the matching axes will become the current axes.

2-3771



subplot

You can add subplots to GUIs as well as to figures. For information
about creating subplots in a GUIDE-generated GUI, see “Creating
Subplots” in the MATLAB Creating Graphical User Interfaces
documentation.

If a subplot specification causes a new axes object to overlap any
existing axes, subplot deletes the existing axes object and uicontrol
objects. However, if the subplot specification exactly matches the
position of an existing axes object, the matching axes object is not
deleted and it becomes the current axes.

subplot(1,1,1) or clf deletes all axes objects and returns to the
default subplot(1,1,1) configuration.

You can omit the parentheses and specify subplot as

subplot mnp

where m refers to the row, n refers to the column, and p specifies the
pane.

Be aware when creating subplots from scripts that the Position
property of subplots is not finalized until either

• A drawnow command is issued.

• MATLAB returns to await a user command.

That is, the value obtained for subplot i by the command

get(h(i),'position')

will not be correct until the script refreshes the plot or exits.

Special Case: subplot(111)

The command subplot(111) is not identical in behavior to
subplot(1,1,1) and exists only for compatibility with previous
releases. This syntax does not immediately create an axes object, but
instead sets up the figure so that the next graphics command executes a
clf reset (deleting all figure children) and creates a new axes object in

2-3772



subplot

the default position. This syntax does not return a handle, so it is an
error to specify a return argument. (MATLAB implements this behavior
by setting the figure’s NextPlot property to replace.)

Examples Upper and Lower Subplots with Titles

To plot income in the top half of a figure and outgo in the bottom half,

income = [3.2 4.1 5.0 5.6];
outgo = [2.5 4.0 3.35 4.9];
subplot(2,1,1); plot(income)
title('Income')
subplot(2,1,2); plot(outgo)
title('Outgo')

2-3773



subplot

Subplots in Quadrants

The following illustration shows four subplot regions and indicates the
command used to create each.

2-3774



subplot

Asymmetrical Subplots

The following combinations produce asymmetrical arrangements of
subplots.

subplot(2,2,[1 3])

2-3775



subplot

subplot(2,2,2)
subplot(2,2,4)

You can also use the colon operator to specify multiple locations if they
are in sequence.

2-3776



subplot

subplot(2,2,1:2)
subplot(2,2,3)
subplot(2,2,4)

2-3777



subplot

Suppressing Axis Ticks

When you create many subplots in a figure, the axes tickmarks, which
are shown by default, can either be obliterated or can cause axes to
collapse, as the following code demonstrates:

figure
for i=1:12

subplot(12,1,i)
plot (sin(1:100)*10^(i-1))

end

2-3778



subplot

One way to get around this issue is to enlarge the figure to create
enough space to properly display the tick labels.

Another approach is to eliminate the clutter by suppressing xticks and
yticks for subplots as data are plotted into them. You can then label a
single axes if the subplots are stacked, as follows:

2-3779



subplot

figure
for i=1:12

subplot(12,1,i)
plot (sin(1:100)*10^(i-1))
set(gca,'xtick',[],'ytick',[])

end
% Reset the bottom subplot to have xticks
set(gca,'xtickMode', 'auto')

2-3780



subplot

Plotting Axes Over Subplots

Place a plot in the center, on top of four other plots, using the axes and
subplot functions:

for i = 1:4

2-3781



subplot

subplot(2, 2, i)
plot(rand(1, 10));

end
axes('Position', [.35, .35, .3, .3]);
imshow('canoe.tif')

See Also axes, cla, clf, figure, gca

“Basic Plots and Graphs” on page 1-96 for more information

“Creating Subplots” in the MATLAB Creating Graphical User Interfaces
documentation describes adding subplots to GUIs.

2-3782



subsasgn

Purpose Subscripted assignment

Syntax A = subsasgn(A, S, B)

Description A = subsasgn(A, S, B) is called by MATLAB for the syntax A(i) =
B, A{i} = B, or A.i = B when A is an object.

MATLAB uses the built-in subsasgn function to interpret indexed
assignment statements. Modify the indexed assignment behavior of
classes by overloading subsasgn in the class.

If A is a fundamental class (see “Classes (Data Types)”), then an indexed
reference to A calls the built-in subsasgn function. It does not call a
subsasgn method that you have overloaded for that class. Therefore, if
A is an array of class double, and there is an @double/subsasgnmethod
on your MATLAB path, the statement A(I) = B calls the MATLAB
built-in subsasgn function.

Input
Arguments

A

Object

S

struct array with two fields, type and subs.

• type is a string containing '()', '{}', or '.', where '()'
specifies integer subscripts, '{}' specifies cell array subscripts,
and '.' specifies subscripted structure fields.

• subs is a cell array or string containing the actual subscripts.

B

Assignment value (right-hand side)

Output
Arguments

A

Result of evaluating assignment.

2-3783



subsasgn

Examples See how MATLAB calls subsasgn for the expression:

A(1:2,:) = B;

The syntax A(1:2,:) = B calls A = subsasgn(A,S,B) where S is a
1-by-1 structure with S.type = '()' and S.subs = {1:2,':'}. The
string ':' indicates a colon used as a subscript.

See how MATLAB calls subsasgn for the expression:

A{1:2} = B;

The syntax A{1:2} = B calls A = subsasgn(A,S,B) where S.type =
'{}' and S.subs = {[1 2]}.

See how MATLAB calls subsasgn for the expression:

A.field = B;

The syntax A.field = B calls A = subsasgn(A,S,B) where S.type =
'.' and S.subs = 'field'.

See how MATLAB calls subsasgn for the expression:

A(1,2).name(3:5)=B;

Simple calls combine in a straightforward way for more complicated
indexing expressions. In such cases, length(S) is the number
of subscripting levels. For instance, A(1,2).name(3:5)=B calls
A=subsasgn(A,S,B) where S is a 3-by-1 structure array with the
following values:

S(1).type = '()' S(2).type = '.' S(3).type = '()'

S(1).subs = {1,2} S(2).subs = 'name' S(3).subs = {[3 4
5]}

2-3784



subsasgn

Algorithm In the assignment A(J,K,...) = B(M,N,...), subscripts J, K, M, N,
and so on, can be scalar, vector, or arrays, when all the following are
true:

• The number of subscripts specified for B, excluding trailing subscripts
equal to 1, does not exceed the value returned by ndims(B).

• The number of nonscalar subscripts specified for A equals the number
of nonscalar subscripts specified for B. For example, A(5,1:4,1,2) =
B(5:8) is valid because both sides of the equation use one nonscalar
subscript.

• The order and length of all nonscalar subscripts specified for A
matches the order and length of nonscalar subscripts specified for
B. For example, A(1:4, 3, 3:9) = B(5:8, 1:7) is valid because
both sides of the equation (ignoring the one scalar subscript 3) use a
4-element subscript followed by a 7-element subscript.

See numel for information concerning the use of numel with regards
to the overloaded subsasgn function.

See Also subsref | substruct

Tutorials • “Indexed Reference and Assignment”

2-3785



subsindex

Purpose Subscript indexing with object

Syntax ind = subsindex(A)

Description ind = subsindex(A) called by MATLAB for the expression X(A)
when A is an object, unless such an expression results in a call to an
overloaded subsref or subsasgn method for X. subsindex must return
the value of the object as a zero-based integer index. (ind must contain
integer values in the range 0 to prod(size(X))-1.) Call subsindex
directly from an overloaded subsref or subsasgn method.

MATLAB invokes subsindex separately on all the subscripts in an
expression, such as X(A,B).

See Also subsasgn | subsasgn

Tutorials • “Using Objects as Indices”

2-3786



subspace

Purpose Angle between two subspaces

Syntax theta = subspace(A,B)

Description theta = subspace(A,B) finds the angle between two subspaces
specified by the columns of A and B. If A and B are column vectors of unit
length, this is the same as acos(A'*B).

Remarks If the angle between the two subspaces is small, the two spaces are
nearly linearly dependent. In a physical experiment described by some
observations A, and a second realization of the experiment described by
B, subspace(A,B) gives a measure of the amount of new information
afforded by the second experiment not associated with statistical errors
of fluctuations.

Examples Consider two subspaces of a Hadamard matrix, whose columns are
orthogonal.

H = hadamard(8);
A = H(:,2:4);
B = H(:,5:8);

Note that matrices A and B are different sizes — A has three columns
and B four. It is not necessary that two subspaces be the same size in
order to find the angle between them. Geometrically, this is the angle
between two hyperplanes embedded in a higher dimensional space.

theta = subspace(A,B)
theta =

1.5708

That A and B are orthogonal is shown by the fact that theta is equal
to .

theta - pi/2
ans =

0

2-3787



subsref

Purpose Redefine subscripted reference for objects

Syntax B = subsref(A,S)

Description B = subsref(A,S) is called by MATLAB for the syntax A(i), A{i}, or
A.i when A is an object. S is a struct array with two fields, type and
subs.

The type field is string containing '()', '{}', or '.', where '()'
specifies integer subscripts, '{}' specifies cell array subscripts, and '.'
specifies subscripted structure fields. The subs field is a cell array or a
string containing the actual subscripts.

B is the result of the indexed expression.

MATLAB uses the built-in subsref function to interpret indexed
references to objects. To modify the indexed reference behavior of
objects, overload subsref in the class.

If A is a fundamental class (see “Classes (Data Types)”), then an indexed
reference to A calls the built-in subsref function. It does not call a
subsref method that you have overloaded for that class. Therefore, if A
is an array of class double, and there is an @double/subsref method
on your MATLAB path, the statement A(I) calls the MATLAB built-in
subsref function.

Examples See how MATLAB calls subsref for the expression:

A(1:2,:)

The syntax A(1:2,:) calls B = subsref(A,S) where S is a 1-by-1
structure with S.type='()' and S.subs={1:2,':'}. The string ':'
indicates a colon used as a subscript.

See how MATLAB calls subsref for the expression:

A{1:2}

2-3788



subsref

The syntax A{1:2} calls B = subsref(A,S) where S.type='{}' and
S.subs={[1 2]}.

See how MATLAB calls subsref for the expression:

A.field

The syntax A.field calls B = subsref(A,S) where S.type='.' and
S.subs='field'.

See how MATLAB calls subsref for the expression:

A(1,2).name(3:5)

Simple calls combine in a straightforward way for more complicated
indexing expressions. In such cases, length(S) is the number of
subscript levels. For instance, A(1,2).name(3:5) calls subsref(A,S)
where S is a 3-by-1 structure array with the following values:

S(1).type='()' S(2).type='.' S(3).type='()'

S(1).subs={1,2} S(2).subs='name' S(3).subs={[3 4
5]}

See Also numel | subsasgn | substruct

Tutorials • “Indexed Reference and Assignment”

2-3789



substruct

Purpose Create structure argument for subsasgn or subsref

Syntax S = substruct(type1, subs1, type2, subs2, ...)

Description S = substruct(type1, subs1, type2, subs2, ...) creates a
structure with the fields required by an overloaded subsref or
subsasgn method. Each type string must be one of '.', '()', or '{}'.
The corresponding subs argument must be either a field name (for the
'.' type) or a cell array containing the index vectors (for the '()' or
'{}' types).

Output
Arguments

S

struct with these fields:

• type: one of '.', '()', or '{}'

• subs: subscript values (field name or cell array of index vectors)

Examples Call subsref with arguments equivalent to the syntax:

B = A(3,5).field;

where A is an object of a class that implements a subsref method

Use substruct to form the input struct, S:

S = substruct('()',{3,5},'.','field');

Call the class method:

B = subsref(A,S);

The struct created by substruct in this example contains:

S(1)

ans =

2-3790



substruct

type: '()'
subs: {[3] [5]}

S(2)

ans =

type: '.'
subs: 'field'

See Also subsasgn | subsref

Tutorials • “Indexed Reference and Assignment”

2-3791



subvolume

Purpose Extract subset of volume data set

Syntax [Nx,Ny,Nz,Nv] = subvolume(X,Y,Z,V,limits)
[Nx,Ny,Nz,Nv] = subvolume(V,limits)
Nv = subvolume(...)

Description [Nx,Ny,Nz,Nv] = subvolume(X,Y,Z,V,limits) extracts a subset of
the volume data set V using the specified axis-aligned limits. limits =
[xmin,xmax,ymin, ymax,zmin,zmax] (Any NaNs in the limits indicate
that the volume should not be cropped along that axis.)

The arrays X, Y, and Z define the coordinates for the volume V. The
subvolume is returned in NV and the coordinates of the subvolume are
given in NX, NY, and NZ.

[Nx,Ny,Nz,Nv] = subvolume(V,limits) assumes the arrays X, Y,
and Z are defined as

[X,Y,Z] = meshgrid(1:N,1:M,1:P)

where [M,N,P] = size(V).

Nv = subvolume(...) returns only the subvolume.

Examples This example uses a data set that is a collection of MRI slices of a
human skull. The data is processed in a variety of ways:

• The 4-D array is squeezed (squeeze) into three dimensions and then
a subset of the data is extracted (subvolume).

• The outline of the skull is an isosurface generated as a patch (p1)
whose vertex normals are recalculated to improve the appearance
when lighting is applied (patch, isosurface, isonormals).

• A second patch (p2) with interpolated face color draws the end caps
(FaceColor, isocaps).

• The view of the object is set (view, axis, daspect).

2-3792



subvolume

• A 100-element grayscale colormap provides coloring for the end caps
(colormap).

• Adding lights to the right and left of the camera illuminates the
object (camlight, lighting).

load mri
D = squeeze(D);
[x,y,z,D] = subvolume(D,[60,80,nan,80,nan,nan]);
p1 = patch(isosurface(x,y,z,D, 5),...

'FaceColor','red','EdgeColor','none');
isonormals(x,y,z,D,p1);
p2 = patch(isocaps(x,y,z,D, 5),...

'FaceColor','interp','EdgeColor','none');
view(3); axis tight; daspect([1,1,.4])
colormap(gray(100))
camlight right; camlight left; lighting gouraud

2-3793



subvolume

See Also isocaps, isonormals, isosurface, reducepatch, reducevolume,
smooth3

“Volume Visualization” on page 1-111 for related functions

2-3794



sum

Purpose Sum of array elements

Syntax B = sum(A)
B = sum(A,dim)
B = sum(..., 'double')
B = sum(..., dim,'double')
B = sum(..., 'native')
B = sum(..., dim,'native')

Description B = sum(A) returns sums along different dimensions of an array.

If A is a vector, sum(A) returns the sum of the elements.

If A is a matrix, sum(A) treats the columns of A as vectors, returning a
row vector of the sums of each column.

If A is a multidimensional array, sum(A) treats the values along the first
non-singleton dimension as vectors, returning an array of row vectors.

B = sum(A,dim) sums along the dimension of A specified by scalar dim.
The dim input is an integer value from 1 to N, where N is the number
of dimensions in A. Set dim to 1 to compute the sum of each column,
2 to sum rows, etc.

B = sum(..., 'double') and B = sum(..., dim,'double') performs
additions in double-precision and return an answer of type double, even
if A has data type single or an integer data type. This is the default for
integer data types.

B = sum(..., 'native') and B = sum(..., dim,'native') performs
additions in the native data type of A and return an answer of the same
data type. This is the default for single and double.

Remarks sum(diag(X)) is the trace of X.

Examples The magic square of order 3 is

M = magic(3)
M =

2-3795



sum

8 1 6
3 5 7
4 9 2

This is called a magic square because the sums of the elements in each
column are the same.

sum(M) =
15 15 15

as are the sums of the elements in each row, obtained either by
transposing or using thedim argument.

• Transposing

sum(M') =
15 15 15

• Using the dim argument

sum(M,1)

ans =

15 15 15

Nondouble
Data Type
Support

This section describes the support of sum for data types other than
double.

Data Type single

You can apply sum to an array of type single and MATLAB software
returns an answer of type single. For example,

sum(single([2 5 8]))

ans =

15

2-3796



sum

class(ans)

ans =

single

Integer Data Types

When you apply sum to any of the following integer data types, MATLAB
software returns an answer of type double:

• int8 and uint8

• int16 and uint16

• int32 and uint32

For example,

sum(single([2 5 8]));
class(ans)

ans =

single

If you want MATLAB to perform additions on an integer data type in
the same integer type as the input, use the syntax

sum(int8([2 5 8]), 'native');
class(ans)

ans =

int8

See Also accumarray, cumsum, diff, isfloat, prod

2-3797



sum (timeseries)

Purpose Sum of timeseries data

Syntax ts_sm = sum(ts)
ts_sm = sum(ts,'PropertyName1',PropertyValue1,...)

Description ts_sm = sum(ts) returns the sum of the time-series data. When
ts.Data is a vector, ts_sm is the sum of ts.Data values. When ts.Data
is a matrix, ts_sm is a row vector containing the sum of each column of
ts.Data (when IsTimeFirst is true and the first dimension of ts is
aligned with time). For the N-dimensional ts.Data array, sum always
operates along the first nonsingleton dimension of ts.Data.

ts_sm = sum(ts,'PropertyName1',PropertyValue1,...) specifies
the following optional input arguments:

• 'MissingData' property has two possible values, 'remove' (default)
or 'interpolate', indicating how to treat missing data during the
calculation.

• 'Quality' values are specified by a vector of integers, indicating
which quality codes represent missing samples (for vector data) or
missing observations (for data arrays with two or more dimensions).

• 'Weighting' property has two possible values, 'none' (default) or
'time'.
When you specify 'time', larger time values correspond to larger
weights.

Examples 1 Load a 24-by-3 data array.

load count.dat

2 Create a timeseries object with 24 time values.

count_ts = timeseries(count,1:24,'Name','CountPerSecond')

3 Calculate the sum of each data column for this timeseries object.

sum(count_ts)

2-3798



sum (timeseries)

ans =

768 1117 1574

The sum is calculated independently for each data column in the
timeseries object.

See Also iqr (timeseries), mean (timeseries), median (timeseries), std
(timeseries), var (timeseries), timeseries

2-3799



superclasses

Purpose Superclass names

Syntax superclasses('ClassName')
superclasses(obj)
s = superclasses(...)

Description superclasses('ClassName') displays the names of all visible
superclasses of the MATLAB class with the name ClassName. Visible
classes have a Hidden attribute value of false (the default).

superclasses(obj) obj is an instance of a MATLAB class. obj can be
either a scalar object or an array of objects.

s = superclasses(...) returns the superclass names in a cell array
of strings.

Examples Get the name of the hgsetget class superclass:

superclasses('hgsetget')

Superclasses for class hgsetget:

handle

See Also properties | methods | events | classdef

Tutorials • “Hierarchies of Classes — Concepts”

2-3800



superiorto

Purpose Establish superior class relationship

Syntax superiorto('class1', 'class2', ...)

Description superiorto('class1', 'class2', ...) establishes that the class
invoking this function in its constructor has higher precedence than
the classes in the argument list.

The superiorto function establishes a precedence that determines
which object method MATLAB calls. Use this function only from a
constructor that calls the class function to create an object. For classes
defined with classdef statements, see “Specifying Class Precedence”.

Examples Show function dispatching:

a is an object of class class_a, b is an object of class class_b, and c
is an object of class class_c. The constructor method for class_c
contains the statement superiorto('class_a'). Then, either of the
following two statements:

e = fun(a,c);
e = fun(c,a);

invokes class_c/fun.

If you call a function with two objects having an unspecified relationship,
MATLAB considers the two objects to have equal precedence. In this
case, MATLAB calls the left-most object method. So fun(b,c) calls
class_b/fun, while fun(c,b) calls class_c/fun.

See Also inferiorto

2-3801



support

Purpose Open MathWorks Technical Support Web page

Syntax support

Description support opens the MathWorks Technical Support Web page,
http://www.mathworks.com/support, in the MATLAB Web browser.

This Web page contains resources including

• A search engine, including an option for solutions to common
problems

• Information about installation and licensing

• A patch archive for bug fixes you can download

• Other useful resources

See Also doc, web

2-3802

http://www.mathworks.com/support


surf, surfc

Purpose 3-D shaded surface plot

GUI
Alternatives

To graph selected variables, use the Plot Selector in the
Workspace Browser, or use the Figure Palette Plot Catalog. Manipulate
graphs in plot edit mode with the Property Editor. For details, see
Plotting Tools — Interactive Plotting in the MATLAB Graphics
documentation and Creating Graphics from the Workspace Browser in
the MATLAB Desktop Tools documentation.

Syntax surf(Z)
surf(Z,C)
surf(X,Y,Z)
surf(X,Y,Z,C)
surf(...,'PropertyName',PropertyValue)
surf(axes_handles,...)
surfc(...)
h = surf(...)

Description Use surf and surfc to view mathematical functions over a rectangular
region. surf and surfc create colored parametric surfaces specified by
X, Y, and Z, with color specified by Z or C.

surf(Z) creates a a three-dimensional shaded surface from the z
components in matrix Z, using x = 1:n and y = 1:m, where [m,n] =
size(Z). The height, Z, is a single-valued function defined over a
geometrically rectangular grid. Z specifies the color data as well as
surface height, so color is proportional to surface height.

surf(Z,C) plots the height of Z, a single-valued function defined over a
geometrically rectangular grid, and uses matrix C, assumed to be the
same size as Z, to color the surface.

2-3803



surf, surfc

surf(X,Y,Z) creates a shaded surface using Z for the color data as well
as surface height. X and Y are vectors or matrices defining the x and
y components of a surface. If X and Y are vectors, length(X) = n and
length(Y) = m, where [m,n] = size(Z). In this case, the vertices of the
surface faces are (X(j), Y(i), Z(i,j)) triples. To create X and Y matrices
for arbitrary domains, use the meshgrid function.

surf(X,Y,Z,C) creates a shaded surface, with color defined by C.
MATLAB performs a linear transformation on this data to obtain colors
from the current colormap.

surf(...,'PropertyName',PropertyValue) specifies surface
properties along with the data.

surf(axes_handles,...) and surfc(axes_handles,...) plot into the axes
with handle axes_handle instead of the current axes (gca).

surfc(...) draws a contour plot beneath the surface.

h = surf(...) and h = surfc(...) return a handle to a surfaceplot
graphics object.

Remarks surf and surfc do not accept complex inputs.

Algorithm Abstractly, a parametric surface is parameterized by two independent
variables, i and j, which vary continuously over a rectangle; for
example, 1 ≤ i ≤ m and 1 ≤ j ≤ n. The three functions x(i,j), y(i,j),
and z(i,j) specify the surface. When i and j are integer values,
they define a rectangular grid with integer grid points. The functions
x(i,j), y(i,j), and z(i,j) become three m-by-n matrices, X, Y, and Z.
Surface color is a fourth function, c(i,j), denoted by matrix C.

Each point in the rectangular grid can be thought of as connected to
its four nearest neighbors.

i-1,j
|

i,j-1 - i,j - i,j+1
|

i+1,j

2-3804



surf, surfc

This underlying rectangular grid induces four-sided patches on the
surface. To express this another way, [X(:) Y(:) Z(:)] returns a list
of triples specifying points in 3-space. Each interior point is connected
to the four neighbors inherited from the matrix indexing. Points on
the edge of the surface have three neighbors; the four points at the
corners of the grid have only two neighbors. This defines a mesh of
quadrilaterals or a quad-mesh.

Surface color can be specified in two different ways: at the vertices or at
the centers of each patch. In this general setting, the surface need not
be a single-valued function of x and y. Moreover, the four-sided surface
patches need not be planar. For example, you can have surfaces defined
in polar, cylindrical, and spherical coordinate systems.

The shading function sets the shading. If the shading is interp, C must
be the same size as X, Y, and Z; it specifies the colors at the vertices.
The color within a surface patch is a bilinear function of the local
coordinates. If the shading is faceted (the default) or flat, C(i,j)
specifies the constant color in the surface patch:

(i,j) - (i,j+1)
| C(i,j) |

(i+1,j) - (i+1,j+1)

In this case, C can be the same size as X, Y, and Z and its last row and
column are ignored. Alternatively, its row and column dimensions can
be one less than those of X, Y, and Z.

The surf and surfc functions specify the viewpoint using view(3).

The range of X, Y, and Z or the current setting of the axes XLimMode,
YLimMode, and ZLimMode properties (also set by the axis function)
determines the axis labels.

The range of C or the current setting of the axes CLim and CLimMode
properties (also set by the caxis function) determines the color scaling.
The scaled color values are used as indices into the current colormap.

2-3805



surf, surfc

Examples Display a surfaceplot and contour plot of the peaks surface.

[X,Y,Z] = peaks(30);
surfc(X,Y,Z)
colormap hsv
axis([-3 3 -3 3 -10 5])

Color a sphere with the pattern of +1s and -1s in a Hadamard matrix.

k = 5;
n = 2^k-1;
[x,y,z] = sphere(n);
c = hadamard(2^k);
surf(x,y,z,c);

2-3806



surf, surfc

colormap([1 1 0; 0 1 1])
axis equal

See Also axis, caxis, colormap, contour, delaunay, imagesc, mesh, meshgrid,
pcolor, shading, trisurf, view

Properties for surfaceplot graphics objects

“Surface and Mesh Creation” on page 1-107 for related functions

“Creating Mesh and Surface Plots” in the Getting Started with
MATLAB documentation for background and examples.

Representing a Matrix as a Surface in the MATLAB 3-D Visualization
documentation for further examples

2-3807



surf, surfc

Coloring Mesh and Surface Plots for information about how to control
the coloring of surfaces

2-3808



surf2patch

Purpose Convert surface data to patch data

Syntax fvc = surf2patch(Z)
fvc = surf2patch(Z,C)
fvc = surf2patch(X,Y,Z)
fvc = surf2patch(X,Y,Z,C)
fvc = surf2patch(...,'triangles')
[f,v,c] = surf2patch(...)

Description fvc = surf2patch(h)

converts the geometry and color data from the surface object identified
by the handle h into patch format and returns the face, vertex, and
color data in the struct fvc. You can pass this struct directly to the
patch command.

fvc = surf2patch(Z) calculates the patch data from the surface’s
ZData matrix Z.

fvc = surf2patch(Z,C) calculates the patch data from the surface’s
ZData and CData matrices Z and C.

fvc = surf2patch(X,Y,Z) calculates the patch data from the surface’s
XData, YData, and ZData matrices X, Y, and Z.

fvc = surf2patch(X,Y,Z,C) calculates the patch data from the
surface’s XData, YData, ZData, and CData matrices X, Y, Z, and C.

fvc = surf2patch(...,'triangles') creates triangular faces
instead of the quadrilaterals that compose surfaces.

[f,v,c] = surf2patch(...) returns the face, vertex, and color data
in the three arrays f, v, and c instead of a struct.

Examples The first example uses the sphere command to generate the XData,
YData, and ZData of a surface, which is then converted to a patch. Note
that the ZData (z) is passed to surf2patch as both the third and fourth
arguments — the third argument is the ZData and the fourth argument
is taken as the CData. This is because the patch command does not

2-3809



surf2patch

automatically use the z-coordinate data for the color data, as does the
surface command.

Also, because patch is a low-level command, you must set the view to
3-D and shading to faceted to produce the same results produced by
the surf command.

[x y z] = sphere;
patch(surf2patch(x,y,z,z));
shading faceted; view(3)

In the second example surf2patch calculates face, vertex, and color
data from a surface whose handle has been passed as an argument.

s = surf(peaks);
pause
patch(surf2patch(s));
delete(s)
shading faceted; view(3)

See Also patch, reducepatch, shrinkfaces, surface, surf

“Volume Visualization” on page 1-111 for related functions

2-3810



surface

Purpose Create surface object

Syntax surface(Z)
surface(Z,C)
surface(X,Y,Z)
surface(X,Y,Z,C)
surface(x,y,Z)
surface(...'PropertyName',PropertyValue,...)
h = surface(...)

Properties For a list of properties, see Surface Properties.

Description surface is the low-level function for creating surface graphics objects.
Surfaces are plots of matrix data created using the row and column
indices of each element as the x- and y-coordinates and the value of
each element as the z-coordinate.

surface(Z) plots the surface specified by the matrix Z. Here, Z is a
single-valued function, defined over a geometrically rectangular grid.

surface(Z,C) plots the surface specified by Z and colors it according
to the data in C (see "Examples").

surface(X,Y,Z) uses C = Z, so color is proportional to surface height
above the x-y plane.

surface(X,Y,Z,C) plots the parametric surface specified by X, Y, and
Z, with color specified by C.

surface(x,y,Z), surface(x,y,Z,C) replaces the first two matrix
arguments with vectors and must have length(x) = n and length(y)
= m where [m,n] = size(Z). In this case, the vertices of the surface
facets are the triples (x(j),y(i),Z(i,j)). Note that x corresponds to
the columns of Z and y corresponds to the rows of Z. For a complete
discussion of parametric surfaces, see the surf function.

surface(...'PropertyName',PropertyValue,...) follows the X, Y,
Z, and C arguments with property name/property value pairs to specify

2-3811



surface

additional surface properties. For a description of the properties, see
Surface Properties.

h = surface(...) returns a handle to the created surface object.

Remarks surface does not respect the settings of the figure and axes NextPlot
properties. It simply adds the surface object to the current axes.

If you do not specify separate color data (C), MATLAB uses the matrix
(Z) to determine the coloring of the surface. In this case, color is
proportional to values of Z. You can specify a separate matrix to color
the surface independently of the data defining the area of the surface.

You can specify properties as property name/property value pairs,
structure arrays, and cell arrays (see set and get for examples of how
to specify these data types).

surface provides convenience forms that allow you to omit the property
name for the XData, YData, ZData, and CData properties. For example,

surface('XData',X,'YData',Y,'ZData',Z,'CData',C)

is equivalent to

surface(X,Y,Z,C)

When you specify only a single matrix input argument,

surface(Z)

MATLAB assigns the data properties as if you specified

surface('XData',[1:size(Z,2)],...
'YData',[1:size(Z,1)],...
'ZData',Z,...
'CData',Z)

The axis, caxis, colormap, hold, shading, and view commands set
graphics properties that affect surfaces. You can also set and query

2-3812



surface

surface property values after creating them using the set and get
commands.

Example This example creates a surface using peaks to generate the data, and
colors it using the clown image. The ZData is a 49-by-49 element
matrix, while the CData is a 200-by-320 matrix. You must set the
surface’s FaceColor to texturemap to use ZData and CData of different
dimensions.

load clown
surface(peaks,flipud(X),...

'FaceColor','texturemap',...
'EdgeColor','none',...
'CDataMapping','direct')

colormap(map)
view(-35,45)

2-3813



surface

Note the use of the surface(Z,C) convenience form combined with
property name/property value pairs.

Since the clown data (X) is typically viewed with the image command,
which MATLAB normally displays with 'ij' axis numbering and
direct CDataMapping, this example reverses the data in the vertical
direction using flipud and sets the CDataMapping property to direct.

2-3814



surface

Setting
Default
Properties

You can set default surface properties on the axes, figure, and root
object levels:

set(0,'DefaultSurfaceProperty',PropertyValue...)
set(gcf,'DefaultSurfaceProperty',PropertyValue...)
set(gca,'DefaultSurfaceProperty',PropertyValue...)

where Property is the name of the surface property whose default value
you want to set and PropertyValue is the value you are specifying. Use
set and get to access the surface properties.

See Also ColorSpec, patch, pcolor, surf

Surface Properties for property descriptions

“Surface and Mesh Creation” on page 1-107 and “Object Creation” on
page 1-104 for related functions

Tutorials For examples, see Representing a Matrix as a Surface.

2-3815



Surface Properties

Purpose Surface properties

Creating
Surface
Objects

Use surface to create surface objects.

Modifying
Properties

You can set and query graphics object properties in two ways:

• The Property Editor is an interactive tool that enables you to see and
change object property values.

• The set and get commands enable you to set and query the values of
properties.

To change the default values of properties, see Setting Default Property
Values.

See “Core Graphics Objects” for general information about this type
of object.

Surface
Property
Descriptions

This section lists property names along with the types of values each
accepts. Curly braces { } enclose default values.

AlphaData
m-by-n matrix of double or uint8

The transparency data. A matrix of non-NaN values specifying the
transparency of each face or vertex of the object. The AlphaData
can be of class double or uint8.

MATLAB software determines the transparency in one of three
ways:

• Using the elements of AlphaData as transparency values
(AlphaDataMapping set to none)

• Using the elements of AlphaData as indices into the current
alphamap (AlphaDataMapping set to direct)

2-3816



Surface Properties

• Scaling the elements of AlphaData to range between the
minimum and maximum values of the axes ALim property
(AlphaDataMapping set to scaled, the default)

AlphaDataMapping
none | direct | {scaled}

Transparency mapping method. This property determines how
MATLAB interprets indexed alpha data. This property can be
any of the following:

• none — The transparency values of AlphaData are between 0
and 1 or are clamped to this range (the default).

• scaled — Transform the AlphaData to span the portion of
the alphamap indicated by the axes ALim property, linearly
mapping data values to alpha values.

• direct — use the AlphaData as indices directly into the
alphamap. When not scaled, the data are usually integer
values ranging from 1 to length(alphamap). MATLAB maps
values less than 1 to the first alpha value in the alphamap,
and values greater than length(alphamap) to the last alpha
value in the alphamap. Values with a decimal portion are fixed
to the nearest lower integer. If AlphaData is an array of uint8
integers, then the indexing begins at 0 (i.e., MATLAB maps a
value of 0 to the first alpha value in the alphamap).

AmbientStrength
scalar >= 0 and <= 1

Strength of ambient light. This property sets the strength of
the ambient light, which is a nondirectional light source that
illuminates the entire scene. You must have at least one visible
light object in the axes for the ambient light to be visible. The
axes AmbientLightColor property sets the color of the ambient
light, which is therefore the same on all objects in the axes.

2-3817

../ref/axes_props.html#ALim
../ref/axes_props.html#ALim


Surface Properties

You can also set the strength of the diffuse and specular
contribution of light objects. See the surface DiffuseStrength
and SpecularStrength properties.

Annotation
hg.Annotation object Read Only

Control the display of surface objects in legends. The Annotation
property enables you to specify whether this surface object is
represented in a figure legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Once you have obtained the hg.LegendEntry object, you can set
its IconDisplayStyle property to control whether the surface
object is displayed in a figure legend:

IconDisplayStyle
Value

Purpose

on Represent this surface object in a legend
(default)

off Do not include this surface object in a legend

children Same as on because surface objects do not
have children

Setting the IconDisplayStyle property

These commands set the IconDisplayStyle of a graphics object
with handle hobj to off:

hAnnotation = get(hobj,'Annotation');
hLegendEntry = get(hAnnotation','LegendInformation');
set(hLegendEntry,'IconDisplayStyle','off')

2-3818



Surface Properties

Using the IconDisplayStyle property

See “Controlling Legends” for more information and examples.

BackFaceLighting
unlit | lit | reverselit

Face lighting control. This property determines how faces are lit
when their vertex normals point away from the camera.

• unlit — Face is not lit.

• lit — Face is lit in normal way.

• reverselit — Face is lit as if the vertex pointed towards the
camera.

This property is useful for discriminating between the internal
and external surfaces of an object. See “Back Face Lighting” for
an example.

BeingDeleted
on | {off} Read Only

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in
the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions
that act on a number of different objects. These functions may not
need to perform actions on objects that are going to be deleted,
and therefore, can check the object’s BeingDeleted property
before acting.

BusyAction
cancel | {queue}

2-3819

../ref/surface_props.html#DeleteFcn


Surface Properties

Callback routine interruption. The BusyAction property enables
you to control how MATLAB handles events that potentially
interrupt executing callback routines. If there is a callback
routine executing, callback routines invoked subsequently always
attempt to interrupt it. If the Interruptible property of the
object whose callback is executing is set to on (the default), then
interruption occurs at the next point where the event queue is
processed. If the Interruptible property is off, the BusyAction
property (of the object owning the executing callback) determines
how MATLAB handles the event. The choices are

• cancel— Discard the event that attempted to execute a second
callback routine.

• queue — Queue the event that attempted to execute a second
callback routine until the current callback finishes.

ButtonDownFcn
function handle, cell array containing function handle and
additional arguments, or string (not recommended)

Button press callback function. A callback function that executes
whenever you press a mouse button while the pointer is over the
surface object.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

Set this property to a function handle that references the callback.
The function must define at least two input arguments (handle
of object associated with the button down event and an event
structure, which is empty for this property). For example, the
following function takes different action depending on what type
of selection was made:

function button_down(src,evnt)
% src - the object that is the source of the event
% evnt - empty for this property

sel_typ = get(gcbf,'SelectionType')

2-3820



Surface Properties

switch sel_typ
case 'normal'

disp('User clicked left-mouse button')
set(src,'Selected','on')

case 'extend'
disp('User did a shift-click')
set(src,'Selected','on')

case 'alt'
disp('User did a control-click')
set(src,'Selected','on')
set(src,'SelectionHighlight','off')

end
end

Suppose h is the handle of a surface object and that the
button_down function is on your MATLAB path. The following
statement assigns the function above to the ButtonDownFcn:

set(h,'ButtonDownFcn',@button_down)

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

CData
matrix (of type double)

Vertex colors. A matrix containing values that specify the color
at every point in ZData.

Mapping CData to a Colormap

You can specify color as indexed values or true color. Indexed color
data specifies a single value for each vertex. These values are
either scaled to map linearly into the current colormap (see caxis)
or interpreted directly as indices into the colormap, depending on
the setting of the CDataMapping property.

CData as True Color

2-3821



Surface Properties

True color defines an RGB value for each vertex. If the coordinate
data (XData, for example) are contained in m-by-n matrices, then
CData must be an m-by-n-3 array. The first page contains the red
components, the second the green components, and the third the
blue components of the colors.

Texturemapping the Surface FaceColor

If you set the FaceColor property to texturemap, CData does not
need to be the same size as ZData, but must be of type double
or uint8. In this case, MATLAB maps CData to conform to the
surface defined by ZData.

CDataMapping
{scaled} | direct

Direct or scaled color mapping. This property determines how
MATLAB interprets indexed color data used to color the surface.
(If you use true color specification for CData, this property has
no effect.)

• scaled — Transform the color data to span the portion of the
colormap indicated by the axes CLim property, linearly mapping
data values to colors. See the caxis reference page for more
information on this mapping.

• direct — Use the color data as indices directly into the
colormap. The color data should then be integer values ranging
from 1 to length(colormap). MATLAB maps values less than
1 to the first color in the colormap, and values greater than
length(colormap) to the last color in the colormap. Values
with a decimal portion are fixed to the nearest lower integer.

Children
matrix of handles

Always the empty matrix; surface objects have no children.

2-3822



Surface Properties

Clipping
{on} | off

Clipping to axes rectangle. When Clipping is on, MATLAB does
not display any portion of the surface that is outside the axes
rectangle.

CreateFcn
function handle, cell array containing function handle and
additional arguments, or string (not recommended)

Callback function executed during object creation. This property
defines a callback function that executes when MATLAB creates a
surface object. You must define this property as a default value
for surfaces or set the CreateFcn property during object creation.

For example, the following statement creates a surface (assuming
x, y, z, and c are defined), and executes the function referenced by
the function handle @myCreateFcn.

surface(x,y,z,c,'CreateFcn',@myCreateFcn)

MATLAB executes this routine after setting all surface properties.
Setting this property on an existing surface object has no effect.

The handle of the object whose CreateFcn is being executed is
passed by MATLAB as the first argument to the callback function
and is also accessible through the root CallbackObject property,
which you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

DeleteFcn
function handle, cell array containing function handle and
additional arguments, or string (not recommended)

2-3823



Surface Properties

Delete surface callback function. A callback function that executes
when you delete the surface object (for example, when you issue
a delete command or clear the axes cla or figure clf). For
example, the following function displays object property data
before the object is deleted.

function delete_fcn(src,evnt)
% src - the object that is the source of the event
% evnt - empty for this property

obj_tp = get(src,'Type');
disp([obj_tp, ' object deleted'])
disp('Its user data is:')
disp(get(src,'UserData'))

end

MATLAB executes the function before deleting the object’s
properties so these values are available to the callback function.
The function must define at least two input arguments (handle
of object being deleted and an event structure, which is empty
for this property)

The handle of the object whose DeleteFcn is being executed is
passed by MATLAB as the first argument to the callback function
and is also accessible through the root CallbackObject property,
which you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

DiffuseStrength
scalar >= 0 and <= 1

Intensity of diffuse light. This property sets the intensity of the
diffuse component of the light falling on the surface. Diffuse light
comes from light objects in the axes.

2-3824



Surface Properties

You can also set the intensity of the ambient and specular
components of the light on the surface object. See the
AmbientStrength and SpecularStrength properties.

DisplayName
string (default is empty string)

String used by legend for this surface object. The legend function
uses the string defined by the DisplayName property to label this
surface object in the legend.

• If you specify string arguments with the legend function,
DisplayName is set to this surface object’s corresponding string
and that string is used for the legend.

• If DisplayName is empty, legend creates a string of the form,
['data' n], where n is the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

• If you edit the string directly in an existing legend, DisplayName
is set to the edited string.

• If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

• To add programmatically a legend that uses the DisplayName
string, call legend with the toggle or show option.

See “Controlling Legends” for more examples.

EdgeAlpha
{scalar = 1} | flat | interp

Transparency of the surface edges. This property can be any of
the following:

• scalar — A single non-Nan scalar value between 0 and 1
that controls the transparency of all the edges of the object.

2-3825



Surface Properties

1 (the default) means fully opaque and 0 means completely
transparent.

• flat— The alpha data (AlphaData) value for the first vertex of
the face determines the transparency of the edges.

• interp — Linear interpolation of the alpha data (AlphaData)
values at each vertex determines the transparency of the edge.

Note that you must specify AlphaData as a matrix equal in size to
ZData to use flat or interp EdgeAlpha.

EdgeColor
{ColorSpec} | none | flat | interp

Color of the surface edge. This property determines how MATLAB
colors the edges of the individual faces that make up the surface:

• ColorSpec — A three-element RGB vector or one of the
MATLAB predefined names, specifying a single color for edges.
The default EdgeColor is black. See ColorSpec for more
information on specifying color.

• none — Edges are not drawn.

• flat— The CData value of the first vertex for a face determines
the color of each edge.

2-3826

../ref/surface_props.html#AlphaData
../ref/surface_props.html#ZData


Surface Properties

• interp— Linear interpolation of the CData values at the face
vertices determines the edge color.

EdgeLighting
{none} | flat | gouraud | phong

Algorithm used for lighting calculations. This property selects the
algorithm used to calculate the effect of light objects on surface
edges. Choices are

• none — Lights do not affect the edges of this object.

• flat — The effect of light objects is uniform across each edge
of the surface.

• gouraud — The effect of light objects is calculated at the
vertices and then linearly interpolated across the edge lines.

• phong — The effect of light objects is determined by
interpolating the vertex normals across each edge line and
calculating the reflectance at each pixel. Phong lighting
generally produces better results than Gouraud lighting, but
takes longer to render.

EraseMode
{normal} | none | xor | background

Erase mode. This property controls the technique MATLAB
uses to draw and erase surface objects. Alternative erase modes
are useful for creating animated sequences, where control of
the way individual objects are redrawn is necessary to improve
performance and obtain the desired effect.

• normal— Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all
objects are rendered correctly. This mode produces the most
accurate picture, but is the slowest. The other modes are faster,
but do not perform a complete redraw and are therefore less
accurate.

2-3827



Surface Properties

• none— Do not erase the surface when it is moved or destroyed.
While the object is still visible on the screen after erasing with
EraseMode none, you cannot print it because MATLAB stores
no information about its former location.

• xor— Draw and erase the surface by performing an exclusive
OR (XOR) with each pixel index of the screen behind it. Erasing
the surface does not damage the color of the objects behind
it. However, surface color depends on the color of the screen
behind it and is correctly colored only when over the axes
background Color, or the figure background Color if the axes
Color is set to none.

• background — Erase the surface by drawing it in the axes
background Color, or the figure background Color if the axes
Color is set to none. This damages objects that are behind the
erased object, but surface objects are always properly colored.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects is
normal. This means graphics objects created with EraseMode set
to none, xor, or background can look different on screen than on
paper. On screen, MATLAB may mathematically combine layers
of colors (for example, performing an XOR of a pixel color with
that of the pixel behind it) and ignore three-dimensional sorting
to obtain greater rendering speed. However, these techniques are
not applied to the printed output.

You can use the MATLAB getframe command or other screen
capture application to create an image of a figure containing
nonnormal mode objects.

FaceAlpha
{scalar = 1} | flat | interp | texturemap

Transparency of the surface faces. This property can be any of
the following:

2-3828



Surface Properties

• scalar — A single non-NaN scalar value between 0 and 1
that controls the transparency of all the faces of the object.
1 (the default) means fully opaque and 0 means completely
transparent (invisible).

• flat — The values of the alpha data (AlphaData) determine
the transparency for each face. The alpha data at the first
vertex determine the transparency of the entire face.

• interp— Bilinear interpolation of the alpha data (AlphaData)
at each vertex determines the transparency of each face.

• texturemap— Use transparency for the texture map.

Note that you must specify AlphaData as a matrix equal in size to
ZData to use flat or interp FaceAlpha.

FaceColor
ColorSpec | none | {flat} | interp | texturemap

Color of the surface face. This property can be any of the following:

• ColorSpec — A three-element RGB vector or one of the
MATLAB predefined names, specifying a single color for faces.
See ColorSpec for more information on specifying color.

• none — Do not draw faces. Note that edges are drawn
independently of faces.

• flat — The values of CData determine the color for each face
of the surface. The color data at the first vertex determine the
color of the entire face.

• interp — Bilinear interpolation of the values at each vertex
(the CData) determines the coloring of each face.

• texturemap— Texture map the CData to the surface. MATLAB
transforms the color data so that it conforms to the surface.
(See the texture mapping example.)

FaceLighting
{none} | flat | gouraud | phong

2-3829

../ref/surface_props.html#AlphaData
../ref/surface_props.html#ZData


Surface Properties

Algorithm used for lighting calculations. This property selects
the algorithm used to calculate the effect of light objects on the
surface. Choices are

• none — Lights do not affect the faces of this object.

• flat— The effect of light objects is uniform across the faces of
the surface. Select this choice to view faceted objects.

• gouraud — The effect of light objects is calculated at the
vertices and then linearly interpolated across the faces. Select
this choice to view curved surfaces.

• phong — The effect of light objects is determined by
interpolating the vertex normals across each face and
calculating the reflectance at each pixel. Select this choice to
view curved surfaces. Phong lighting generally produces better
results than Gouraud lighting, but takes longer to render.

HandleVisibility
{on} | callback | off

Control access to object’s handle by command-line users and GUIs.
This property determines when an object’s handle is visible in its
parent’s list of children. This property is useful for preventing
command-line users from accidentally drawing into or deleting a
figure that contains only user interface devices (such as a dialog
box).

Handles are always visible when HandleVisibility is on.

Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by
callback routines, but not from within functions invoked from
the command line. This provides a means to protect GUIs from
command-line users, while allowing callback routines to have
complete access to object handles.

2-3830



Surface Properties

Setting HandleVisibility to off makes handles invisible at
all times. This might be necessary when a callback routine
invokes a function that could potentially damage the GUI (such as
evaluating a user-typed string), and so temporarily hides its own
handles during the execution of that function.

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

You can set the root ShowHiddenHandles property to on to
make all handles visible, regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties).

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties, and pass it to any
function that operates on handles.

HitTest
{on} | off

Selectable by mouse click. HitTest determines if the surface can
become the current object (as returned by the gco command and
the figure CurrentObject property) as a result of a mouse click on
the surface. If HitTest is off, clicking on the surface selects the
object below it (which may be the axes containing it).

Interruptible
{on} | off

2-3831



Surface Properties

Callback routine interruption mode. The Interruptible property
controls whether a surface callback routine can be interrupted by
subsequently invoked callback routines. Only callback routines
defined for the ButtonDownFcn are affected by the Interruptible
property. MATLAB checks for events that can interrupt a callback
routine only when it encounters a drawnow, figure, getframe,
or pause command in the routine. See the BusyAction property
for related information.

LineStyle
{-} | -- | : | -. | none

Edge line type. This property determines the line style used to
draw surface edges. The available line styles are shown in this
table.

Symbol Line Style

Solid line (default)

Dashed line

: Dotted line

. Dash-dot line

none No line

LineWidth
scalar

Edge line width. The width of the lines in points used to draw
surface edges. The default width is 0.5 points (1 point = 1/72 inch).

Marker
marker symbol (see table)

Marker symbol. The Marker property specifies symbols that are
displayed at vertices. You can set values for the Marker property
independently from the LineStyle property.

2-3832



Surface Properties

You can specify these markers.

Marker Specifier Description

+ Plus sign

o Circle

* Asterisk

. Point

x Cross

s Square

d Diamond

^ Upward-pointing triangle

v Downward-pointing triangle

> Right-pointing triangle

< Left-pointing triangle

p Five-pointed star (pentagram)

h Six-pointed star (hexagram)

none No marker (default)

MarkerEdgeColor
none | {auto} | flat | ColorSpec

Marker edge color. The color of the marker or the edge color for
filled markers (circle, square, diamond, pentagram, hexagram,
and the four triangles).

• none specifies no color, which makes nonfilled markers
invisible.

• auto uses the same color as the EdgeColor property.

• flat uses the CData value of the vertex to determine the color
of the maker edge.

2-3833



Surface Properties

• ColorSpec defines a single color to use for the edge (see
ColorSpec for more information).

MarkerFaceColor
{none} | auto | flat | ColorSpec

Marker face color. The fill color for markers that are closed shapes
(circle, square, diamond, pentagram, hexagram, and the four
triangles).

• none makes the interior of the marker transparent, allowing
the background to show through.

• auto uses the axes Color for the marker face color.

• flat uses the CData value of the vertex to determine the color
of the face.

• ColorSpec defines a single color to use for all markers on the
surface (see ColorSpec for more information).

MarkerSize
size in points

Marker size. A scalar specifying the marker size, in points. The
default value for MarkerSize is 6 points (1 point = 1/72 inch).
Note that MATLAB draws the point marker at 1/3 the specified
marker size.

MeshStyle
{both} | row | column

Row and column lines. This property specifies whether to draw
all edge lines or just row or column edge lines.

• both draws edges for both rows and columns.

• row draws row edges only.

• column draws column edges only.

2-3834

../ref/axes_props.html#Color


Surface Properties

NormalMode
{auto} | manual

MATLAB generated or user-specified normal vectors. When this
property is auto, MATLAB calculates vertex normals based on
the coordinate data. If you specify your own vertex normals,
MATLAB sets this property to manual and does not generate its
own data. See also the VertexNormals property.

Parent
handle of axes, hggroup, or hgtransform

Parent of surface object. This property contains the handle of the
surface object’s parent. The parent of a surface object is the axes,
hggroup, or hgtransform object that contains it.

See “Objects That Can Contain Other Objects” for more
information on parenting graphics objects.

Selected
on | {off}

Is object selected? When this property is on, MATLAB
displays a dashed bounding box around the surface if the
SelectionHighlight property is also on. You can, for example,
define the ButtonDownFcn to set this property, allowing users to
select the object with the mouse.

SelectionHighlight
{on} | off

Objects are highlighted when selected. When the Selected
property is on, MATLAB indicates the selected state by
drawing a dashed bounding box around the surface. When
SelectionHighlight is off, MATLAB does not draw the handles.

SpecularColorReflectance
scalar in the range 0 to 1

2-3835



Surface Properties

Color of specularly reflected light. When this property is 0, the
color of the specularly reflected light depends on both the color of
the object from which it reflects and the color of the light source.
When set to 1, the color of the specularly reflected light depends
only on the color or the light source (i.e., the light object Color
property). The proportions vary linearly for values in between.

SpecularExponent
scalar >= 1

Harshness of specular reflection. This property controls the size
of the specular spot. Most materials have exponents in the range
of 5 to 20.

SpecularStrength
scalar >= 0 and <= 1

Intensity of specular light. This property sets the intensity of the
specular component of the light falling on the surface. Specular
light comes from light objects in the axes.

You can also set the intensity of the ambient and diffuse
components of the light on the surface object. See the
AmbientStrength and DiffuseStrength properties. Also see the
material function.

Tag
string

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This is
particularly useful when you are constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callback
routines. You can define Tag as any string.

Type
string (read only)

2-3836



Surface Properties

Class of the graphics object. The class of the graphics object. For
surface objects, Type is always the string 'surface'.

UIContextMenu
handle of a uicontextmenu object

Associate a context menu with the surface. Assign this property
the handle of a uicontextmenu object created in the same figure
as the surface. Use the uicontextmenu function to create the
context menu. MATLAB displays the context menu whenever
you right-click over the surface.

UserData
matrix

User-specified data. Any matrix you want to associate with the
surface object. MATLAB does not use this data, but you can
access it using the set and get commands.

VertexNormals
vector or matrix

Surface normal vectors. This property contains the vertex normals
for the surface. MATLAB generates this data to perform lighting
calculations. You can supply your own vertex normal data, even
if it does not match the coordinate data. This can be useful to
produce interesting lighting effects.

Visible
{on} | off

Surface object visibility. By default, all surfaces are visible. When
set to off, the surface is not visible, but still exists, and you can
query and set its properties.

XData
vector or matrix

2-3837



Surface Properties

X-coordinates. The x-position of the surface points. If you specify
a row vector, surface replicates the row internally until it has the
same number of columns as ZData.

YData
vector or matrix

Y-coordinates. The y-position of the surface points. If you specify
a row vector, surface replicates the row internally until it has the
same number of rows as ZData.

ZData
matrix

Z-coordinates. The z-position of the surfaceplot data points. See
the Description section for more information.

See Also surface

2-3838



Surfaceplot Properties

Purpose Define surfaceplot properties

Modifying
Properties

You can set and query graphics object properties in two ways:

• The Property Editor is an interactive tool that enables you to see and
change object property values.

• The set and get commands enable you to set and query the values of
properties.

Note that you cannot define default properties for surfaceplot objects.

See Plot Objects for information on surfaceplot objects.

Surfaceplot
Property
Descriptions

This section lists property names along with the types of values each
accepts. Curly braces { } enclose default values.

AlphaData
m-by-n matrix of double or uint8

The transparency data. A matrix of non-NaN values specifying the
transparency of each face or vertex of the object. The AlphaData
can be of class double or uint8.

MATLAB software determines the transparency in one of three
ways:

• Using the elements of AlphaData as transparency values
(AlphaDataMapping set to none)

• Using the elements of AlphaData as indices into the current
alphamap (AlphaDataMapping set to direct)

• Scaling the elements of AlphaData to range between the
minimum and maximum values of the axes ALim property
(AlphaDataMapping set to scaled, the default)

AlphaDataMapping
{none} | direct| scaled

2-3839

../ref/axes_props.html#ALim


Surfaceplot Properties

Transparency mapping method. This property determines how
MATLAB interprets indexed alpha data. It can be any of the
following:

• none — The transparency values of AlphaData are between 0
and 1 or are clamped to this range (the default).

• scaled — Transform the AlphaData to span the portion of
the alphamap indicated by the axes ALim property, linearly
mapping data values to alpha values.

• direct — Use the AlphaData as indices directly into the
alphamap. When not scaled, the data are usually integer
values ranging from 1 to length(alphamap). MATLAB maps
values less than 1 to the first alpha value in the alphamap, and
values greater than length(alphamap) to the last alpha value
in the alphamap. Values with a decimal portion are fixed to
the nearest, lower integer. If AlphaData is an array of uint8
integers, then the indexing begins at 0 (i.e., MATLAB maps a
value of 0 to the first alpha value in the alphamap).

AmbientStrength
scalar >= 0 and <= 1

Strength of ambient light. This property sets the strength of
the ambient light, which is a nondirectional light source that
illuminates the entire scene. You must have at least one visible
light object in the axes for the ambient light to be visible. The
axes AmbientLightColor property sets the color of the ambient
light, which is therefore the same on all objects in the axes.

You can also set the strength of the diffuse and specular
contribution of light objects. See the surfaceplot
DiffuseStrength and SpecularStrength properties.

Annotation
hg.Annotation object Read Only

2-3840



Surfaceplot Properties

Control the display of surfaceplot objects in legends. The
Annotation property enables you to specify whether this
surfaceplot object is represented in a figure legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Once you have obtained the hg.LegendEntry object, you can set
its IconDisplayStyle property to control whether the surfaceplot
object is displayed in a figure legend:

IconDisplayStyle
Value

Purpose

on Represent this surfaceplot object in a legend
(default)

off Do not include this surfaceplot object in a
legend

children Same as on because surfaceplot objects do
not have children

Setting the IconDisplayStyle property

These commands set the IconDisplayStyle of a graphics object
with handle hobj to off:

hAnnotation = get(hobj,'Annotation');
hLegendEntry = get(hAnnotation','LegendInformation');
set(hLegendEntry,'IconDisplayStyle','off')

Using the IconDisplayStyle property

See “Controlling Legends” for more information and examples.

2-3841



Surfaceplot Properties

BackFaceLighting
unlit | lit | reverselit

Face lighting control. This property determines how faces are lit
when their vertex normals point away from the camera.

• unlit — Face is not lit.

• lit — Face is lit in normal way.

• reverselit — Face is lit as if the vertex pointed towards the
camera.

This property is useful for discriminating between the internal and
external surfaces of an object. See Back Face Lighting for an example.

BeingDeleted
on | {off} Read Only

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in
the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions
that act on a number of different objects. These functions might
not need to perform actions on objects if the objects are going to
be deleted, and therefore, can check the object’s BeingDeleted
property before acting.

BusyAction
cancel | {queue}

Callback routine interruption. The BusyAction property enables
you to control how MATLAB handles events that potentially
interrupt executing callbacks. If there is a callback function

2-3842



Surfaceplot Properties

executing, callbacks invoked subsequently always attempt to
interrupt it.

If the Interruptible property of the object whose callback is
executing is set to on (the default), then interruption occurs
at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the
object owning the executing callback) determines how MATLAB
handles the event. The choices are

• cancel— Discard the event that attempted to execute a second
callback routine.

• queue — Queue the event that attempted to execute a second
callback routine until the current callback finishes.

ButtonDownFcn
cancel | {queue}

Callback routine interruption. The BusyAction property enables
you to control how MATLAB handles events that potentially
interrupt executing callbacks. If there is a callback function
executing, callbacks invoked subsequently always attempt to
interrupt it.

If the Interruptible property of the object whose callback is
executing is set to on (the default), then interruption occurs
at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the
object owning the executing callback) determines how MATLAB
handles the event. The choices are

• cancel— Discard the event that attempted to execute a second
callback routine.

• queue — Queue the event that attempted to execute a second
callback routine until the current callback finishes.

2-3843



Surfaceplot Properties

CData
matrix

Vertex colors. A matrix containing values that specify the color
at every point in ZData. If you set the FaceColor property to
texturemap, CData does not need to be the same size as ZData.
In this case, MATLAB maps CData to conform to the surfaceplot
defined by ZData.

You can specify color as indexed values or true color. Indexed
color data specifies a single value for each vertex. These values
are either scaled to map linearly into the current colormap (see
caxis) or interpreted directly as indices into the colormap,
depending on the setting of the CDataMapping property. Note
that any non-texture data passed as an input argument must
be of type double.

True color defines an RGB value for each vertex. If the coordinate
data (XData, for example) are contained in m-by-n matrices, then
CData must be an m-by-n-by-3 array. The first page contains the
red components, the second the green components, and the third
the blue components of the colors.

CDataMapping
{scaled} | direct

Direct or scaled color mapping. This property determines
how MATLAB interprets indexed color data used to color the
surfaceplot. (If you use true color specification for CData, this
property has no effect.)

• scaled — Transform the color data to span the portion of the
colormap indicated by the axes CLim property, linearly mapping
data values to colors. See the caxis reference page for more
information on this mapping.

• direct — Use the color data as indices directly into the
colormap. The color data should then be integer values ranging

2-3844



Surfaceplot Properties

from 1 to length(colormap). MATLAB maps values less than
1 to the first color in the colormap, and values greater than
length(colormap) to the last color in the colormap. Values
with a decimal portion are fixed to the nearest lower integer.

CDataMode
{auto} | manual

Use automatic or user-specified color data values. If you specify
CData, MATLAB sets this property to manual and uses the CData
values to color the surfaceplot.

If you set CDataMode to auto after having specified CData,
MATLAB resets the color data of the surfaceplot to that defined
by ZData, overwriting any previous values for CData.

CDataSource
string (MATLAB variable)

Link CData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
CData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change CData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

2-3845



Surfaceplot Properties

Note If you change one data source property to return data of a
different dimension, you might cause the function to generate a
warning and not render the graph until you have changed all data
source properties to appropriate values.

Children
matrix of handles

Always the empty matrix; surfaceplot objects have no children.

Clipping
{on} | off

Clipping to axes rectangle. When Clipping is on, MATLAB does
not display any portion of the surfaceplot that is outside the axes
rectangle.

CreateFcn
string or function handle

Callback routine executed during object creation. This property
defines a callback that executes when MATLAB creates an object.
You must specify the callback during the creation of the object.
For example,

graphicfcn(y,'CreateFcn',@CallbackFcn)

where @CallbackFcn is a function handle that references the
callback function and graphicfcn is the plotting function which
creates this object.

MATLAB executes this routine after setting all other object
properties. Setting this property on an existing object has no
effect.

2-3846



Surfaceplot Properties

The handle of the object whose CreateFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

DeleteFcn
string or function handle

Callback executed during object deletion. A callback that executes
when this object is deleted (e.g., this might happen when you issue
a delete command on the object, its parent axes, or the figure
containing it). MATLAB executes the callback before destroying
the object’s properties so the callback routine can query these
values.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
can be queried using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

See the BeingDeleted property for related information.

DiffuseStrength
scalar >= 0 and <= 1

Intensity of diffuse light. This property sets the intensity of the
diffuse component of the light falling on the surface. Diffuse light
comes from light objects in the axes.

You can also set the intensity of the ambient and specular
components of the light on the object. See the AmbientStrength
and SpecularStrength properties.

2-3847



Surfaceplot Properties

DisplayName
string (default is empty string)

String used by legend for this surfaceplot object. The legend
function uses the string defined by the DisplayName property to
label this surfaceplot object in the legend.

• If you specify string arguments with the legend function,
DisplayName is set to this surfaceplot object’s corresponding
string and that string is used for the legend.

• If DisplayName is empty, legend creates a string of the form,
['data' n], where n is the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

• If you edit the string directly in an existing legend, DisplayName
is set to the edited string.

• If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

• To add programmatically a legend that uses the DisplayName
string, call legend with the toggle or show option.

See “Controlling Legends” for more examples.

EdgeAlpha
{scalar = 1} | flat | interp

Transparency of the patch and surface edges. This property can
be any of the following:

• scalar — A single non-Nan scalar value between 0 and 1
that controls the transparency of all the edges of the object.
1 (the default) means fully opaque and 0 means completely
transparent.

• flat— The alpha data (AlphaData) value for the first vertex of
the face determines the transparency of the edges.

2-3848



Surfaceplot Properties

• interp — Linear interpolation of the alpha data (AlphaData)
values at each vertex determines the transparency of the edge.

Note that you must specify AlphaData as a matrix equal in size to ZData
to use flat or interp EdgeAlpha.

EdgeColor
{ColorSpec} | none | flat | interp

Color of the surfaceplot edge. This property determines how
MATLAB colors the edges of the individual faces that make up
the surface:

• ColorSpec — A three-element RGB vector or one of the
MATLAB predefined names, specifying a single color for edges.
The default EdgeColor is black. See ColorSpec for more
information on specifying color.

• none — Edges are not drawn.

• flat— The CData value of the first vertex for a face determines
the color of each edge.

• interp— Linear interpolation of the CData values at the face
vertices determines the edge color.

2-3849

../ref/surface_props.html#AlphaData
../ref/surface_props.html#ZData


Surfaceplot Properties

EdgeLighting
{none} | flat | gouraud | phong

Algorithm used for lighting calculations. This property selects
the algorithm used to calculate the effect of light objects on
surfaceplot edges. Choices are

• none — Lights do not affect the edges of this object.

• flat — The effect of light objects is uniform across each edge
of the surface.

• gouraud — The effect of light objects is calculated at the
vertices and then linearly interpolated across the edge lines.

• phong — The effect of light objects is determined by
interpolating the vertex normals across each edge line and
calculating the reflectance at each pixel. Phong lighting
generally produces better results than Gouraud lighting, but
takes longer to render.

EraseMode
{normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses
to draw and erase objects and their children. Alternative erase
modes are useful for creating animated sequences, where control
of the way individual objects are redrawn is necessary to improve
performance and obtain the desired effect.

• normal— Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all
objects are rendered correctly. This mode produces the most
accurate picture, but is the slowest. The other modes are faster,
but do not perform a complete redraw and are therefore less
accurate.

• none— Do not erase objects when they are moved or destroyed.
While the objects are still visible on the screen after erasing

2-3850



Surfaceplot Properties

with EraseMode none, you cannot print these objects because
MATLAB stores no information about their former locations.

• xor — Draw and erase the object by performing an exclusive
OR (XOR) with each pixel index of the screen behind it. Erasing
the object does not damage the color of the objects behind it.
However, the color of the erased object depends on the color of
the screen behind it and it is correctly colored only when it is
over the axes background color (or the figure background color
if the axes Color property is set to none). That is, it isn’t erased
correctly if there are objects behind it.

• background — Erase the graphics objects by redrawing them
in the axes background color, (or the figure background color
if the axes Color property is set to none). This damages other
graphics objects that are behind the erased object, but the
erased object is always properly colored.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB can mathematically combine
layers of colors (e.g., performing an XOR on a pixel color with that
of the pixel behind it) and ignore three-dimensional sorting to
obtain greater rendering speed. However, these techniques are
not applied to the printed output.

Set the axes background color with the axes Color property. Set
the figure background color with the figure Color property.

You can use the MATLAB getframe command or other screen
capture applications to create an image of a figure containing
nonnormal mode objects.

FaceAlpha
{scalar = 1} | flat | interp | texturemap

2-3851



Surfaceplot Properties

Transparency of the surfaceplot faces. This property can be any of
the following:

• scalar — A single non-NaN scalar value between 0 and 1
that controls the transparency of all the faces of the object.
1 (the default) means fully opaque and 0 means completely
transparent (invisible).

• flat — The values of the alpha data (AlphaData) determine
the transparency for each face. The alpha data at the first
vertex determine the transparency of the entire face.

• interp— Bilinear interpolation of the alpha data (AlphaData)
at each vertex determines the transparency of each face.

• texturemap— Use transparency for the texture map.

Note that you must specify AlphaData as a matrix equal in size to
ZData to use flat or interp FaceAlpha.

FaceColor
ColorSpec | none | {flat} | interp

Color of the surfaceplot face. This property can be any of the
following:

• ColorSpec — A three-element RGB vector or one of the
MATLAB predefined names, specifying a single color for faces.
See ColorSpec for more information on specifying color.

• none — Do not draw faces. Note that edges are drawn
independently of faces.

• flat — The values of CData determine the color for each face
of the surface. The color data at the first vertex determine the
color of the entire face.

• interp — Bilinear interpolation of the values at each vertex
(the CData) determines the coloring of each face.

2-3852

../ref/surface_props.html#AlphaData
../ref/surface_props.html#ZData


Surfaceplot Properties

• texturemap— Texture map the Cdata to the surface. MATLAB
transforms the color data so that it conforms to the surface.
(See the texture mapping example for surface.)

FaceLighting
{none} | flat | gouraud | phong

Algorithm used for lighting calculations. This property selects
the algorithm used to calculate the effect of light objects on the
surface. Choices are

• none — Lights do not affect the faces of this object.

• flat— The effect of light objects is uniform across the faces of
the surface. Select this choice to view faceted objects.

• gouraud — The effect of light objects is calculated at the
vertices and then linearly interpolated across the faces. Select
this choice to view curved surfaces.

• phong — The effect of light objects is determined by
interpolating the vertex normals across each face and
calculating the reflectance at each pixel. Select this choice to
view curved surfaces. Phong lighting generally produces better
results than Gouraud lighting, but takes longer to render.

HandleVisibility
{on} | callback | off

Control access to object’s handle by command-line users and GUIs.
This property determines when an object’s handle is visible in
its parent’s list of children. HandleVisibility is useful for
preventing command-line users from accidentally accessing
objects that you need to protect for some reason.

• on—Handles are always visible when HandleVisibility is on.

• callback — Setting HandleVisibility to callback causes
handles to be visible from within callback routines or functions
invoked by callback routines, but not from within functions
invoked from the command line. This provides a means to

2-3853



Surfaceplot Properties

protect GUIs from command-line users, while allowing callback
routines to have access to object handles.

• off — Setting HandleVisibility to off makes handles
invisible at all times. This might be necessary when a callback
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string) and so temporarily
hides its own handles during the execution of that function.

Functions Affected by Handle Visibility

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

Properties Affected by Handle Visibility

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

Overriding Handle Visibility

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties). See also findall.

Handle Validity

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties and pass it to any
function that operates on handles.

2-3854



Surfaceplot Properties

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

HitTest
{on} | off

Selectable by mouse click. HitTest determines whether this object
can become the current object (as returned by the gco command
and the figure CurrentObject property) as a result of a mouse
click on the objects that compose the area graph. If HitTest
is off, clicking this object selects the object below it (which is
usually the axes containing it).

Interruptible
{on} | off

Callback routine interruption mode. The Interruptible property
controls whether an object’s callback can be interrupted by
callbacks invoked subsequently.

Only callbacks defined for the ButtonDownFcn property are
affected by the Interruptible property. MATLAB checks for
events that can interrupt a callback only when it encounters a
drawnow, figure, getframe, or pause command in the routine.
See the BusyAction property for related information.

Setting Interruptible to on allows any graphics object’s callback
to interrupt callback routines originating from a bar property.
Note that MATLAB does not save the state of variables or the
display (e.g., the handle returned by the gca or gcf command)
when an interruption occurs.

LineStyle
{-} | -- | : | -. | none

2-3855



Surfaceplot Properties

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

Specifier
String Line Style

- Solid line (default)

-- Dashed line

: Dotted line

-. Dash-dot line

none No line

You can use LineStyle none when you want to place a marker
at each point but do not want the points connected with a line
(see the Marker property).

LineWidth
scalar

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = 1/72 inch). The default LineWidth is 0.5
points.

Marker
character (see table)

Marker symbol. The Marker property specifies the type of markers
that are displayed at plot vertices. You can set values for the
Marker property independently from the LineStyle property.
Supported markers include those shown in the following table.

Marker Specifier Description

+ Plus sign

o Circle

2-3856



Surfaceplot Properties

Marker Specifier Description

* Asterisk

. Point

x Cross

s Square

d Diamond

^ Upward-pointing triangle

v Downward-pointing triangle

> Right-pointing triangle

< Left-pointing triangle

p Five-pointed star (pentagram)

h Six-pointed star (hexagram)

none No marker (default)

MarkerEdgeColor
none | {auto} | flat | ColorSpec

Marker edge color. The color of the marker or the edge color for
filled markers (circle, square, diamond, pentagram, hexagram,
and the four triangles).

• none specifies no color, which makes nonfilled markers
invisible.

• auto uses the same color as the EdgeColor property.

• flat uses the CData value of the vertex to determine the color
of the maker edge.

• ColorSpec defines a single color to use for the edge (see
ColorSpec for more information).

MarkerFaceColor
{none} | auto | flat | ColorSpec

2-3857



Surfaceplot Properties

Marker face color. The fill color for markers that are closed shapes
(circle, square, diamond, pentagram, hexagram, and the four
triangles).

• none makes the interior of the marker transparent, allowing
the background to show through.

• auto uses the axes Color for the marker face color.

• flat uses the CData value of the vertex to determine the color
of the face.

• ColorSpec defines a single color to use for all markers on the
surfaceplot (see ColorSpec for more information).

MarkerSize
size in points

Marker size. A scalar specifying the size of the marker in points.
The default value for MarkerSize is 6 points (1 point = 1/72 inch).
Note that MATLAB draws the point marker (specified by the '.'
symbol) at one-third the specified size.

MeshStyle
{both} | row | column

Row and column lines. This property specifies whether to draw
all edge lines or just row or column edge lines.

• both draws edges for both rows and columns.

• row draws row edges only.

• column draws column edges only.

NormalMode
{auto} | manual

MATLAB generated or user-specified normal vectors. When this
property is auto, MATLAB calculates vertex normals based on
the coordinate data. If you specify your own vertex normals,

2-3858

../ref/axes_props.html#Color


Surfaceplot Properties

MATLAB sets this property to manual and does not generate its
own data. See also the VertexNormals property.

Parent
handle of parent axes, hggroup, or hgtransform

Parent of this object. This property contains the handle of the
object’s parent. The parent is normally the axes, hggroup, or
hgtransform object that contains the object.

See “Objects That Can Contain Other Objects” for more
information on parenting graphics objects.

Selected
on | {off}

Is object selected? When you set this property to on, MATLAB
displays selection "handles" at the corners and midpoints if the
SelectionHighlight property is also on (the default). You
can, for example, define the ButtonDownFcn callback to set this
property to on, thereby indicating that this particular object
is selected. This property is also set to on when an object is
manually selected in plot edit mode.

SelectionHighlight
{on} | off

Objects are highlighted when selected. When the Selected
property is on, MATLAB indicates the selected state by
drawing four edge handles and four corner handles. When
SelectionHighlight is off, MATLAB does not draw the handles
except when in plot edit mode and objects are selected manually.

SpecularColorReflectance
scalar in the range 0 to 1

Color of specularly reflected light. When this property is 0, the
color of the specularly reflected light depends on both the color of
the object from which it reflects and the color of the light source.

2-3859



Surfaceplot Properties

When set to 1, the color of the specularly reflected light depends
only on the color or the light source (i.e., the light object Color
property). The proportions vary linearly for values in between.

SpecularExponent
scalar >= 1

Harshness of specular reflection. This property controls the size
of the specular spot. Most materials have exponents in the range
of 5 to 20.

SpecularStrength
scalar >= 0 and <= 1

Intensity of specular light. This property sets the intensity of the
specular component of the light falling on the surface. Specular
light comes from light objects in the axes.

You can also set the intensity of the ambient and diffuse
components of the light on the surfaceplot object. See the
AmbientStrength and DiffuseStrength properties. Also see the
material function.

Tag
string

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This is
particularly useful when you are constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callbacks.
You can define Tag as any string.

For example, you might create an areaseries object and set the
Tag property.

t = area(Y,'Tag','area1')

2-3860



Surfaceplot Properties

When you want to access objects of a given type, you can use
findobj to find the object’s handle. The following statement
changes the FaceColor property of the object whose Tag is area1.

set(findobj('Tag','area1'),'FaceColor','red')

Type
string (read only)

Class of the graphics object. The class of the graphics object. For
surfaceplot objects, Type is always the string 'surface'.

UIContextMenu
handle of a uicontextmenu object

Associate a context menu with this object. Assign this property
the handle of a uicontextmenu object created in the object’s
parent figure. Use the uicontextmenu function to create the
context menu. MATLAB displays the context menu whenever
you right-click over the object.

UserData
array

User-specified data. This property can be any data you want to
associate with this object (including cell arrays and structures).
The object does not set values for this property, but you can access
it using the set and get functions.

VertexNormals
vector or matrix

Surfaceplot normal vectors. This property contains the vertex
normals for the surfaceplot. MATLAB generates this data to
perform lighting calculations. You can supply your own vertex
normal data, even if it does not match the coordinate data. This
can be useful to produce interesting lighting effects.

2-3861



Surfaceplot Properties

Visible
{on} | off

Visibility of this object and its children. By default, a new object’s
visibility is on. This means all children of the object are visible
unless the child object’s Visible property is set to off. Setting an
object’s Visible property to off prevents the object from being
displayed. However, the object still exists and you can set and
query its properties.

XData
vector or matrix

X-coordinates. The x-position of the surfaceplot data points. If you
specify a row vector, MATLAB replicates the row internally until
it has the same number of columns as ZData.

XDataMode
{auto} | manual

Use automatic or user-specified x-axis values. If you specify
XData (by setting the XData property or specifying the x input
argument), MATLAB sets this property to manual and uses the
specified values to label the x-axis.

If you set XDataMode to auto after having specified XData,
MATLAB resets the x-axis ticks to 1:size(YData,1) or to the
column indices of the ZData, overwriting any previous values for
XData.

XDataSource
string (MATLAB variable)

Link XData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
XData.

2-3862



Surfaceplot Properties

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change XData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

YData
vector or matrix

Y-coordinates. The y-position of the surfaceplot data points. If you
specify a row vector, MATLAB replicates the row internally until
it has the same number of rows as ZData.

YDataMode
{auto} | manual

Use automatic or user-specified x-axis values. If you specify XData,
MATLAB sets this property to manual.

If you set YDataMode to auto after having specified YData,
MATLAB resets the y-axis ticks and y-tick labels to the row
indices of the ZData, overwriting any previous values for YData.

YDataSource
string (MATLAB variable)

2-3863



Surfaceplot Properties

Link YData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
YData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change YData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

ZData
matrix

Z-coordinates. The z-position of the surfaceplot data points. See
the Description section for more information.

ZDataSource
string (MATLAB variable)

Link ZData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
ZData.

2-3864



Surfaceplot Properties

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change ZData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

2-3865



surfl

Purpose Surface plot with colormap-based lighting

GUI
Alternatives

To graph selected variables, use the Plot Selector in the
Workspace Browser, or use the Figure Palette Plot Catalog. Manipulate
graphs in plot edit mode with the Property Editor. For details, see
Plotting Tools — Interactive Plotting in the MATLAB Graphics
documentation and Creating Graphics from the Workspace Browser in
the MATLAB Desktop Tools documentation.

Syntax surfl(Z)
surfl(...,'light')
surfl(...,s)
surfl(X,Y,Z,s,k)
h = surfl(...)

Description The surfl function displays a shaded surface based on a combination of
ambient, diffuse, and specular lighting models.

surfl(Z) and surfl(X,Y,Z) create three-dimensional shaded surfaces
using the default direction for the light source and the default lighting
coefficients for the shading model. X, Y, and Z are vectors or matrices
that define the x, y, and z components of a surface.

surfl(...,'light') produces a colored, lighted surface using a
MATLAB light object. This produces results different from the default
lighting method, surfl(...,'cdata'), which changes the color data
for the surface to be the reflectance of the surface.

surfl(...,s) specifies the direction of the light source. s is a two- or
three-element vector that specifies the direction from a surface to a
light source. s = [sx sy sz] or s = [azimuth elevation]. The default s
is 45° counterclockwise from the current view direction.

surfl(X,Y,Z,s,k) specifies the reflectance constant. k is a
four-element vector defining the relative contributions of ambient light,

2-3866



surfl

diffuse reflection, specular reflection, and the specular shine coefficient.
k = [ka kd ks shine] and defaults to [.55,.6,.4,10].

h = surfl(...) returns a handle to a surface graphics object.

Remarks surfl does not accept complex inputs.

For smoother color transitions, use colormaps that have linear intensity
variations (e.g., gray, copper, bone, pink).

The ordering of points in the X, Y, and Z matrices defines the inside and
outside of parametric surfaces. If you want the opposite side of the
surface to reflect the light source, use surfl(X',Y',Z'). Because of the
way surface normal vectors are computed, surfl requires matrices that
are at least 3-by-3.

Examples View peaks using colormap-based lighting.

[x,y] = meshgrid(-3:1/8:3);
z = peaks(x,y);
surfl(x,y,z);
shading interp
colormap(gray);
axis([-3 3 -3 3 -8 8])

2-3867



surfl

To plot a lighted surface from a view direction other than the default,

view([10 10])
grid on
hold on
surfl(peaks)
shading interp
colormap copper
hold off

2-3868



surfl

See Also colormap, shading, light

“Surface and Mesh Creation” on page 1-107 for functions related to
surfaces

“Lighting” on page 1-111 for functions related to lighting

2-3869



surfnorm

Purpose Compute and display 3-D surface normals

Syntax surfnorm(Z)
surfnorm(X,Y,Z)
[Nx,Ny,Nz] = surfnorm(...)

Description The surfnorm function computes surface normals for the surface
defined by X, Y, and Z. The surface normals are unnormalized and valid
at each vertex. Normals are not shown for surface elements that face
away from the viewer. surfnorm does not accept complex inputs.

surfnorm(Z) and surfnorm(X,Y,Z) plot a surface and its surface
normals. Z is a matrix that defines the z component of the surface. X
and Y are vectors or matrices that define the x and y components of
the surface. Reverse the direction of the normals by calling surfnorm
with transposed arguments:

surfnorm(X',Y',Z')

[Nx,Ny,Nz] = surfnorm(...) returns the components of the
three-dimensional surface normals for the surface.

surfl uses surfnorm to compute surface normals when calculating
the reflectance of a surface.

Algorithm The surface normals are based on a bicubic fit of the data in X, Y, and
Z. For each vertex, diagonal vectors are computed and crossed to form
the normal.

2-3870



surfnorm

Examples Plot the normal vectors for a truncated cone.

[x,y,z] = cylinder(1:10);
surfnorm(x,y,z)
axis([-12 12 -12 12 -0.1 1])

See Also surf, quiver3

“Color Operations” on page 1-108 for related functions

2-3871



svd

Purpose Singular value decomposition

Syntax s = svd(X)
[U,S,V] = svd(X)
[U,S,V] = svd(X,0)
[U,S,V] = svd(X,'econ')

Description The svd command computes the matrix singular value decomposition.

s = svd(X) returns a vector of singular values.

[U,S,V] = svd(X) produces a diagonal matrix S of the same dimension
as X, with nonnegative diagonal elements in decreasing order, and
unitary matrices U and V so that X = U*S*V'.

[U,S,V] = svd(X,0) produces the “economy size” decomposition. If X
is m-by-n with m > n, then svd computes only the first n columns of U
and S is n-by-n.

[U,S,V] = svd(X,'econ') also produces the “economy size”
decomposition. If X is m-by-n with m >= n, it is equivalent to svd(X,0).
For m < n, only the first m columns of V are computed and S is m-by-m.

Examples For the matrix

X =
1 2
3 4
5 6
7 8

the statement

[U,S,V] = svd(X)

produces

U =
-0.1525 -0.8226 -0.3945 -0.3800

2-3872



svd

-0.3499 -0.4214 0.2428 0.8007
-0.5474 -0.0201 0.6979 -0.4614
-0.7448 0.3812 -0.5462 0.0407

S =
14.2691 0

0 0.6268
0 0
0 0

V =
-0.6414 0.7672
-0.7672 -0.6414

The economy size decomposition generated by

[U,S,V] = svd(X,0)

produces

U =
-0.1525 -0.8226
-0.3499 -0.4214
-0.5474 -0.0201
-0.7448 0.3812

S =
14.2691 0

0 0.6268
V =

-0.6414 0.7672
-0.7672 -0.6414

Algorithm svd uses the LAPACK routines listed in the following table to compute
the singular value decomposition.

2-3873



svd

Real Complex

X double DGESVD ZGESVD

X single SGESVD CGESVD

Diagnostics If the limit of 75 QR step iterations is exhausted while seeking a
singular value, this message appears:

Solution will not converge.

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen, LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third
Edition, SIAM, Philadelphia, 1999.

2-3874

http://www.netlib.org/lapack/lug/lapack_lug.html


svds

Purpose Find singular values and vectors

Syntax s = svds(A)
s = svds(A,k)
s = svds(A,k,sigma)
s = svds(A,k,'L')
s = svds(A,k,sigma,options)
[U,S,V] = svds(A,...)
[U,S,V,flag] = svds(A,...)

Description s = svds(A) computes the six largest singular values and associated
singular vectors of matrix A. If A is m-by-n, svds(A) manipulates
eigenvalues and vectors returned by eigs(B), where B = [sparse(m,m)
A; A' sparse(n,n)], to find a few singular values and vectors of A.
The positive eigenvalues of the symmetric matrix B are the same as the
singular values of A.

s = svds(A,k) computes the k largest singular values and associated
singular vectors of matrix A.

s = svds(A,k,sigma) computes the k singular values closest to the
scalar shift sigma. For example, s = svds(A,k,0) computes the k
smallest singular values and associated singular vectors.

s = svds(A,k,'L') computes the k largest singular values (the
default).

s = svds(A,k,sigma,options) sets some parameters (see eigs):

Option Structure Fields and Descriptions

Field name Parameter Default

options.tol Convergence tolerance:
norm(AV-US,1)<=tol*norm(A,1)

1e-10

options.maxit Maximum number of iterations 300

options.disp Number of values displayed each
iteration

0

2-3875



svds

[U,S,V] = svds(A,...) returns three output arguments, and if A is
m-by-n:

• U is m-by-k with orthonormal columns

• S is k-by-k diagonal

• V is n-by-k with orthonormal columns

• U*S*V' is the closest rank k approximation to A

[U,S,V,flag] = svds(A,...) returns a convergence flag. If eigs
converged then norn(A*V-U*S,1) <= tol*norm(A,1) and flag is 0. If
eigs did not converge, then flag is 1.

Note svds is best used to find a few singular values of a large, sparse
matrix. To find all the singular values of such a matrix, svd(full(A))
will usually perform better than svds(A,min(size(A))).

Algorithm svds(A,k) uses eigs to find the k largest magnitude eigenvalues and
corresponding eigenvectors of B = [0 A; A' 0].

svds(A,k,0) uses eigs to find the 2k smallest magnitude eigenvalues
and corresponding eigenvectors of B = [0 A; A' 0], and then selects
the k positive eigenvalues and their eigenvectors.

Example west0479 is a real 479-by-479 sparse matrix. svd calculates all 479
singular values. svds picks out the largest and smallest singular values.

load west0479
s = svd(full(west0479))
sl = svds(west0479,4)
ss = svds(west0479,6,0)

These plots show some of the singular values of west0479 as computed
by svd and svds.

2-3876



svds

The largest singular value of west0479 can be computed a few different
ways:

svds(west0479,1) =
3.189517598808622e+05

max(svd(full(west0479))) =
3.18951759880862e+05

norm(full(west0479)) =
3.189517598808623e+05

and estimated:

normest(west0479) =
3.189385666549991e+05

See Also svd, eigs

2-3877



swapbytes

Purpose Swap byte ordering

Syntax Y = swapbytes(X)

Description Y = swapbytes(X) reverses the byte ordering of each element in array
X, converting little-endian values to big-endian (and vice versa). The
input array must contain all full, noncomplex, numeric elements.

Examples Example 1

Reverse the byte order for a scalar 32-bit value, changing hexadecimal
12345678 to 78563412:

A = uint32(hex2dec('12345678'));

B = dec2hex(swapbytes(A))
B =

78563412

Example 2

Reverse the byte order for each element of a 1-by-4 matrix:

X = uint16([0 1 128 65535])
X =

0 1 128 65535

Y = swapbytes(X);
Y =

0 256 32768 65535

Examining the output in hexadecimal notation shows the byte
swapping:

format hex

X, Y
X =

0000 0001 0080 ffff

2-3878



swapbytes

Y =
0000 0100 8000 ffff

Example 3

Create a three-dimensional array A of 16-bit integers and then swap
the bytes of each element:

format hex

A = uint16(magic(3) * 150);
A(:,:,2) = A * 40;

A
A(:,:,1) =

04b0 0096 0384
01c2 02ee 041a
0258 0546 012c

A(:,:,2) =
bb80 1770 8ca0
4650 7530 a410
5dc0 d2f0 2ee0

swapbytes(A)
ans(:,:,1) =

b004 9600 8403
c201 ee02 1a04
5802 4605 2c01

ans(:,:,2) =
80bb 7017 a08c
5046 3075 10a4
c05d f0d2 e02e

See Also typecast

2-3879



switch

Purpose Switch among several cases, based on expression

Syntax switch switch_expr
case case_expr

statement, ..., statement
case {case_expr1, case_expr2, case_expr3, ...}

statement, ..., statement
otherwise

statement, ..., statement
end

Discussion The switch statement syntax is a means of conditionally executing
code. In particular, switch executes one set of statements selected from
an arbitrary number of alternatives. Each alternative is called a case,
and consists of

• The case statement

• One or more case expressions

• One or more statements

In its basic syntax, switch executes the statements associated with
the first case where switch_expr == case_expr. When the case
expression is a cell array (as in the second case above), switch executes
the case where any of the elements of the cell array matches the switch
expression. If no case expression matches the switch expression, then
control passes to the otherwise case (if it exists). After the case is
executed, program execution resumes with the statement after the end.

The switch_expr can be a scalar or a string. A scalar switch_expr
matches a case_expr if switch_expr==case_expr. A string
switch_exprmatches a case_expr if strcmp(switch_expr,case-expr)
returns logical 1 (true).

A case_expr can include arithmetic or logical operators, but not
relational operators such as < or >. To test for inequality, use if-elseif
statements.

2-3880



switch

Note for C Programmers Unlike the C language switch construct,
the MATLAB switch does not “fall through.” That is, switch executes
only the first matching case; subsequent matching cases do not execute.
Therefore, break statements are not used.

Examples To execute a certain block of code based on what the string, method,
is set to,

method = 'Bilinear';

switch lower(method)
case {'linear','bilinear'}

disp('Method is linear')
case 'cubic'

disp('Method is cubic')
case 'nearest'

disp('Method is nearest')
otherwise

disp('Unknown method.')
end

Method is linear

See Also case, otherwise, end, if, else, elseif, while

2-3881



symamd

Purpose Symmetric approximate minimum degree permutation

Syntax p = symamd(S)
p = symamd(S,knobs)
[p,stats] = symamd(...)

Description p = symamd(S) for a symmetric positive definite matrix S, returns
the permutation vector p such that S(p,p) tends to have a sparser
Cholesky factor than S. To find the ordering for S, symamd constructs a
matrix M such that spones(M'*M) = spones (S), and then computes p
= colamd(M). The symamd function may also work well for symmetric
indefinite matrices.

S must be square; only the strictly lower triangular part is referenced.

p = symamd(S,knobs) where knobs is a scalar. If S is n-by-n, rows and
columns with more than knobs*n entries are removed prior to ordering,
and ordered last in the output permutation p. If the knobs parameter is
not present, then knobs = spparms('wh_frac').

[p,stats] = symamd(...) produces the optional vector stats that
provides data about the ordering and the validity of the matrix S.

stats(1) Number of dense or empty rows ignored by symamd

stats(2) Number of dense or empty columns ignored by symamd

stats(3) Number of garbage collections performed on the
internal data structure used by symamd (roughly of
size 8.4*nnz(tril(S,-1)) + 9n integers)

stats(4) 0 if the matrix is valid, or 1 if invalid

stats(5) Rightmost column index that is unsorted or contains
duplicate entries, or 0 if no such column exists

stats(6) Last seen duplicate or out-of-order row index in the
column index given by stats(5), or 0 if no such row
index exists

stats(7) Number of duplicate and out-of-order row indices

2-3882



symamd

Although, MATLAB built-in functions generate valid sparse matrices, a
user may construct an invalid sparse matrix using the MATLAB C or
Fortran APIs and pass it to symamd. For this reason, symamd verifies
that S is valid:

• If a row index appears two or more times in the same column, symamd
ignores the duplicate entries, continues processing, and provides
information about the duplicate entries in stats(4:7).

• If row indices in a column are out of order, symamd sorts each column
of its internal copy of the matrix S (but does not repair the input
matrix S), continues processing, and provides information about the
out-of-order entries in stats(4:7).

• If S is invalid in any other way, symamd cannot continue. It prints an
error message, and returns no output arguments (p or stats).

The ordering is followed by a symmetric elimination tree post-ordering.

Examples Here is a comparison of reverse Cuthill-McKee and minimum degree on
the Bucky ball example mentioned in the symrcm reference page.

B = bucky+4*speye(60);
r = symrcm(B);
p = symamd(B);
R = B(r,r);
S = B(p,p);
subplot(2,2,1), spy(R,4), title('B(r,r)')
subplot(2,2,2), spy(S,4), title('B(s,s)')
subplot(2,2,3), spy(chol(R),4), title('chol(B(r,r))')
subplot(2,2,4), spy(chol(S),4), title('chol(B(s,s))')

2-3883



symamd

Even though this is a very small problem, the behavior of both orderings
is typical. RCM produces a matrix with a narrow bandwidth which
fills in almost completely during the Cholesky factorization. Minimum
degree produces a structure with large blocks of contiguous zeros which
do not fill in during the factorization. Consequently, the minimum
degree ordering requires less time and storage for the factorization.

See Also colamd, colperm, spparms, symrcm, amd

References The authors of the code for symamd are Stefan I. Larimore and
Timothy A. Davis (davis@cise.ufl.edu), University of Florida.
The algorithm was developed in collaboration with John Gilbert,

2-3884



symamd

Xerox PARC, and Esmond Ng, Oak Ridge National Laboratory.
Sparse Matrix Algorithms Research at the University of Florida:
http://www.cise.ufl.edu/research/sparse/

2-3885

http://www.cise.ufl.edu/research/sparse/


symbfact

Purpose Symbolic factorization analysis

Syntax count = symbfact(A)
count = symbfact(A,'sym')
count = symbfact(A,'col')
count = symbfact(A,'row')
count = symbfact(A,'lo')
[count,h,parent,post,R] = symbfact(...)
[count,h,parent,post,L] = symbfact(A,type,'lower')

Description count = symbfact(A) returns the vector of row counts of R=chol(A'*A).
symbfact should be much faster than chol(A).

count = symbfact(A,'sym') is the same as count = symbfact(A).

count = symbfact(A,'col') returns row counts of R=chol(A'*A)
(without forming it explicitly).

count = symbfact(A,'row') returns row counts of R=chol(A*A').

count = symbfact(A,'lo') is the same as count = symbfact(A)
and uses tril(A).

[count,h,parent,post,R] = symbfact(...) has several optional
return values.

The flop count for a subsequent Cholesky factorization is sum(count.^2)

Return
Value

Description

h Height of the elimination tree

parent The elimination tree itself

post Postordering of the elimination tree

R 0-1 matrix having the structure of chol(A) for the
symmetric case, chol(A'*A) for the 'col' case, or
chol(A*A') for the 'row' case.

2-3886



symbfact

symbfact(A) and symbfact(A,'sym') use the upper triangular part of
A (triu(A)) and assume the lower triangular part is the transpose of
the upper triangular part. symbfact(A,'lo') uses tril(A) instead.

[count,h,parent,post,L] = symbfact(A,type,'lower') where
type is one of 'sym','col', 'row', or'lo' returns a lower triangular
symbolic factor L=R'. This form is quicker and requires less memory.

See Also chol, etree, treelayout

2-3887



symmlq

Purpose Symmetric LQ method

Syntax x = symmlq(A,b)
symmlq(A,b,tol)
symmlq(A,b,tol,maxit)
symmlq(A,b,tol,maxit,M)
symmlq(A,b,tol,maxit,M1,M2)
symmlq(A,b,tol,maxit,M1,M2,x0)
[x,flag] = symmlq(A,b,...)
[x,flag,relres] = symmlq(A,b,...)
[x,flag,relres,iter] = symmlq(A,b,...)
[x,flag,relres,iter,resvec] = symmlq(A,b,...)
[x,flag,relres,iter,resvec,resveccg] = symmlq(A,b,...)

Description x = symmlq(A,b) attempts to solve the system of linear equations
A*x=b for x. The n-by-n coefficient matrix A must be symmetric but need
not be positive definite. It should also be large and sparse. The column
vector b must have length n. A can be a function handle afun such
that afun(x) returns A*x. See “Function Handles” in the MATLAB
Programming documentation for more information.

“Parameterizing Functions”, in the MATLAB Mathematics
documentation, explains how to provide additional parameters to the
function afun, as well as the preconditioner function mfun described
below, if necessary.

If symmlq converges, a message to that effect is displayed. If symmlq
fails to converge after the maximum number of iterations or halts
for any reason, a warning message is printed displaying the relative
residual norm(b-A*x)/norm(b) and the iteration number at which the
method stopped or failed.

symmlq(A,b,tol) specifies the tolerance of the method. If tol is [],
then symmlq uses the default, 1e-6.

symmlq(A,b,tol,maxit) specifies the maximum number of iterations.
If maxit is [], then symmlq uses the default, min(n,20).

2-3888



symmlq

symmlq(A,b,tol,maxit,M) and symmlq(A,b,tol,maxit,M1,M2) use
the symmetric positive definite preconditioner M or M = M1*M2 and
effectively solve the system inv(sqrt(M))*A*inv(sqrt(M))*y =
inv(sqrt(M))*b for y and then return x = in(sqrt(M))*y. If M is []
then symmlq applies no preconditioner. M can be a function handle mfun
such that mfun(x) returns M\x.

symmlq(A,b,tol,maxit,M1,M2,x0) specifies the initial guess. If x0 is
[], then symmlq uses the default, an all-zero vector.

[x,flag] = symmlq(A,b,...) also returns a convergence flag.

Flag Convergence

0 symmlq converged to the desired tolerance tol within
maxit iterations.

1 symmlq iterated maxit times but did not converge.

2 Preconditioner M was ill-conditioned.

3 symmlq stagnated. (Two consecutive iterates were the
same.)

4 One of the scalar quantities calculated during symmlq
became too small or too large to continue computing.

5 Preconditioner M was not symmetric positive definite.

Whenever flag is not 0, the solution x returned is that with minimal
norm residual computed over all the iterations. No messages are
displayed if the flag output is specified.

[x,flag,relres] = symmlq(A,b,...) also returns the relative
residual norm(b-A*x)/norm(b). If flag is 0, relres <= tol.

[x,flag,relres,iter] = symmlq(A,b,...) also returns the iteration
number at which x was computed, where 0 <= iter <= maxit.

[x,flag,relres,iter,resvec] = symmlq(A,b,...) also returns a
vector of estimates of the symmlq residual norms at each iteration,
including norm(b-A*x0).

2-3889



symmlq

[x,flag,relres,iter,resvec,resveccg] = symmlq(A,b,...) also
returns a vector of estimates of the conjugate gradients residual norms
at each iteration.

Examples Example 1

n = 100;
on = ones(n,1);
A = spdiags([-2*on 4*on -2*on],-1:1,n,n);
b = sum(A,2);
tol = 1e-10;
maxit = 50; M1 = spdiags(4*on,0,n,n);

x = symmlq(A,b,tol,maxit,M1);
symmlq converged at iteration 49 to a solution with relative
residual 4.3e-015

Example 2

This example replaces the matrix A in Example 1 with a handle to a
matrix-vector product function afun. The example is contained in an
M-file run_symmlq that

• Calls symmlq with the function handle @afun as its first argument.

• Contains afun as a nested function, so that all variables in
run_symmlq are available to afun.

The following shows the code for run_symmlq:

function x1 = run_symmlq
n = 100;
on = ones(n,1);
A = spdiags([-2*on 4*on -on],-1:1,n,n);
b = sum(A,2);
tol = 1e-8;
maxit = 15;
M1 = spdiags([on/(-2) on],-1:0,n,n);
M2 = spdiags([4*on -on],0:1,n,n);

2-3890



symmlq

x1 = symmlq(@afun,b,tol,maxit,M1);

function y = afun(x)
y = 4 * x;
y(2:n) = y(2:n) - 2 * x(1:n-1);
y(1:n-1) = y(1:n-1) - 2 * x(2:n);

end
end

When you enter

x1=run_symmlq;

MATLAB software displays the message

symmlq converged at iteration 49 to a solution with relative
residual 4.3e-015

Example 3

Use a symmetric indefinite matrix that fails with pcg.

A = diag([20:-1:1,-1:-1:-20]);
b = sum(A,2); % The true solution is the vector of all ones.
x = pcg(A,b); % Errors out at the first iteration.
pcg stopped at iteration 1 without converging to the desired
tolerance 1e-006 because a scalar quantity became too small or
too large to continue computing.
The iterate returned (number 0) has relative residual 1

However, symmlq can handle the indefinite matrix A.

x = symmlq(A,b,1e-6,40);
symmlq converged at iteration 39 to a solution with relative
residual 1.3e-007

See Also bicg, bicgstab, cgs, lsqr, gmres, minres, pcg, qmr

function_handle (@), mldivide (\)

2-3891



symmlq

References [1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods, SIAM,
Philadelphia, 1994.

[2] Paige, C. C. and M. A. Saunders, "Solution of Sparse Indefinite
Systems of Linear Equations." SIAM J. Numer. Anal., Vol.12, 1975,
pp. 617-629.

2-3892



symrcm

Purpose Sparse reverse Cuthill-McKee ordering

Syntax r = symrcm(S)

Description r = symrcm(S) returns the symmetric reverse Cuthill-McKee ordering
of S. This is a permutation r such that S(r,r) tends to have its nonzero
elements closer to the diagonal. This is a good preordering for LU
or Cholesky factorization of matrices that come from long, skinny
problems. The ordering works for both symmetric and nonsymmetric S.

For a real, symmetric sparse matrix, S, the eigenvalues of S(r,r) are
the same as those of S, but eig(S(r,r)) probably takes less time to
compute than eig(S).

Algorithm The algorithm first finds a pseudoperipheral vertex of the graph of the
matrix. It then generates a level structure by breadth-first search and
orders the vertices by decreasing distance from the pseudoperipheral
vertex. The implementation is based closely on the SPARSPAK
implementation described by George and Liu.

Examples The statement

B = bucky;

uses an M-file in the demos toolbox to generate the adjacency graph
of a truncated icosahedron. This is better known as a soccer ball,
a Buckminster Fuller geodesic dome (hence the name bucky), or,
more recently, as a 60-atom carbon molecule. There are 60 vertices.
The vertices have been ordered by numbering half of them from one
hemisphere, pentagon by pentagon; then reflecting into the other
hemisphere and gluing the two halves together. With this numbering,
the matrix does not have a particularly narrow bandwidth, as the first
spy plot shows

subplot(1,2,1), spy(B), title('B')

The reverse Cuthill-McKee ordering is obtained with

2-3893



symrcm

p = symrcm(B);
R = B(p,p);

The spy plot shows a much narrower bandwidth.

subplot(1,2,2), spy(R), title('B(p,p)')

This example is continued in the reference pages for symamd.

The bandwidth can also be computed with

[i,j] = find(B);
bw = max(i-j) + 1;

The bandwidths of B and R are 35 and 12, respectively.

See Also colamd, colperm, symamd

References [1] George, Alan and Joseph Liu, Computer Solution of Large Sparse
Positive Definite Systems, Prentice-Hall, 1981.

[2] Gilbert, John R., Cleve Moler, and Robert Schreiber, “Sparse
Matrices in MATLAB: Design and Implementation,” SIAM Journal on
Matrix Analysis, 1992. A slightly expanded version is also available as
a technical report from the Xerox Palo Alto Research Center.

2-3894



symvar

Purpose Determine symbolic variables in expression

Syntax symvar 'expr'
s = symvar('expr')

Description symvar 'expr' searches the expression, expr, for identifiers other
than i, j, pi, inf, nan, eps, and common functions. symvar displays
those variables that it finds or, if no such variable exists, displays an
empty cell array, {}.

s = symvar('expr') returns the variables in a cell array of strings, s.
If no such variable exists, s is an empty cell array.

Examples symvar finds variables beta1 and x, but skips pi and the cos function.

symvar 'cos(pi*x - beta1)'

ans =

'beta1'
'x'

See Also findstr

2-3895



synchronize

Purpose Synchronize and resample two timeseries objects using common time
vector

Syntax [ts1 ts2] = synchronize(ts1,ts2,'SynchronizeMethod')

Description [ts1 ts2] = synchronize(ts1,ts2,'SynchronizeMethod') creates
two new timeseries objects by synchronizing ts1 and ts2 using a
common time vector. The string 'SynchronizeMethod' defines the
method for synchronizing the timeseries and can be one of the
following:

• 'Union'— Resample timeseries objects using a time vector that is
a union of the time vectors of ts1 and ts2 on the time range where
the two time vectors overlap.

• 'Intersection' — Resample timeseries objects on a time vector
that is the intersection of the time vectors of ts1 and ts2.

• 'Uniform'— Requires an additional argument as follows:

[ts1 ts2] = synchronize(ts1,ts2,'Uniform','Interval',value)

This method resamples time series on a uniform time vector, where
value specifies the time interval between the two samples. The
uniform time vector is the overlap of the time vectors of ts1 and ts2.
The interval units are assumed to be the smaller units of ts1 and ts2.

You can specify additional arguments by using property-value pairs:

• 'InterpMethod': Forces the specified interpolation method (over
the default method) for this synchronize operation. Can be either a
string, 'linear' or 'zoh', or a tsdata.interpolation object that
contains a user-defined interpolation method.

• 'QualityCode': Integer (between -128 and 127) used as the quality
code for both time series after the synchronization.

2-3896



synchronize

• 'KeepOriginalTimes': Logical value (true or false) indicating
whether the new time series should keep the original time values.
For example,

ts1 = timeseries([1 2],[datestr(now); datestr(now+1)]);
ts2 = timeseries([1 2],[datestr(now-1); datestr(now)]);

Note that ts1.timeinfo.StartDate is one day after
ts2.timeinfo.StartDate. If you use

[ts1 ts2] = synchronize(ts1,ts2,'union');

the ts1.timeinfo.StartDate is changed to match
ts2.TimeInfo.StartDate and ts1.Time changes to 1.

But if you use

[ts1 ts2] =
synchronize(ts1,ts2,'union','KeepOriginalTimes',true);

ts1.timeinfo.StartDate is unchanged and ts1.Time is still 0.

• 'tolerance': Real number used as the tolerance for differentiating
two time values when comparing the ts1 and ts2 time vectors. The
default tolerance is 1e-10. For example, when the sixth time value
in ts1 is 5+(1e-12) and the sixth time value in ts2 is 5-(1e-13),
both values are treated as 5 by default. To differentiate those two
times, you can set 'tolerance' to a smaller value such as 1e-15,
for example.

See Also timeseries

2-3897



syntax

Purpose Two ways to call MATLAB functions

Description You can call MATLAB functions using either command syntax or
function syntax, as described below.

Command Syntax

A function call in this syntax consists of the function name followed by
one or more arguments separated by spaces:

functionname arg1 arg2 ... argn

Command syntax does not allow you to obtain any values that might be
returned by the function. Attempting to assign output from the function
to a variable using command syntax generates an error. Use function
syntax instead.

Examples of command syntax:

save mydata.mat x y z
import java.awt.Button java.lang.String

Arguments are treated as string literals. See the examples below, under
“Argument Passing” on page 2-3899.

Function Syntax

A function call in this syntax consists of the function name followed
by one or more arguments separated by commas and enclosed in
parentheses:

functionname(arg1, arg2, ..., argn)

You can assign the output of the function to one or more output
values. When assigning to more than one output variable, separate the
variables by commas or spaces and enclose them in square brackets ([]):

[out1,out2,...,outn] = functionname(arg1, arg2, ..., argn)

Examples of function syntax:

2-3898



syntax

copyfile('srcfile', '..\mytests', 'writable')
[x1,x2,x3,x4] = deal(A{:})

Arguments are passed to the function by value. See the examples below,
under “Argument Passing” on page 2-3899.

Argument Passing

When calling a function using command syntax, MATLAB passes the
arguments as string literals. When using function syntax, arguments
are passed by value.

In the following example, assign a value to A and then call disp on
the variable to display the value passed. Calling disp with command
syntax passes the variable name, 'A':

A = pi;
disp A

A

while function syntax passes the value assigned to A:

A = pi;
disp(A)

3.1416

The next example passes two strings to strcmp for comparison. Calling
the function with command syntax compares the variable names,
'str1' and 'str2':

str1 = 'one'; str2 = 'one';
strcmp str1 str2
ans =

0 (unequal)

while function syntax compares the values assigned to the variables,
'one' and 'one':

str1 = 'one'; str2 = 'one';
strcmp(str1, str2)

2-3899



syntax

ans =
1 (equal)

Passing Strings

When using the function syntax to pass a string literal to a function,
you must enclose the string in single quotes, ('string'). For example,
to create a new folder called myapptests, use

mkdir('myapptests')

On the other hand, variables that contain strings do not need to be
enclosed in quotes:

folder = 'myapptests';
mkdir(folder)

See Also “Checking for Coding Problems”, mlint

2-3900



system

Purpose Execute operating system command and return result

Syntax system('command')
[status, result] = system('command')
[status,result] = system('command','-echo')

2-3901



system

Description system('command') calls upon the operating system to run the specified
command, for example dir or ls or a UNIX17 shell script, and directs
the output to the MATLAB software. The command executes in a system
shell, not in the shell that you used to launch MATLAB. If command runs
successfully, ans is 0. If command fails or does not exist on your operating
system, ans is a nonzero value and an explanatory message appears.

[status, result] = system('command') calls upon the operating
system to run command, and directs the output to MATLAB. If command
runs successfully, status is 0 and result contains the output from
command. If command fails or does not exist on your operating system,
status is a nonzero value and result contains an explanatory message.

[status,result] = system('command','-echo') forces the output
to the Command Window, even though it is also being assigned into
a variable.

This function is interchangeable with the dos and unix functions. They
all have the same effect.

Note Running system on a Microsoft Windows platform with a
command that relies on the current folder fails when the current folder is
specified using a UNC pathname because DOS does not support UNC
pathnames. When this happens, MATLAB returns the error:

??? Error using ==> system DOS commands may not be
executed when the current directory is a UNC pathname.

To work around this limitation, change the folder to a mapped drive
prior to running system or a function that calls system.

Examples On a Windows system, display the current folder by accessing the
operating system.

17. UNIX is a registered trademark of The Open Group in the United States and
other countries.

2-3902



system

[status currdir] = system('cd')
status =

0
currdir =

D:\work\matlab\test

See Also ! (exclamation point), computer, dos, perl, unix, winopen

“Running External Programs” in the MATLAB Desktop Tools and
Development Environment documentation

2-3903



tan

Purpose Tangent of argument in radians

Syntax Y = tan(X)

Description The tan function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Y = tan(X) returns the circular tangent of each element of X.

Examples Graph the tangent function over the domain .

x = (-pi/2)+0.01:0.01:(pi/2)-0.01;
plot(x,tan(x)), grid on

The expression tan(pi/2) does not evaluate as infinite but as
the reciprocal of the floating point accuracy eps since pi is only a
floating-point approximation to the exact value of .

Definition The tangent can be defined as

2-3904



tan

Algorithm tan uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc. business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also tand, tanh, atan, atan2, atand, atanh

2-3905

http://www.netlib.org


tand

Purpose Tangent of argument in degrees

Syntax Y = tand(X)

Description Y = tand(X) is the tangent of the elements of X, expressed in degrees.
For odd integers n, tand(n*90) is infinite, whereas tan(n*pi/2) is
large but finite, reflecting the accuracy of the floating point value of pi.

See Also tan, tanh, atan, atan2, atand, atanh

2-3906



tanh

Purpose Hyperbolic tangent

Syntax Y = tanh(X)

Description The tanh function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Y = tanh(X) returns the hyperbolic tangent of each element of X.

Examples Graph the hyperbolic tangent function over the domain .

x = -5:0.01:5;
plot(x,tanh(x)), grid on

Definition The hyperbolic tangent can be defined as

2-3907



tanh

Algorithm tanh uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc. business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also atan, atan2, tan

2-3908

http://www.netlib.org


tar

Purpose Compress files into tar file

Syntax tar(tarfilename,files)
tar(tarfilename,files,rootfolder)
entrynames = tar(...)

Description tar(tarfilename,files) creates a tar file named tarfilename from
the list of files and folders specified in files. Folders recursively
include all of their content. If files includes relative paths, the tar file
also contains relative paths. The tar file does not include absolute paths.

tar(tarfilename,files,rootfolder) specifies the path for files
relative to rootfolder rather than the current folder. Relative paths
in the tar file reflect the relative paths in files, and do not include
path information from rootfolder.

entrynames = tar(...) returns a string cell array of the names of
the files contained in tarfilename. If files includes relative paths,
entrynames also contains relative paths.

Tips tar cannot compress folders larger than 2 GB.

Input
Arguments

tarfilename

String specifying the name of the tar file. If tarfilename
has no extension, MATLAB appends the .tar extension. The
tarfilename extension can end in .tgz or .gz. In this case,
tarfilename is gzipped.

files

String or cell array of strings containing the list of files or folders
included in tarfilename.

Individual files that are on the MATLAB path can be specified as
partial path names. Otherwise an individual file can be specified
relative to the current folder or with an absolute path.

Folders must be specified relative to the current folder or with
absolute paths. On UNIX systems, folders can also start with ~/

2-3909



tar

or ~username/, which expands to the current user’s home folder
or the specified user’s home folder, respectively. The wildcard
character * can be used when specifying files or folders, except
when relying on the MATLAB path to resolve a file name or
partial path name.

rootfolder

String specifying the path for files.

Example Tar all files in the current folder to the file backup.tgz.

tar('backup.tgz','.');

See Also gzip | gunzip | untar | unzip | zip

2-3910



tempdir

Purpose Name of system’s temporary folder

Syntax tmp_folder = tempdir

Description tmp_folder = tempdir returns the name of the system’s temporary
folder, if one exists. This function does not create a new folder.

See Also delete, recycle, tempname

“Creating Temporary Files”

2-3911



tempname

Purpose Unique name for temporary file

Syntax tmp_nam = tempname

Description tmp_nam = tempname returns a unique string, tmp_nam, suitable for use
as a temporary filename.

Note The filename that tempname generates is not guaranteed to be
unique; however, it is likely to be so.

See Also tempdir

“Creating Temporary Files”

2-3912



tetramesh

Purpose Tetrahedron mesh plot

Syntax tetramesh(T,X,c)
tetramesh(T,X)
tetramesh(TR)
h = tetramesh(...)
tetramesh(...,'param','value','param','value'...)

Description tetramesh(T,X,c) displays the tetrahedrons defined in the m-by-4
matrix T as mesh. T is usually the output of a Delaunay triangulation
of a 3-D set of points. A row of T contains indices into X of the vertices
of a tetrahedron. X is an n-by-3 matrix, representing n points in 3
dimension. The tetrahedron colors are defined by the vector C, which
is used as indices into the current colormap.

tetramesh(T,X) uses C = 1:m as the color for the m tetrahedra. Each
tetrahedron has a different color (modulo the number of colors available
in the current colormap).

tetramesh(TR) displays the tetrahedra in a Triangulation
representation.

h = tetramesh(...) returns a vector of tetrahedron handles. Each
element of h is a handle to the set of patches forming one tetrahedron.
You can use these handles to view a particular tetrahedron by turning
the patch 'Visible' property 'on' or 'off'.

tetramesh(...,'param','value','param','value'...) allows
additional patch property name/property value pairs to be used when
displaying the tetrahedrons. For example, the default transparency
parameter is set to 0.9. You can overwrite this value by using the
property name/property value pair ('FaceAlpha',value) where value
is a number between 0 and 1. See Patch Properties for information
about the available properties.

Examples Generate a 3-D Delaunay tessellation, then use tetramesh to visualize
the tetrahedrons that form the corresponding simplex.

d = [-1 1];

2-3913



tetramesh

[x,y,z] = meshgrid(d,d,d); % A cube
x = [x(:);0];
y = [y(:);0];
z = [z(:);0];
% [x,y,z] are corners of a cube plus the center.
dt = DelaunayTri(x,y,z);
Tes = dt(:,:);
X = [x(:) y(:) z(:)];
tetramesh(Tes,X);
camorbit(20,0)

You can also plot the Delaunay triangulation directly.

2-3914



tetramesh

close(gcf);
tetramesh(dt);

See Also trimesh, trisurf, patch, delaunayn, TriRep, TriRep.freeBoundary

2-3915



texlabel

Purpose Produce TeX format from character string

Syntax texlabel(f)
texlabel(f,'literal')

Description texlabel(f) converts the MATLAB expression f into the TeX
equivalent for use in text strings. It processes Greek variable names
(e.g., lambda, delta, etc.) into a string that is displayed as actual Greek
letters.

texlabel(f,'literal') prints Greek variable names as literals.

If the string is too long to fit into a figure window, then the center of the
expression is replaced with a tilde ellipsis (~~~).

Examples You can use texlabel as an argument to the title, xlabel, ylabel,
zlabel, and text commands. For example,

title(texlabel('sin(sqrt(x^2 + y^2))/sqrt(x^2 + y^2)'))

By default, texlabel translates Greek variable names to the equivalent
Greek letter. You can select literal interpretation by including the
literal argument. For example, compare these two commands.

text(.5,.5,...
texlabel('lambda12^(3/2)/pi - pi*delta^(2/3)'))

text(.25,.25,...
texlabel('lambda12^(3/2)/pi - pi*delta^(2/3)','literal'))

2-3916



texlabel

See Also text, title, xlabel, ylabel, zlabel, the text String property

“Annotating Plots” on page 1-97 for related functions

2-3917



text

Purpose Create text object in current axes

Syntax text(x,y,'string')
text(x,y,z,'string')
text(x,y,z,'string','PropertyName',PropertyValue....)
text('PropertyName',PropertyValue....)
h = text(...)

Properties For a list of properties, see Text Properties.

Description text is the low-level function for creating text graphics objects. Use
text to place character strings at specified locations.

text(x,y,'string') adds the string in quotes to the location specified
by the point (x,y) x and y must be numbers of class double.

text(x,y,z,'string') adds the string in 3-D coordinates. x, y and z
must be numbers of class double.

text(x,y,z,'string','PropertyName',PropertyValue....) adds
the string in quotes to the location defined by the coordinates and uses
the values for the specified text properties. For a description of the
properties, see Text Properties.

text('PropertyName',PropertyValue....) omits the coordinates
entirely and specifies all properties using property name/property value
pairs.

h = text(...) returns a column vector of handles to text objects,
one handle per object. All forms of the text function optionally return
this output argument.

See the String property for a list of symbols, including Greek letters.

Remarks Position Text Within the Axes

The default text units are the units used to plot data in the graph.
Specify the text location coordinates (the x, y, and z arguments) in
the data units of the current graph (see “Examples” on page 2-3920.
You can use other units to position the text by setting the text Units

2-3918



text

property to normalized or one of the nonrelative units (pixels, inches,
centimeters, points, or characters).

Note that the Axes Units property controls the positioning of the Axes
within the figure and is not related to the axes data units used for
graphing.

The Extent, VerticalAlignment, and HorizontalAlignment
properties control the positioning of the character string with regard
to the text location point.

If the coordinates are vectors, text writes the string at all locations
defined by the list of points. If the character string is an array the same
length as x, y, and z, text writes the corresponding row of the string
array at each point specified.

Multiline Text

When specifying strings for multiple text objects, the string can be

• A cell array of strings

• A padded string matrix

Each element of the specified string array creates a different text object.

When specifying the string for a single text object, cell arrays of strings
and padded string matrices result in a text object with a multiline
string, while vertical slash characters are not interpreted as separators
and result in a single line string containing vertical slashes.

Behavior of the Text Function

text is a low-level function that accepts property name/property value
pairs as input arguments. However, the convenience form,

text(x,y,z,'string')

is equivalent to

text('Position',[x,y,z],'String','string')

2-3919



text

You can specify other properties only as property name/property value
pairs. For a description of each property, see Text Properties. You
can specify properties as property name/property value pairs, structure
arrays, and cell arrays (see the set and get reference pages for
examples of how to specify these data types).

text does not respect the setting of the figure or axes NextPlot
property. This allows you to add text objects to an existing axes without
setting hold to on.

Examples The statements

plot(0:pi/20:2*pi,sin(0:pi/20:2*pi))
text(pi,0,' \leftarrow sin(\pi)','FontSize',18)

annotate the point at (pi,0) with the string sin(π)

2-3920



text

The statement

text(x,y,'\ite^{i\omega\tau} = cos(\omega\tau) + i sin(\omega\tau)')

uses embedded TeX sequences to produce

e ii  = ( ) + ( )cos sin

Setting
Default
Properties

You can set default text properties on the axes, figure, and root object
levels:

set(0,'DefaulttextProperty',PropertyValue...)
set(gcf,'DefaulttextProperty',PropertyValue...)

2-3921



text

set(gca,'DefaulttextProperty',PropertyValue...)

Where Property is the name of the text property and PropertyValue is
the value you are specifying. Use set and get to access text properties.

See Also annotation, gtext, int2str, num2str, strings, title, xlabel,
ylabel, zlabel

Text Properties for property descriptions

“Object Creation” on page 1-104 for related functions

2-3922



Text Properties

Purpose Text properties

Creating
Text
Objects

Use text to create text objects.

Modifying
Properties

You can set and query graphics object properties using the property
editor or the set and get commands.

• The Property Editor is an interactive tool that enables you to see and
change object property values.

• The set and get commands enable you to set and query the values of
properties.

To change the default values of properties, see Setting Default Property
Values.

See Core Objects for general information about this type of object.

Text
Property
Descriptions

This section lists property names along with the types of values each
accepts. Curly braces { } enclose default values.

Annotation
hg.Annotation object Read Only

Control the display of text objects in legends. The Annotation
property enables you to specify whether this text object is
represented in a figure legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

2-3923



Text Properties

Once you have obtained the hg.LegendEntry object, you can set
its IconDisplayStyle property to control whether the text object
is displayed in a figure legend:

IconDisplayStyle
Value

Purpose

on Represent this text object in a legend
(default)

off Do not include this text object in a legend

children Same as on because text objects do not have
children

Setting the IconDisplayStyle property

These commands set the IconDisplayStyle of a graphics object
with handle hobj to off:

hAnnotation = get(hobj,'Annotation');
hLegendEntry = get(hAnnotation','LegendInformation');
set(hLegendEntry,'IconDisplayStyle','off')

Using the IconDisplayStyle property

See “Controlling Legends” for more information and examples.

BackgroundColor
ColorSpec | {none}

Color of text extent rectangle. This property enables you to define a
color for the rectangle that encloses the text Extent plus the text
Margin. For example, the following code creates a text object that
labels a plot and sets the background color to light green.

text(3*pi/4,sin(3*pi/4),...
['sin(3*pi/4) = ',num2str(sin(3*pi/4))],...
'HorizontalAlignment','center',...

2-3924



Text Properties

'BackgroundColor',[.7 .9 .7]);

For additional features, see the following properties:

• EdgeColor— Color of the rectangle’s edge (none by default).

• LineStyle — Style of the rectangle’s edge line (first set
EdgeColor)

• LineWidth — Width of the rectangle’s edge line (first set
EdgeColor)

• Margin— Increase the size of the rectangle by adding a margin
to the existing text extent rectangle. This margin is added to
the text extent rectangle to define the text background area
that is enclosed by the EdgeColor rectangle. Note that the text
extent does not change when you change the margin; only the
rectangle displayed when you set the EdgeColor property and
the area defined by the BackgroundColor change.

See also Drawing Text in a Box in the MATLAB Graphics
documentation for an example using background color with
contour labels.

2-3925



Text Properties

BeingDeleted
on | {off} read only

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are
in the process of being deleted. MATLAB software sets the
BeingDeleted property to on when the object’s delete function
callback is called (see the DeleteFcn property) It remains set to
on while the delete function executes, after which the object no
longer exists.

For example, an object’s delete function might call other functions
that act on a number of different objects. These functions may not
need to perform actions on objects that are going to be deleted,
and therefore can check the object’s BeingDeleted property before
acting.

BusyAction
cancel | {queue}

Callback routine interruption. The BusyAction property enables
you to control how MATLAB handles events that potentially
interrupt executing callback routines. If there is a callback
routine executing, callback routines invoked subsequently always
attempt to interrupt it. If the Interruptible property of the
object whose callback is executing is set to on (the default), then
interruption occurs at the next point where the event queue
is processed. If the Interruptible property is set to off, the
BusyAction property (of the object owning the executing callback)
determines how MATLAB handles the event. The choices are

• cancel— Discard the event that attempted to execute a second
callback routine.

• queue — Queue the event that attempted to execute a second
callback routine until the current callback finishes.

2-3926



Text Properties

ButtonDownFcn
function handle, cell array containing function handle and
additional arguments, or string (not recommended)

Button press callback function. A callback function that executes
whenever you press a mouse button while the pointer is over the
text object.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

Set this property to a function handle that references the callback.
The function must define at least two input arguments (handle
of object associated with the button down event and an event
structure, which is empty for this property). For example, the
following function takes different action depending on what type
of selection was made:

function button_down(src,evnt)
% src - the object that is the source of the event
% evnt - empty for this property

sel_typ = get(gcbf,'SelectionType')
switch sel_typ

case 'normal'
disp('User clicked left-mouse button')
set(src,'Selected','on')

case 'extend'
disp('User did a shift-click')
set(src,'Selected','on')

case 'alt'
disp('User did a control-click')
set(src,'Selected','on')
set(src,'SelectionHighlight','off')

end
end

2-3927

../ref/figure_props.html#SelectionType


Text Properties

Suppose h is the handle of a text object and that the button_down
function is on your MATLAB path. The following statement
assigns the function above to the ButtonDownFcn:

set(h,'ButtonDownFcn',@button_down)

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

Children
matrix (read only)

The empty matrix; text objects have no children.

Clipping
on | {off}

Clipping mode. When Clipping is on, MATLAB does not display
any portion of the text that is outside the axes.

Color
ColorSpec

Text color. A three-element RGB vector or one of the predefined
names, specifying the text color. The default value is black. See
ColorSpec for more information on specifying color.

CreateFcn
function handle, cell array containing function handle and
additional arguments, or string (not recommended)

Callback function executed during object creation. A callback
function that executes when MATLAB creates a text object. You
must define this property as a default value for text or in a call
to the text function that creates a new text object. For example,
the statement

set(0,'DefaultTextCreateFcn',@text_create)

2-3928



Text Properties

defines a default value on the root level that sets the figure
Pointer property to crosshairs whenever you create a text object.
The callback function must be on your MATLAB path when you
execute the above statement.

function text_create(src,evnt)
% src - the object that is the source of the event
% evnt - empty for this property
set(gcbf,'Pointer','crosshair')

end

MATLAB executes this function after setting all text properties.
Setting this property on an existing text object has no effect. The
function must define at least two input arguments (handle of
object created and an event structure, which is empty for this
property).

The handle of the object whose CreateFcn is being executed is
passed by MATLAB as the first argument to the callback function
and is also accessible through the root CallbackObject property,
which you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

DeleteFcn
function handle, cell array containing function handle and
additional arguments, or string (not recommended)

Delete text callback function. A callback function that executes
when you delete the text object (for example, when you issue
a delete command or clear the axes cla or figure clf). For
example, the following function displays object property data
before the object is deleted.

function delete_fcn(src,evnt)
% src - the object that is the source of the event
% evnt - empty for this property

2-3929

../ref/figure_props.html#Pointer


Text Properties

obj_tp = get(src,'Type');
disp([obj_tp, ' object deleted'])
disp('Its user data is:')
disp(get(src,'UserData'))

end

MATLAB executes the function before deleting the object’s
properties so these values are available to the callback function.
The function must define at least two input arguments (handle
of object being deleted and an event structure, which is empty
for this property)

The handle of the object whose DeleteFcn is being executed is
passed by MATLAB as the first argument to the callback function
and is also accessible through the root CallbackObject property,
which you can query using gcbo.

See Function Handle Callbacks for information on how to use
function handles to define the callback function.

DisplayName
string (default is empty string)

String used by legend for this text object. The legend function
uses the string defined by the DisplayName property to label this
text object in the legend.

• If you specify string arguments with the legend function,
DisplayName is set to this text object’s corresponding string
and that string is used for the legend.

• If DisplayName is empty, legend creates a string of the form,
['data' n], where n is the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

• If you edit the string directly in an existing legend, DisplayName
is set to the edited string.

2-3930



Text Properties

• If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

• To add programmatically a legend that uses the DisplayName
string, call legend with the toggle or show option.

See “Controlling Legends” for more examples.

EdgeColor
ColorSpec | {none}

Color of edge drawn around text extent rectangle plus margin. This
property enables you to specify the color of a box drawn around
the text Extent plus the text Margin. For example, the following
code draws a red rectangle around text that labels a plot.

text(3*pi/4,sin(3*pi/4),...
'\leftarrowsin(t) = .707',...
'EdgeColor','red');

For additional features, see the following properties:

2-3931



Text Properties

• BackgroundColor — Color of the rectangle’s interior (none by
default)

• LineStyle — Style of the rectangle’s edge line (first set
EdgeColor)

• LineWidth — Width of the rectangle’s edge line (first set
EdgeColor)

• Margin— Increases the size of the rectangle by adding a margin
to the area defined by the text extent rectangle. This margin is
added to the text extent rectangle to define the text background
area that is enclosed by the EdgeColor rectangle. Note that the
text extent does not change when you change the margin; only
the rectangle displayed when you set the EdgeColor property
and the area defined by the BackgroundColor change.

Editing
on | {off}

Enable or disable editing mode. When this property is set to the
default off, you cannot edit the text string interactively (i.e., you
must change the String property to change the text). When this
property is set to on, MATLAB places an insert cursor at the end of
the text string and enables editing. To apply the new text string,

1 Press the Esc key.

2 Click in any figure window (including the current figure).

3 Reset the Editing property to off.

MATLAB then updates the String property to contain the new
text and resets the Editing property to off. You must reset the
Editing property to on to resume editing.

EraseMode
{normal} | none | xor | background

2-3932



Text Properties

Erase mode. This property controls the technique MATLAB
uses to draw and erase text objects. Alternative erase modes
are useful for creating animated sequences where controlling
the way individual objects are redrawn is necessary to improve
performance and obtain the desired effect.

• normal— Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all
objects are rendered correctly. This mode produces the most
accurate picture, but is the slowest. The other modes are faster,
but do not perform a complete redraw and are therefore less
accurate.

• none — Do not erase the text when it is moved or destroyed.
While the object is still visible on the screen after erasing with
EraseMode none, you cannot print it because MATLAB stores
no information about its former location.

• xor— Draw and erase the text by performing an exclusive OR
(XOR) with each pixel index of the screen beneath it. When
the text is erased, it does not damage the objects beneath it.
However, when text is drawn in xor mode, its color depends on
the color of the screen beneath it. It is correctly colored only
when it is over axes background Color, or the figure background
Color if the axes Color is set to none.

• background — Erase the text by drawing it in the axes
background Color, or the figure background Color if the axes
Color is set to none. This damages objects that are behind the
erased text, but text is always properly colored.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects
is set to normal. This means graphics objects created with
EraseMode set to none, xor, or background can look differently on
screen than on paper. On screen, MATLAB may mathematically
combine layers of colors (for example, performing an XOR
of a pixel color with that of the pixel behind it) and ignore

2-3933



Text Properties

three-dimensional sorting to obtain greater rendering speed.
However, these techniques are not applied to the printed output.

You can use the MATLAB getframe command or other screen
capture application to create an image of a figure containing
nonnormal mode objects.

Extent
position rectangle (read only)

Position and size of text. A four-element read-only vector that
defines the size and position of the text string

[left,bottom,width,height]

If the Units property is set to data (the default), left and bottom
are the x- and y-coordinates of the lower left corner of the text
Extent.

For all other values of Units, left and bottom are the distance
from the lower left corner of the axes position rectangle to the
lower left corner of the text Extent. width and height are the
dimensions of the Extent rectangle. All measurements are in
units specified by the Units property.

FontAngle
{normal} | italic | oblique

Character slant. MATLAB uses this property to select a font from
those available on your particular system. Generally, setting this
property to italic or oblique selects a slanted font.

FontName
A name, such as Courier, or the string FixedWidth

Font family. A string specifying the name of the font to use for the
text object. To display and print properly, this must be a font that
your system supports. The default font is Helvetica.

2-3934



Text Properties

Specifying a Fixed-Width Font

If you want text to use a fixed-width font that looks good in any locale,
you should set FontName to the string FixedWidth:

set(text_handle,'FontName','FixedWidth')

This eliminates the need to hard-code the name of a fixed-width font,
which may not display text properly on systems that do not use ASCII
character encoding (such as in Japan where multibyte character sets
are used). A properly written MATLAB application that needs to use
a fixed-width font should set FontName to FixedWidth (note that this
string is case sensitive) and rely on FixedWidthFontName to be set
correctly in the end user’s environment.

End users can adapt a MATLAB application to different locales or
personal environments by setting the root FixedWidthFontName
property to the appropriate value for that locale from startup.m.

Note that setting the root FixedWidthFontName property causes an
immediate update of the display to use the new font.

FontSize
size in FontUnits

Font size. A value specifying the font size to use for text in units
determined by the FontUnits property. The default point size is
10 (1 point = 1/72 inch).

FontWeight
light | {normal} | demi | bold

Weight of text characters. MATLAB uses this property to select a
font from those available on your particular system. Generally,
setting this property to bold or demi causes MATLAB to use
a bold font.

FontUnits
{points} | normalized | inches |
centimeters | pixels

2-3935



Text Properties

Font size units. MATLAB uses this property to determine the
units used by the FontSize property. Normalized units interpret
FontSize as a fraction of the height of the parent axes. When
you resize the axes, MATLAB modifies the screen FontSize
accordingly. pixels, inches, centimeters, and points are
absolute units (1 point = 1/72 inch).

Note that if you are setting both the FontSize and the FontUnits
in one function call, you must set the FontUnits property first so
that MATLAB can correctly interpret the specified FontSize.

HandleVisibility
{on} | callback | off

Control access to object’s handle by command-line users and GUIs.
This property determines when an object’s handle is visible in
its parent’s list of children. HandleVisibility is useful for
preventing command-line users from accidentally drawing into or
deleting a figure that contains only user interface devices (such as
a dialog box).

Handles are always visible when HandleVisibility is set to on.

Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by
callback routines, but not from within functions invoked from
the command line. This provides a means to protect GUIs from
command-line users, while allowing callback routines to have
complete access to object handles.

Setting HandleVisibility to off makes handles invisible at all
times. This may be necessary when a callback routine invokes
a function that might potentially damage the GUI (such as
evaluating a user-typed string), and so temporarily hides its own
handles during the execution of that function.

2-3936



Text Properties

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

When a handle’s visibility is restricted using callback or off,

• The object’s handle does not appear in its parent’s Children
property.

• Figures do not appear in the root’s CurrentFigure property.

• Objects do not appear in the root’s CallbackObject property or
in the figure’s CurrentObject property.

• Axes do not appear in their parent’s CurrentAxes property.

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties).

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties, and pass it to any
function that operates on handles.

HitTest
{on} | off

Selectable by mouse click. HitTest determines if the text can
become the current object (as returned by the gco command and
the figure CurrentObject property) as a result of a mouse click
on the text. If HitTest is set to off, clicking the text selects the
object below it (which is usually the axes containing it).

For example, suppose you define the button down function of an
image (see the ButtonDownFcn property) to display text at the
location you click with the mouse.

2-3937



Text Properties

First define the callback routine.

function bd_function
pt = get(gca,'CurrentPoint');
text(pt(1,1),pt(1,2),pt(1,3),...
'{\fontsize{20}\oplus} The spot to label',...
'HitTest','off')

Now display an image, setting its ButtonDownFcn property to the
callback routine.

load earth
image(X,'ButtonDownFcn','bd_function'); colormap(map)

When you click the image, MATLAB displays the text string
at that location. With HitTest set to off, existing text cannot
intercept any subsequent button down events that occur over the
text. This enables the image’s button down function to execute.

HorizontalAlignment
{left} | center | right

Horizontal alignment of text. This property specifies the
horizontal justification of the text string. It determines where
MATLAB places the string with regard to the point specified
by the Position property. The following picture illustrates the
alignment options.

See the Extent property for related information.

2-3938



Text Properties

Interpreter
latex | {tex} | none

Interpret TEX instructions. This property controls whether
MATLAB interprets certain characters in the String property
as TEX instructions (default) or displays all characters literally.
The options are:

• latex — Supports a basic subset of the LATEX markup
language.

• tex — Supports a subset of plain TEX markup language. See
the String property for a list of supported TEX instructions.

• none — Displays literal characters.

Latex Interpreter

To enable the LaTEX interpreter for text objects, set the Interpreter
property to latex. For example, the following statement displays an
equation in a figure at the point [.5 .5], and enlarges the font to 16
points.

text('Interpreter','latex',...
'String','$$\int_0^x\!\int_y dF(u,v)$$',...
'Position',[.5 .5],...
'FontSize',16)

2-3939



Text Properties

Information About Using TEX

The following references may be useful to people who are not familiar
with TEX.

• Donald E. Knuth, The TEXbook, Addison Wesley, 1986.

• The TEX Users Group home page: http://www.tug.org

Interruptible
{on} | off

Callback routine interruption mode. The Interruptible property
controls whether a text callback routine can be interrupted
by subsequently invoked callback routines. Text objects have
three properties that define callback routines: ButtonDownFcn,

2-3940

http://www.tug.org


Text Properties

CreateFcn, and DeleteFcn. See the BusyAction property for
information on how MATLAB executes callback routines.

LineStyle
{-} | -- | : | -. | none

Edge line type. This property determines the line style used to
draw the edges of the text Extent. The available line styles are
shown in the following table.

Symbol Line Style

- Solid line (default)

-- Dashed line

: Dotted line

-. Dash-dot line

none No line

For example, the following code draws a red rectangle with a
dotted line style around text that labels a plot.

text(3*pi/4,sin(3*pi/4),...
'\leftarrowsin(t) = .707',...
'EdgeColor','red',...
'LineWidth',2,...
'LineStyle',':');

2-3941



Text Properties

For additional features, see the following properties:

• BackgroundColor — Color of the rectangle’s interior (none by
default)

• EdgeColor— Color of the rectangle’s edge (none by default)

• LineWidth — Width of the rectangle’s edge line (first set
EdgeColor)

• Margin — Increases the size of the rectangle by adding a
margin to the existing text extent rectangle. This margin is
added to the text extent rectangle to define the text background
area that is enclosed by the EdgeColor rectangle. Note that the
text extent does not change when you change the margin; only
the rectangle displayed when you set the EdgeColor property
and the area defined by the BackgroundColor change.

LineWidth
scalar (points)

Width of line used to draw text extent rectangle. When you set the
text EdgeColor property to a color (the default is none), MATLAB

2-3942



Text Properties

displays a rectangle around the text Extent. Use the LineWidth
property to specify the width of the rectangle edge. For example,
the following code draws a red rectangle around text that labels a
plot and specifies a line width of 3 points:

text(3*pi/4,sin(3*pi/4),...
'\leftarrowsin(t) = .707',...
'EdgeColor','red',...
'LineWidth',3);

For additional features, see the following properties:

• BackgroundColor — Color of the rectangle’s interior (none by
default)

• EdgeColor— Color of the rectangle’s edge (none by default)

• LineStyle — Style of the rectangle’s edge line (first set
EdgeColor)

• Margin — Increases the size of the rectangle by adding a
margin to the existing text extent rectangle. This margin is
added to the text extent rectangle to define the text background

2-3943



Text Properties

area that is enclosed by the EdgeColor rectangle. Note that the
text extent does not change when you change the margin; only
the rectangle displayed when you set the EdgeColor property
and the area defined by the BackgroundColor change.

Margin
scalar (pixels)

Distance between the text extent and the rectangle edge. When
you specify a color for the BackgroundColor or EdgeColor text
properties, MATLAB draws a rectangle around the area defined
by the text Extent plus the value specified by the Margin. For
example, the following code displays a light green rectangle with
a 10-pixel margin.

text(5*pi/4,sin(5*pi/4),...
['sin(5*pi/4) = ',num2str(sin(5*pi/4))],...
'HorizontalAlignment','center',...
'BackgroundColor',[.7 .9 .7],...
'Margin',10);

2-3944



Text Properties

For additional features, see the following properties:

• BackgroundColor — Color of the rectangle’s interior (none by
default)

• EdgeColor— Color of the rectangle’s edge (none by default)

• LineStyle — Style of the rectangle’s edge line (first set
EdgeColor)

• LineWidth — Width of the rectangle’s edge line (first set
EdgeColor)

See how margin affects text extent properties

This example enables you to change the values of the Margin
property and observe the effects on the BackgroundColor area
and the EdgeColor rectangle.

Click to view in editor — This link opens the MATLAB editor with
the following example.

Click to run example — Use your scroll wheel to vary the Margin.

Parent
handle of axes, hggroup, or hgtransform

Parent of text object. This property contains the handle of the text
object’s parent. The parent of a text object is the axes, hggroup, or
hgtransform object that contains it.

See Objects That Can Contain Other Objects for more information
on parenting graphics objects.

Position
[x,y,[z]]

Location of text. A two- or three-element vector, [x y [z]],
that specifies the location of the text in three dimensions. If you

2-3945



Text Properties

omit the z value, it defaults to 0. All measurements are in units
specified by the Units property. Initial value is [0 0 0].

Rotation
scalar (default = 0)

Text orientation. This property determines the orientation of the
text string. Specify values of rotation in degrees (positive angles
cause counterclockwise rotation).

Selected
on | {off}

Is object selected? When this property is set to on, MATLAB
displays selection handles if the SelectionHighlight property is
also set to on. You can, for example, define the ButtonDownFcn
to set this property, allowing users to select the object with the
mouse.

SelectionHighlight
{on} | off

Objects are highlighted when selected. When the Selected
property is set to on, MATLAB indicates the selected state by
drawing four edge handles and four corner handles. When
SelectionHighlight is set to off, MATLAB does not draw the
handles.

String
string

The text string. Specify this property as a quoted string for
single-line strings, or as a cell array of strings, or a padded string
matrix for multiline strings. MATLAB displays this string at the
specified location. Vertical slash characters are not interpreted
as line breaks in text strings, and are drawn as part of the text
string. See Mathematical Symbols, Greek Letters, and TeX
Characters for an example.

2-3946



Text Properties

Note The words default, factory, and remove are reserved
words that will not appear in a figure when quoted as a normal
string. In order to display any of these words individually, type
'\reserved_word' instead of 'reserved_word'.

When the text Interpreter property is set to Tex (the default),
you can use a subset of TeX commands embedded in the
string to produce special characters such as Greek letters and
mathematical symbols. The following table lists these characters
and the character sequences used to define them.

Character
Sequence Symbol

Character
Sequence Symbol

Character
Sequence Symbol

\alpha α \upsilon υ \sim ~

\beta β \phi Φ \leq ≤

\gamma γ \chi χ \infty ∞

\delta δ \psi ψ \clubsuit ♣

\epsilon ε \omega ω \diamondsuit ♦

\zeta ζ \Gamma Γ \heartsuit ♥

\eta η \Delta Δ \spadesuit ♠

\theta Θ \Theta Θ \leftrightarrow ↔

\vartheta \Lambda Λ \leftarrow ←

\iota ι \Xi Ξ \uparrow ↑

\kappa κ \Pi Π \rightarrow →

\lambda λ \Sigma Σ \downarrow ↓

\mu µ \Upsilon \circ º

2-3947



Text Properties

Character
Sequence Symbol

Character
Sequence Symbol

Character
Sequence Symbol

\nu ν \Phi Φ \pm ±

\xi ξ \Psi Ψ \geq ≥

\pi π \Omega Ω \propto ∝

\rho ρ \forall ∀ \partial ∂

\sigma σ \exists ∃ \bullet •
\varsigma ς \ni ∋ \div ÷

\tau τ \cong \neq ≠

\equiv ≡ \approx ≈ \aleph

\Im ℑ \Re ℜ \wp ℘

\otimes ⊗ \oplus ⊕ \oslash ∅

\cap ∩ \cup ∪ \supseteq ⊇

\supset ⊃ \subseteq ⊆ \subset ⊂

\int ∫ \in \o ο

\rfloor ⌋ \lceil ⌈ \nabla ∇

\lfloor ⌊ \cdot · \ldots ...

\perp ⊥ \neg ¬ \prime ´

\wedge ∧ \times x \0 ∅

\rceil ⌉ \surd √ \mid |

\vee ∨ \varpi ϖ \copyright ©

\langle  \rangle 

You can also specify stream modifiers that control font type and
color. The first four modifiers are mutually exclusive. However,

2-3948



Text Properties

you can use \fontname in combination with one of the other
modifiers:

• \bf — Bold font

• \it — Italic font

• \sl — Oblique font (rarely available)

• \rm — Normal font

• \fontname{fontname} — Specify the name of the font family
to use.

• \fontsize{fontsize}— Specify the font size in FontUnits.

• \color(colorSpec)— Specify color for succeeding characters

Stream modifiers remain in effect until the end of the string or
only within the context defined by braces { }.

Specifying Text Color in TeX Strings

Use the \color modifier to change the color of characters following it
from the previous color (which is black by default). Syntax is:

• \color{colorname} for the eight basic named colors (red, green,
yellow, magenta, blue, black, white), and plus the four Simulink
colors (gray, darkGreen, orange, and lightBlue)

Note that short names (one-letter abbreviations) for colors are not
supported by the \color modifier.

• \color[rgb]{r g b} to specify an RGB triplet with values between
0 and 1 as a cell array

For example,

text(.1,.5,['\fontsize{16}black {\color{magenta}magenta '...
'\color[rgb]{0 .5 .5}teal \color{red}red} black again'])

2-3949



Text Properties

Specifying Subscript and Superscript Characters

The subscript character “_” and the superscript character “^” modify
the character or substring defined in braces immediately following.

To print the special characters used to define the TeX strings when
Interpreter is Tex, prefix them with the backslash “\” character: \\,
\{, \} \_, \^.

See the “Examples” on page 2-3920 in the text reference page for more
information.

When Interpreter is set to none, no characters in the String are
interpreted, and all are displayed when the text is drawn.

When Interpreter is set to latex, MATLAB provides a complete
LaTEX interpreter for text objects. See the Interpreter property for
more information.

2-3950



Text Properties

Tag
string

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This is
particularly useful when you are constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callback
routines. You can define Tag as any string.

Type
string (read only)

Class of graphics object. For text objects, Type is always the string
'text'.

UIContextMenu
handle of a uicontextmenu object

Associate a context menu with the text. Assign this property the
handle of a uicontextmenu object created in the same figure as the
text. Use the uicontextmenu function to create the context menu.
MATLAB displays the context menu whenever you right-click
over the text.

Units
pixels | normalized | inches |
| characters | centimeters | points | {data}

Units of measurement. This property specifies the units MATLAB
uses to interpret the Extent and Position properties. All units
are measured from the lower left corner of the axes plot box.

• Normalized units map the lower left corner of the rectangle
defined by the axes to (0,0) and the upper right corner to
(1.0,1.0).

• pixels, inches, centimeters, and points are absolute units
(1 point = 1/72 inch;).

2-3951



Text Properties

• Units of characters are based on the size of characters in the
default system font. The width of one character unit is the
width of the letter x, the height of one character unit is the
distance between the baselines of two lines of text.

• data refers to the data units of the parent axes as determined
by the data graphed (not the axes Units property, which
controls the positioning of the axes within the figure window).

If you change the value of Units, it is good practice to return it
to its default value after completing your computation so as not
to affect other functions that assume Units is set to the default
value.

UserData
matrix

User-specified data. Any data you want to associate with the text
object. MATLAB does not use this data, but you can access it
using set and get.

VerticalAlignment
top | cap | {middle} | baseline |
bottom

Vertical alignment of text. This property specifies the vertical
justification of the text string. It determines where MATLAB
places the string with regard to the value of the Position
property. The possible values mean

• top — Place the top of the string’ s Extent rectangle at the
specified y-position.

• cap — Place the string so that the top of a capital letter is at
the specified y-position.

• middle — Place the middle of the string at the specified
y-position.

• baseline— Place font baseline at the specified y-position.

2-3952



Text Properties

• bottom— Place the bottom of the string’s Extent rectangle at
the specified y-position.

The following picture illustrates the alignment options.

Visible
{on} | off

Text visibility. By default, all text is visible. When set to off,
the text is not visible, but still exists, and you can query and set
its properties.

See Also text

2-3953



textread

Purpose Read data from text file; write to multiple outputs

Note textread will be removed in a future version. Use textscan
instead.

Graphical
Interface

As an alternative to textread, use the Import Wizard. To activate the
Import Wizard, select Import Data from the File menu.

Syntax [A,B,C,...] = textread(filename,format)
[A,B,C,...] = textread(filename,format,N)
[...] = textread(...,param,value,...)

Description [A,B,C,...] = textread(filename,format) reads data from the
file filename into the variables A,B,C, and so on, using the specified
format, until the entire file is read. The filename and format inputs
are strings, each enclosed in single quotes. textread is useful for
reading text files with a known format. textread handles both fixed
and free format files.

Note When reading large text files, reading from a specific point in a
file, or reading file data into a cell array rather than multiple outputs,
you might prefer to use the textscan function.

textread matches and converts groups of characters from the input.
Each input field is defined as a string of non-white-space characters
that extends to the next white-space or delimiter character, or to the
maximum field width. Repeated delimiter characters are significant,
while repeated white-space characters are treated as one.

The format string determines the number and types of return
arguments. The number of return arguments is the number of items
in the format string. The format string supports a subset of the
conversion specifiers and conventions of the C language fscanf routine.

2-3954



textread

Values for the format string are listed in the table below. White-space
characters in the format string are ignored.

format Action Output

Literals

(ordinary
characters)

Ignore the matching characters. For example, in a file
that has Dept followed by a number (for department
number), to skip the Dept and read only the number,
use 'Dept' in the format string.

None

%d Read a signed integer value. Double array

%u Read an integer value. Double array

%f Read a floating-point value. Double array

%s Read a white-space or delimiter-separated string. Cell array of
strings

%q Read a double quoted string, ignoring the quotes. Cell array of
strings

%c Read characters, including white space. Character array

%[...] Read the longest string containing characters
specified in the brackets.

Cell array of
strings

%[^...] Read the longest nonempty string containing
characters that are not specified in the brackets.

Cell array of
strings

%*...
instead of %

Ignore the matching characters specified by *. No output

%w...
instead of %

Read field width specified by w. The %f format
supports %w.pf, where w is the field width and p is
the precision.

[A,B,C,...] = textread(filename,format,N) reads the data,
reusing the format string N times, where N is an integer greater than
zero. If N is smaller than zero, textread reads the entire file.

[...] = textread(...,param,value,...) customizes textread
using param/value pairs, as listed in the table below.

2-3955



textread

param value Action

bufsize Positive integer Specifies the maximum string length, in
bytes. Default is 4095.

commentstyle matlab Ignores characters after %.

commentstyle shell Ignores characters after #.

commentstyle c Ignores characters between /* and */.

commentstyle c++ Ignores characters after //.

delimiter One or more characters Act as delimiters between elements.
Default is none.

emptyvalue Scalar double Value given to empty cells when reading
delimited files. Default is 0.

endofline Single character or '\r\n' Character that denotes the end of a line.

Default is determined from file

expchars Exponent characters Default is eEdD.

headerlines Positive integer Ignores the specified number of lines at
the beginning of the file.

Any from the list below:whitespace

' '
\b
\n
\r
\t

Space
Backspace
Newline
Carriage return
Horizontal tab

Treats vector of characters as white
space. Default is ' \b\t'.

Note When textread reads a consecutive series of whitespace values,
it treats them as one white space. When it reads a consecutive series of
delimiter values, it treats each as a separate delimiter.

2-3956



textread

Remarks If you want to preserve leading and trailing spaces in a string, use the
whitespace parameter as shown here:

textread('myfile.txt', '%s', 'whitespace', '')
ans =

' An example of preserving spaces '

Examples Example 1 — Read All Fields in Free Format File Using %

The first line of mydata.dat is

Sally Level1 12.34 45 Yes

Read the first line of the file as a free format file using the % format.

[names, types, x, y, answer] = textread('mydata.dat', ...
'%s %s %f %d %s', 1)

returns

names =
'Sally'

types =
'Level1'

x =
12.34000000000000

y =
45

answer =
'Yes'

Example 2 — Read as Fixed Format File, Ignoring the
Floating Point Value

The first line of mydata.dat is

Sally Level1 12.34 45 Yes

Read the first line of the file as a fixed format file, ignoring the
floating-point value.

2-3957



textread

[names, types, y, answer] = textread('mydata.dat', ...
'%9c %6s %*f %2d %3s', 1)

returns

names =
Sally
types =

'Level1'
y =

45
answer =

'Yes'

%*f in the format string causes textread to ignore the floating point
value, in this case, 12.34.

Example 3 — Read Using Literal to Ignore Matching
Characters

The first line of mydata.dat is

Sally Type1 12.34 45 Yes

Read the first line of the file, ignoring the characters Type in the second
field.

[names, typenum, x, y, answer] = textread('mydata.dat', ...
'%s Type%d %f %d %s', 1)

returns

names =
'Sally'

typenum =
1

x =
12.34000000000000

y =
45

2-3958



textread

answer =
'Yes'

Type%d in the format string causes the characters Type in the second
field to be ignored, while the rest of the second field is read as a signed
integer, in this case, 1.

Example 4 — Specify Value to Fill Empty Cells

For files with empty cells, use the emptyvalue parameter. Suppose
the file data.csv contains:

1,2,3,4,,6
7,8,9,,11,12

Read the file using NaN to fill any empty cells:

data = textread('data.csv', '', 'delimiter', ',', ...
'emptyvalue', NaN);

Example 5 — Read File into a Cell Array of Strings

Read the file fft.m into cell array of strings.

file = textread('fft.m', '%s', 'delimiter', '\n', ...
'whitespace', '');

See Also textscan, dlmread, fscanf

2-3959



textscan

Purpose Read formatted data from text file or string

Syntax C = textscan(fid, 'format')
C = textscan(fid, 'format', N)
C = textscan(fid, 'format', 'param', value)
C = textscan(fid, 'format', N, 'param', value)
C = textscan(str, ...)
[C, position] = textscan(...)

Description
Note Before reading a file with textscan, you must open the file with
the fopen function. fopen supplies the fid input required by textscan.
When you are finished reading from the file, close the file by calling
fclose(fid).

C = textscan(fid, 'format') reads data from an open text file
identified by the file identifier fid into cell array C. The format input is
a string of conversion specifiers enclosed in single quotation marks. The
number of specifiers determines the number of cells in the cell array C.

C = textscan(fid, 'format', N) reads data from the file, using the
format N times, where N is a positive integer. To read additional data
from the file after N cycles, call textscan again using the original fid.

C = textscan(fid, 'format', 'param', value) accepts one or
more comma-separated parameter name/value pairs. For a list of all
valid parameter strings, value descriptions, and defaults, see “User
Configurable Options” on page 2-3964.

C = textscan(fid, 'format', N, 'param', value) reads data from
the file, using the format N times, and using settings specified by pairs
of param and value arguments.

C = textscan(str, ...) reads data from string str. You can use
the format, N, and parameter/value arguments described above with
this syntax. However, for strings, repeated calls to textscan restart
the scan from the beginning each time. (To restart a scan from the last

2-3960



textscan

position, request a position output. See “Example 10 — Resuming a
Text Scan of a String” on page 2-3973.)

[C, position] = textscan(...) returns the file or string position at
the end of the scan as the second output argument. For a file, this is
the value that ftell(fid) would return after calling textscan. For a
string, position indicates how many characters textscan read.

Remarks When textscan reads a specified file or string, it attempts to match the
data to the format string. If textscan fails to convert a data field, it
stops reading and returns all fields read before the failure.

Basic Conversion Specifiers

The format input is a string of one or more conversion specifiers. The
following table lists the basic specifiers.

Field Type Specifier Details

Integer, signed %d
%d8
%d16
%d32
%d64

32-bit
8-bit
16-bit
32-bit
64-bit

Integer, unsigned %u
%u8
%u16
%u32
%u64

32-bit
8-bit
16-bit
32-bit
64-bit

Floating-point
number

%f
%f32
%f64
%n

64-bit (double)
32-bit (single)
64-bit (double)
64-bit (double)

2-3961



textscan

Field Type Specifier Details

%s
%q

String
String, where double quotation marks
indicate text to keep together

Character strings

%c Any single character, including a
delimiter

%[...] Read only characters in the brackets,
until the first nonmatching character.
To include ] in the set, specify it first:
%[]...].

Example: %[mus] reads 'summer ' as
'summ'.

Pattern-matching
strings

%[^...] Read only characters not in the
brackets, until the first matching
character. To exclude ], specify it
first: %[^]...].

Example: %[^xrg] reads 'summer '
as 'summe'.

For each numeric conversion specifier, textscan returns a K-by-1
MATLAB numeric vector to the output cell array C, where K is the
number of times that textscan finds a field matching the specifier. For
each string conversion specifier, textscan returns a K-by-1 cell vector
of strings. For each character conversion of the form %Nc (see “Field
Length” on page 2-3962), textscan returns a K-by-N character array.

Field Length

You can specify the number of characters or digits to read by inserting
a number between the percent character (%) and the format specifier.
For floating-point numbers (%n, %f, %f32, %f64), you also can specify the
number of digits read to the right of the decimal point.

2-3962



textscan

Specifier Action Taken

%Nc Read N characters, including delimiter
characters. Example: %9c reads 'Let's Go!'
as 'Let's Go!'.

%Ns
%Nq
%N[...]
%N[^...]

%Nn
%Nd...
%Nu...
%Nf...

Read N characters or digits (counting a decimal
point as a digit), or up to the first delimiter,
whichever comes first.

Example: %5f32 reads '473.238' as 473.2.

%N.Dn
%N.Df...

Read N digits (counting a decimal point as a
digit), or up to the first delimiter, whichever
comes first. Return D decimal digits in the
output.

Example: %7.2f reads '473.238' as 473.23 .

Skipping Fields or Parts of Fields

The textscan function reads all characters in your file in sequence
unless you tell it to ignore a particular field or a portion of a field.

Use the following format specifiers to skip or read portions of fields:

Specifier Action Taken

%*... Skip the field. textscan does not create an output cell
for any field that it skips.

Example: '%s %*s %s %s %*s %*s %s' (spaces are
optional) converts the string
'Blackbird singing in the dead of night' to
four output cells with the strings
'Blackbird' 'in' 'the' 'night'

%*n... Ignore n characters of the field, where n is an integer
less than or equal to the number of characters in the
field.

Example: %*4s reads 'summer ' as 'er'.

2-3963



textscan

Specifier Action Taken

literal Ignore the specified characters of the field.

Example: Level%u8 reads 'Level1' as 1.

Example: %u8Step reads '2Step' as 2.

The textscan function does not include leading white-space characters
in the processing of any data fields. When processing numeric data,
textscan also ignores trailing white space.

User Configurable Options

This table shows the valid param-value options and their default
values. Parameter names are not case sensitive.

Parameter Value Default

BufSize Maximum string length in
bytes.

4095

CollectOutput If true, textscan
concatenates consecutive
output cells with the same
data type into a single
array.

0 (false)

CommentStyle Symbol(s) designating text
to ignore.
Specify a single string
(such as '%') to ignore
characters following the
string on the same line.
Specify a cell array of two
strings (such as {'/*',
'*/'}) to ignore characters
between the strings.
textscan checks for
comments only at the start

None

2-3964



textscan

Parameter Value Default

of each field, not within a
field.

Delimiter Field delimiter
character(s).

White space

EmptyValue Value to return for empty
numeric fields in delimited
files.

NaN

EndOfLine End-of-line character. Determined
from the file:
\n, \r, or
\r\n

ExpChars Exponent characters. 'eEdD'

HeaderLines Number of lines to skip.
(Includes the remainder of
the current line.)

0

MultipleDelimsAsOne If true, textscan treats
consecutive delimiters as
a single delimiter. Only
valid if you specify the
Delimiter option.

0 (false)

ReturnOnError Determines behavior when
textscan fails to read or
convert. If true, textscan
terminates without an
error and returns all fields
read. If false, textscan
terminates with an error
and does not return an
output cell array.

1 (true)

2-3965



textscan

Parameter Value Default

TreatAsEmpty String(s) in the data file to
treat as an empty value.
Can be a single string or
cell array of strings. Only
applies to numeric fields.

None

Whitespace White-space characters. ' \b\t'

Field and Row Delimiters

Within each row, the default field delimiter is white space. White space
can be any combination of space (' '), backspace ('\b'), or tab ('\t')
characters.

If you use the default (white space) field delimiter, textscan interprets
repeated white-space characters as a single delimiter. If you specify a
nondefault delimiter, textscan interprets repeated delimiter characters
as separate delimiters, and returns an empty value to the output cell.
(See “Example 5 — Specifying Delimiter and Empty Value Conversion”
on page 2-3969 and “Example 7 — Handling Repeated Delimiters” on
page 2-3971.)

Rows delimiters are end-of-line (EOL) character sequences. The default
end-of-line setting depends on the format of your file, and can include a
newline character ('\n'), a carriage return ('\r'), or a combination of
the two ('\r\n'). The textscan function uses the end-of-line sequence
to determine whether trailing fields on a particular line are empty.
Therefore, if the last line of the file contains trailing missing values,
but no end-of-line sequence, textscan does not return empty values
for those fields.

For more information, see “Example 9 — Using Nondefault Control
Characters” on page 2-3972.

2-3966



textscan

Numeric Fields

textscan converts numeric fields to the specified output type according
to MATLAB rules regarding overflow, truncation, and the use of NaN,
Inf, and -Inf.

For example, MATLAB represents an integer NaN as zero. If textscan
finds an empty field associated with an integer format specifier (such as
%d or %u), it returns the empty value as zero and not NaN. (See “Example
2 — Reading Different Types of Data” on page 2-3968 and “Example 5
— Specifying Delimiter and Empty Value Conversion” on page 2-3969.)

textscan imports any complex number as a whole into a complex
numeric field, converting the real and imaginary parts to the specified
numeric type (such as %d or %f). Valid forms for a complex number
are as follows:

Form Example

±<real>±<imag>i|j 5.7-3.1i

±<imag>i|j -7j

Do not include embedded white space in a complex number. textscan
interprets embedded white space as a field delimiter.

Examples
Note The following examples include spaces between the conversion
specifiers to make the format value easier to read. Spaces are not
required.

Example 1 — Reading a String

Read the following string, truncating each value to one decimal digit.
The specifier %*1d tells textscan to skip the remaining digit:

str = '0.41 8.24 3.57 6.24 9.27';

C = textscan(str, '%3.1f %*1d');

2-3967



textscan

textscan returns a 1-by-1 cell array C:

C{1} = [0.4; 8.2; 3.5; 6.2; 9.2]

Example 2 — Reading Different Types of Data

Using a text editor, create a file scan1.dat that contains data in the
following form:

09/12/2005 Level1 12.34 45 1.23e10 inf Nan Yes 5.1+3i
10/12/2005 Level2 23.54 60 9e19 -inf 0.001 No 2.2-.5i
11/12/2005 Level3 34.90 12 2e5 10 100 No 3.1+.1i

Open the file, and read each column with the appropriate conversion
specifier:

fid = fopen('scan1.dat');
C = textscan(fid, '%s %s %f32 %d8 %u %f %f %s %f');
fclose(fid);

textscan returns a 1-by-9 cell array C with the following cells:

C{1} = {'09/12/2005'; '10/12/2005'; '11/12/2005'}
class cell

C{2} = {'Level1'; 'Level2'; 'Level3'} class cell
C{3} = [12.34; 23.54; 34.9] class single
C{4} = [45; 60; 12] class int8
C{5} = [4294967295; 4294967295; 200000] class uint32
C{6} = [Inf; -Inf; 10] class double
C{7} = [NaN; 0.001; 100] class double
C{8} = {'Yes'; 'No'; 'No'} class cell
C{9} = [5.1+3.0i; 2.2-0.5i; 3.1+0.1i] class double

The first two elements of C{5} are the maximum values for a 32-bit
unsigned integer, or intmax('uint32').

Example 3 — Removing a Literal String

Remove the text 'Level' from each field in the second column of the
data from Example 2:

2-3968



textscan

fid = fopen('scan1.dat');
C = textscan(fid, '%s Level%u8 %f32 %d8 %u %f %f %s %f');
fclose(fid);

textscan returns a 1-by-9 cell array, C, with

C{2} = [1; 2; 3] class uint8

Example 4 — Skipping the Remainder of a Line

Read the first column of the file in Example 2 into a cell array, skipping
the rest of the line:

fid = fopen('scan1.dat');
dates = textscan(fid, '%s %*[^\n]');
fclose(fid);

textscan returns a 1-by-1 cell array dates:

dates{1} = {'09/12/2005'; '10/12/2005'; '11/12/2005'}

Example 5 — Specifying Delimiter and Empty Value
Conversion

Using a text editor, create a comma-delimited file data.csv that
contains

1, 2, 3, 4, , 6
7, 8, 9, , 11, 12

Read the file, converting empty cells to -Inf:

fid = fopen('data.csv');
C = textscan(fid, '%f %f %f %f %u32 %f', 'delimiter', ',', ...

'EmptyValue', -Inf);
fclose(fid);

textscan returns a 1-by-6 cell array C with the following cells:

C{1} = [1; 7] class double

2-3969



textscan

C{2} = [2; 8] class double
C{3} = [3; 9] class double
C{4} = [4; -Inf] class double (empty converted to -Inf)
C{5} = [0; 11] class uint32 (empty converted to 0)
C{6} = [6; 12] class double

textscan converts the empty value in C{4}, associated with a
floating-point format, to -Inf. Because MATLAB represents unsigned
integer -Inf as 0, textscan converts the empty value in C{5} to 0 and
not -Inf.

Example 6 — Using Custom Empty Value Strings and
Comments

Using a text editor, create a comma-delimited file data2.csv that
contains the lines

abc, 2, NA, 3, 4
// Comment Here
def, na, 5, 6, 7

Designate the input that textscan should treat as comments or empty
values:

fid = fopen('data2.csv');
C = textscan(fid, '%s %n %n %n %n', 'delimiter', ',', ...

'treatAsEmpty', {'NA', 'na'}, ...
'commentStyle', '//');

fclose(fid);

textscan returns a 1-by-5 cell array C with the following cells:

C{1} = {'abc'; 'def'}
C{2} = [2; NaN]
C{3} = [NaN; 5]
C{4} = [3; 6]
C{5} = [4; 7]

2-3970



textscan

Example 7 — Handling Repeated Delimiters

Using a text editor, create a file data3.csv that contains

1,2,3,,4
5,6,7,,8

To treat the repeated commas as a single delimiter, use the
MultipleDelimsAsOne parameter, with a value of 1:

fid = fopen('data3.csv');
C = textscan(fid, '%f %f %f %f', 'delimiter', ',', ...

'MultipleDelimsAsOne', 1);
fclose(fid);

textscan returns a 1-by-4 cell array C with the following cells:

C{1} = [1; 5]
C{2} = [2; 6]
C{3} = [3; 7]
C{4} = [4; 8]

Example 8 — Using the CollectOutput Switch

Using a text editor, create a file grades.txt that contains

Student_ID | Test1 | Test2 | Test3
1 91.5 89.2 77.3
2 88.0 67.8 91.0
3 76.3 78.1 92.5
4 96.4 81.2 84.6

The default value for the CollectOutput switch is 0 (false), and
textscan returns each column of the numeric data in a separate array:

fid = fopen('grades.txt');

% read column headers
C_text = textscan(fid, '%s', 4, 'delimiter', '|');

2-3971



textscan

% read numeric data
C_data0 = textscan(fid, '%d %f %f %f')

C_data0 =
[4x1 int32] [4x1 double] [4x1 double] [4x1 double]

Set CollectOutput to 1 (true) to collect the consecutive columns of the
same class (the test scores, which are all double) into a single array:

frewind(fid);

C_text = textscan(fid, '%s', 4, 'delimiter', '|');

C_data1 = textscan(fid, '%d %f %f %f', ...
'CollectOutput', 1)

C_data1 =
[4x1 int32] [4x3 double]

fclose(fid);

Example 9 — Using Nondefault Control Characters

When you specify one of the following escape sequences for any
parameter value, textscan converts that sequence to the corresponding
control character:

\b Backspace

\n Newline

\r Carriage return

\t Tab

\\ Backslash (\)

If your data uses a different control character, use the sprintf function
to explicitly convert the escape sequence in your call to textscan.

For example, the following string includes a form feed character, \f:

2-3972



textscan

lyric = sprintf('Blackbird\fsinging\fin\fthe\fdead\fof\fnight');

To read the string using textscan, call the sprintf function to
explicitly convert the form feed:

C = textscan(lyric, '%s', 'delimiter', sprintf('\f'));

textscan returns a 1-by-1 cell array C:

C{1} =
{'Blackbird'; 'singing'; 'in'; 'the'; 'dead'; 'of'; 'night'}

Example 10 — Resuming a Text Scan of a String

If you resume a text scan of a file by calling textscan with the same file
identifier (fid), textscan automatically resumes reading at the point
where it terminated the last read.

If your input is a string rather than a file, textscan reads from the
beginning of the string each time. To resume a scan from any other
position in the string, you must use the two-output argument syntax in
your initial call to textscan. For example, given the string

lyric = 'Blackbird singing in the dead of night'

Read the first word of the string:

[firstword, pos] = textscan(lyric,'%9c', 1);

Resume the scan:

lastpart = textscan(lyric(pos+1:end), '%s');

See Also load | type | importdata | uiimport | dlmread | xlsread | fscanf
| fread

How To • “Importing Nonrectangular ASCII Data”

• “Importing Large ASCII Data Sets”

2-3973



textwrap

Purpose Wrapped string matrix for given uicontrol

Syntax outstring = textwrap(h,instring)
outstring = textwrap(h,instring,columns)
[outstring,position] = textwrap(...)

Description outstring = textwrap(h,instring) returns a wrapped string cell
array, outstring, that fits inside the uicontrol with handle h. instring
is a cell array, with each cell containing a single line of text. outstring
is the wrapped string matrix in cell array format. Each cell of the input
string is considered a paragraph.

outstring = textwrap(h,instring,columns) returns an outstring
with each line wrapped at columns characters. Spaces are included in
the character count.

[outstring,position] = textwrap(...) returns the recommended
position of the uicontrol in the units of the uicontrol. position considers
the extent of the multiline text in the x and y directions.

textwrap maintains the original line breaks in the input cell array and
adds new ones. It can calculate uicontrol positions with any type of
Units, including normalized units.

Remarks When programming a GUI, do not call copyobj or textwrap (which
calls copyobj) inside a CreateFcn. The act of copying the uicontrol
object fires the CreateFcn repeatedly, which raises a series of error
messages after exceeding the root object’s RecursionLimit property.

Example Place two text-wrapped strings in text uicontrols. The left one has a
Position calculated by textwrap in Units of pixels; the right one’s
Position is calculated manually in Units of characters:

hf = figure('Position',[560 528 350 250]);
% Make a text uicontrol to wrap in Units of Pixels
% Create it in Units of Pixels, 100 wide, 10 high
pos = [10 100 100 10];
ht = uicontrol('Style','Text','Position',pos);

2-3974

../ref/rootobject_props.html#RecursionLimit


textwrap

string = {'This is a string for the left text uicontrol.',...
'to be wrapped in Units of Pixels,',...
'with a position determined by TEXTWRAP.'};

% Wrap string, also returning a new position for ht
[outstring,newpos] = textwrap(ht,string);
set(ht,'String',outstring,'Position',newpos)

% Make another text uicontrol to wrap to a column width of 15
colwidth = 15;
% Create it in Units of Pixels, 100 wide, 10 high
pos1 = [150 100 100 10];
ht1 = uicontrol('Style','Text','Position',pos1);
string1 = {'This is a string for the right text uicontrol.',...

'to be wrapped in Units of Characters,',...
'into lines 15 columns wide.'};

outstring1 = textwrap(ht1,string1,colwidth);
% Reset Units of ht1 to Characters to use the result
set(ht1,'Units','characters')
newpos1 = get(ht1,'Position');
% Set new Position in Characters to be specified colwidth
% with height the length of the outstring1 cell array + 1.
newpos1(3) = colwidth;
newpos1(4) = length(outstring1)+1;
set(ht1,'String',outstring1,'Position',newpos1)

2-3975



textwrap

See Also align, uicontrol

2-3976



tfqmr

Purpose Transpose-free quasi-minimal residual method

Syntax x = tfqmr(A,b)
x = tfqmr(afun,b)
x = tfqmr(a,b,tol)
x = tfqmr(a,b,tol,maxit)
x = tfqmr(a,b,tol,maxit,m)
x = tfqmr(a,b,tol,maxit,m1,m2,x0)
[x,flag] = tfqmr(A,B,...)
[x,flag,relres] = tfqmr(A,b,...)
[x,flag,relres,y]y(A,b,...)
[x,flag,relres,iter,resvec] = tfqmr(A,b,...)

Description x = tfqmr(A,b) attempts to solve the system of linear equations A*x=b
for x. The n-by-n coefficient matrix A must be square and the right-hand
side column vector b must have length n.

x = tfqmr(afun,b) accepts a function handle afun instead of the
matrix A. afun(x) accepts a vector input x and returns the matrix-vector
product A*x. In all of the following syntaxes, you can replace A by afun.
See “Function Handles” in the MATLAB Programming documentation
for more information.“Parameterizing Functions”, in the MATLAB
Mathematics documentation, explains how to provide additional
parameters to the function afun.

x = tfqmr(a,b,tol) specifies the tolerance of the method. If tol is []
then tfqmr uses the default, 1e-6.

x = tfqmr(a,b,tol,maxit) specifies the maximum number of
iterations. If maxit is [] then tfqmr uses the default, min(N,20).

x = tfqmr(a,b,tol,maxit,m) and x =
tfqmr(a,b,tol,maxit,m1,m2) use preconditioners m or m=m1*m2 and
effectively solve the system A*inv(M)*x = B for x. If M is [] then a
preconditioner is not applied. M may be a function handle mfun such
that mfun(x) returns m\x.

x = tfqmr(a,b,tol,maxit,m1,m2,x0) specifies the initial guess. If x0
is [] then tfqmr uses the default, an all zero vector.

2-3977



tfqmr

[x,flag] = tfqmr(A,B,...) also returns a convergence flag:

Flag Convergence

0 tfqmr converged to the desired tolerance tol within
maxit iterations.

1 tfqmr iterated maxit times but did not converge.

2 Preconditioner m was ill-conditioned.

3 tfqmr stagnated. (Two consecutive iterates were the
same.)

4 One of the scalar quantities calculated during tfqmr
became too small or too large to continue computing.

[x,flag,relres] = tfqmr(A,b,...) also returns the relative residual
norm(b-A*x)/norm(b). If flag is 0, then relres <= tol.

[x,flag,relres,y]y(A,b,...) also returns the iteration number at
which x was computed: 0 <= iter <= maxit.

[x,flag,relres,iter,resvec] = tfqmr(A,b,...) also returns a
vector of the residual norms at each iteration, including norm(b-A*x0).

Examples n = 100; on = ones(n,1);
A = spdiags([-2*on 4*on -on],-1:1,n,n);
b = sum(A,2);
tol = 1e-8;
maxit = 15;
M1 = spdiags([on/(-2) on],-1:0,n,n);
M2 = spdiags([4*on -on],0:1,n,n);
x = tfqmr(A,b,tol,maxit,M1,M2,[]);

You can also use a matrix-vector product function as input:

function y = afun(x,n)
y = 4 * x;
y(2:n) = y(2:n) - 2 * x(1:n-1);

2-3978



tfqmr

y(1:n-1) = y(1:n-1) - x(2:n);
x1 = tfqmr(@(x)afun(x,n),b,tol,maxit,M1,M2);

If applyOp is a function suitable for use with qmr, it may be used with
tfqmr by wrapping it in an anonymous function:

x1 = tfqmr(@(x)applyOp(x,'notransp'),b,tol,maxit,M1,M2);

See Also qmr, bicg, bicgstab, bicgstablcgs, gmres, lsqr, luinc, minres, pcg,
symmlq, mldivide (\)

2-3979



throw (MException)

Purpose Issue exception and terminate function

Syntax throw(exception)

Description throw(exception) issues an exception based on the information
contained in exception. The exception terminates the currently
running function and returns control to its caller. The exception
argument is scalar object of the MException class that contains
information on the cause of the error and where it occurred. The throw
function passes exception back to the caller of the currently running
function. and eventually back to the Command Window when the
program terminates. The exception is made available to any calling
function by means of the catch function, and to the Command Window
by means of the MException.last function.

Unlike throwAsCaller and rethrow, the throw function also sets the
stack field of the exception to the location from which throw was called.

Remarks There are four ways to throw an exception in MATLAB (see the list
below). Use the first of these when testing the outcome of some action
for failure and reporting the failure to MATLAB. Use one of the
remaining three techniques to throw an existing exception.

1 Test the result of some action taken by your program. If the result is
found to be incorrect or unexpected, compose an appropriate message
and message identifier, and pass these to MATLAB using the error
function.

2 Reissue the original exception by throwing the initial exception
unmodified. Use the MException rethrow method to do this.

3 Collect additional information on the cause of the error, store it in a
new or modified exception, and issue a new exception based on that
record. Use the MException addCause and throw methods to do this.

2-3980



throw (MException)

4 Make it appear that the error originated in the caller of the currently
running function. Use the MException throwAsCaller method to
do this.

Examples Example 1

This example tests the output of function evaluate_plots and throws
an exception if it is not acceptable:

[minval, maxval] = evaluate_plots(p24, p28, p41);
if minval < lower_bound || maxval > upper_bound

exception = MException('VerifyOutput:OutOfBounds', ...
'Results are outside the allowable limits');

throw(exception);
end

Example 2

This example attempts to open a file in a folder that is not on the
MATLAB path. It uses a nested try-catch block to give the user the
opportunity to extend the path. If the file still cannot be found, the
program issues an exception with the first error appended to the second
using addCause:

function data = read_it(filename);
try

% Attempt to open and read from a file.
fid = fopen(filename, 'r');
data = fread(fid);

catch exception1
% If the error was caused by an invalid file ID, try
% reading from another location.
if strcmp(exception1.identifier, 'MATLAB:FileIO:InvalidFid')

msg = sprintf( ...
'\nCannot open file %s. Try another location? ', ...
filename);

reply = input(msg, 's')
if reply(1) == 'y'

newFolder = input('Enter folder name: ', 's');

2-3981



throw (MException)

else
throw(exception1);

end
oldpath = addpath(newFolder);
try

fid = fopen(filename, 'r');
data = fread(fid);

catch exception2
exception3 = addCause(exception2, exception1)
path(oldpath);
throw(exception3);

end
path(oldpath);

end
end
fclose(fid);

try
d = read_it('anytextfile.txt');

catch exception
end

exception
exception =
MException object with properties:

identifier: 'MATLAB:FileIO:InvalidFid'
message: 'Invalid file identifier. Use fopen

to generate a valid file identifier.'
stack: [1x1 struct]
cause: {[1x1 MException]}

Cannot open file anytextfile.txt. Try another location?y
Enter folder name: xxxxxxx
Warning: Name is nonexistent or not a directory: xxxxxxx.
> In path at 110

In addpath at 89

2-3982



throw (MException)

See Also try, catch, error, assert, MException, throwAsCaller(MException),
rethrow(MException), addCause(MException),
getReport(MException), last(MException)

2-3983



throwAsCaller (MException)

Purpose Throw exception as if from calling function

Syntax throwAsCaller(exception)

Description throwAsCaller(exception) throws an exception from the currently
running function based on the exception input, a scalar object of the
MException class. The MATLAB software exits the currently running
function and returns control to either the keyboard or an enclosing
catch block in a calling function. Unlike the throw function, MATLAB
omits the current stack frame from the stack field of the MException,
thus making the exception look as if it is being thrown by the caller
of the function.

In some cases, it is not relevant to show the person running your
program the true location that generated an exception, but is better to
point to the calling function where the problem really lies. You might
also find throwAsCaller useful when you want to simplify the error
display, or when you have code that you do not want made public.

Remarks There are four ways to throw an exception in MATLAB (see the list
below). Use the first of these when testing the outcome of some action
for failure and reporting the failure to MATLAB. Use one of the
remaining three techniques to throw an existing exception.

1 Test the result of some action taken by your program. If the result is
found to be incorrect or unexpected, compose an appropriate message
and message identifier, and pass these to MATLAB using the error
function.

2 Reissue the original exception by throwing the initial exception
unmodified. Use the MException rethrow method to do this.

3 Collect additional information on the cause of the error, store it in a
new or modified exception, and issue a new exception based on that
record. Use the MException addCause and throw methods to do this.

2-3984



throwAsCaller (MException)

4 Make it appear that the error originated in the caller of the currently
running function. Use the MException throwAsCaller method to
do this.

Examples The function klein_bottle, in this example, generates a Klein Bottle
figure by revolving the figure-eight curve defined by XYKLEIN. It
defines a few variables and calls the function draw_klein, which
executes three functions in a try-catch block. If there is an error, the
catch block issues an exception using either throw or throwAsCaller:

function klein_bottle(pq)
ab = [0 2*pi];
rtr = [2 0.5 1];
box = [-3 3 -3 3 -2 2];
vue = [55 60];
draw_klein(ab, rtr, pq, box, vue)

function draw_klein(ab, rtr, pq, box, vue)
clf
try

tube('xyklein',ab, rtr, pq, box, vue);
shading interp
colormap(pink);

catch exception
throw(exception)

% throwAsCaller(exception)
end

Call the klein_bottle function, passing a vector, and the function
completes normally by drawing the figure.

klein_bottle([40 40])

Call the function again, this time passing a scalar value. Because the
catch block issues the exception using throw, MATLAB displays error
messages for line 16 of function draw_klein, and for line 6 of function
klein_bottle:

2-3985



throwAsCaller (MException)

klein_bottle(40)
??? Error using ==> klein_bottle>draw_klein at 16
Attempted to access pq(2); index out of bounds because numel(pq)=1.

Error in ==> klein_bottle at 6
draw_klein(ab, rtr, pq, box, vue)

Run the function again, this time changing the klein_bottle.m file so
that the catch block uses throwAsCaller instead of throw. This time,
MATLAB only displays the error at line 6 of the main program:

klein_bottle(40)
??? Error using ==> klein_bottle at 6
Attempted to access pq(2); index out of bounds because numel(pq)=1.

See Also try, catch, error, assert, MException, throw(MException),
rethrow(MException), addCause(MException),
getReport(MException), last(MException)

2-3986



tic, toc

Purpose Measure performance using stopwatch timer

Syntax tic; any_statements; toc;
tic; any_statements; tElapsed=toc;
tStart=tic; any_statements; toc(tStart);
tStart=tic; any_statements; tElapsed=toc(tStart);

Description tic; any_statements; toc; measures the time it takes the MATLAB
software to execute the one or more lines of MATLAB code shown here
as any_statements. The tic command starts a stopwatch timer,
MATLAB executes the block of statements, and toc stops the timer,
displaying the time elapsed in seconds.

tic; any_statements; tElapsed=toc; makes the same time
measurement, but assigns the elapsed time output to a variable,
tElapsed. MATLAB does not display the elapsed time unless you omit
the terminating semicolon. The value returned by toc is a scalar double
that represents the elapsed time in seconds.

tStart=tic; any_statements; toc(tStart); makes the same
time measurement, but allows you the option of running more than
one stopwatch timer concurrently. You assign the output of tic to a
variable tStart and then use that same variable when calling toc.
MATLAB measures the time elapsed between the tic and its related toc
command and displays the time elapsed in seconds. This syntax enables
you to time multiple concurrent operations, including the timing of
nested operations.

tStart=tic; any_statements; tElapsed=toc(tStart); is the same
as the command shown above, except that MATLAB assigns the elapsed
time output to a variable, tElapsed. MATLAB does not display the
elapsed time unless you omit the terminating semicolon. The value
returned by toc is a scalar double that represents the elapsed time
in seconds.

Remarks Using the third syntax shown above, you can nest tic-toc pairs.

2-3987



tic, toc

When using the simpler tic and toc syntax, avoid using consecutive
tics as they merely overwrite the internally-recorded starting time.
Consecutive tocs however, may be useful as each toc returns the
increasing time that has elapsed since the most recent tic. Using this
mechanism, you can take multiple measurements from a single point
in time.

When using the tStart=tic and toc(tStart) syntax, it is advisable to
select a unique variable for tStart. If you accidentally overwrite this
variable prior to the toc for which it is needed, you will get inaccurate
results for the time measurement.

tStart is a 64-bit unsigned integer, scalar value. This value is only
useful as an input argument for a subsequent call to toc.

The clear function does not reset the starting time recorded by a tic
command.

Examples Measure how the time required to solve a linear system varies with
the order of a matrix:

for n = 1:100
A = rand(n,n);
b = rand(n,1);
tic
x = A\b;
t(n) = toc;

end
plot(t)

Measure the minimum and average time to compute a summation of
Bessel functions:

REPS = 1000; minTime = Inf; nsum = 10;
tic;

for i=1:REPS
tStart = tic; total = 0;
for j=1:nsum,

2-3988



tic, toc

total = total + besselj(j,REPS);
end

tElapsed = toc(tStart);
minTime = min(tElapsed, minTime);

end
averageTime = toc/REPS;

See Also clock, cputime, etime, profile

2-3989



Tiff class

Purpose MATLAB Gateway to LibTIFF library routines

Description The Tiff class represents a connection to a Tagged Image File Format
(TIFF) file and provides access to many of the capabilities of the
LibTIFF library. Use the methods of the Tiff object to call routines
in the LibTIFF library. While you can use the imread and imwrite
functions to read and write TIFF files, the Tiff class offers capabilities
that these functions don’t provide, such as reading subimages, writing
tiles and strips of image data, and modifying individual TIFF tags.

In most cases, the syntax of the Tiff method is similar to the syntax
of the corresponding LibTIFF library function. To get the most out of
the Tiff object, you must be familiar with the LibTIFF version 3.7.1
API, as well as the TIFF specification and technical notes. View this
documentation at LibTIFF - TIFF Library and Utilities

For copyright information, see the libtiffcopyright.txt file.

Construction obj = Tiff(filename,mode) creates a Tiff object associated with the
TIFF file filename. mode specifies the type of access to the file.

A TIFF file is made up of one or more image file directories (IFDs).
An IFD contains image data and associated metadata. IFDs can also
contain subIFDs which also contain image data and metadata. When
you open a TIFF file for reading, the Tiff object makes the first IFD in
the file the current IFD. Tiff methods operate on the current IFD.
You can use Tiff object methods to navigate among the IFDs and the
subIFDs in a TIFF file.

When you open a TIFF file for writing or appending, the Tiff object
automatically creates a IFD in the file for writing subsequent data.
This IFD has all the default values specified in TIFF Revision 6.0.

When creating a new TIFF file, before writing any image to the file,
you must create certain required fields (tags) in the file. These tags
include ImageWidth, ImageHeight, BitsPerSample, SamplesPerPixel,
Compression, PlanarConfiguration, and Photometric. If the image
data has a stripped layout, the IFD contains the RowsPerStrip tag. If

2-3990

http://www.remotesensing.org/libtiff/


Tiff class

the image data has a tiled layout, the IFD contains the TileWidth and
TileHeight tags. Use the setTagmethod to define values for these tags.

Inputs

filename

Text string specifying name of file.

mode

One of the following text strings specifying the type of access to
the TIFF file.

Supported Values

Parameter Description

'r' Open file for reading

'w' Open file for writing; discard existing contents

'a' Open or create file for writing; append data to
end of file.

'r+' Open (do not create) file for reading and writing

Properties Compression

Specify scheme used to compress image data

This property identifies all supported values for the Compression
tag. You can use this property to specify the value of this tag
when using the setTag method.

Supported Values

None

CCITTRLE (Read-only)

CCITTFax3

2-3991



Tiff class

CCITTFax4

LZW

JPEG

CCITTRLEW (Read-only)

PackBits

SGILog

SGILog24

Deflate

AdobeDeflate (Same as deflate

Example:

tiffobj.setTag('Compression', Tiff.Compression.JPEG);

ExtraSamples

Describe extra components

This property identifies all supported values for the ExtraSamples
tag. Use this property to specify the value of this tag when using
the setTag method.

Supported Values

Unspecified

AssociatedAlpha

UnassociatedAlpha

Example:

tiffobj.setTag('ExtraSamples', Tiff.ExtraSamples.AssociatedAlpha)

InkSet

Specify set of inks used in separated image

2-3992



Tiff class

This property identifies all supported values for the InkSet tag.
Use this property to specify the value of this tag when using the
setTag method. In this context, separated refers to photometric
interpretation, not the planar configuration.

Supported Values

CMYK Order of components: cyan, magenta, yellow,
black. Usually, a value of 0 represents 0% ink
coverage and a value of 255 represents 100%
ink coverage for that component, but consult
the TIFF specification for DotRange. When you
specify CMYK, do not set the InkNames tag.

MultiInk Any ordering other than CMYK. Consult the
TIFF specification for InkNames field for a
description of the inks used.

Example:

tiffobj.setTag('InkSet', Tiff.InkSet.CMYK);

Orientation

Specify visual orientation of the image data.

This property identifies all supported values for the Orientation
tag. The first row represents the top of the image, and the first
column represents the left side. Use this property to specify the
value of this tag when using the setTag method. Support for this
tag is for informational purposes only, and it does not affect how
MATLAB reads or writes the image data.

Supported Values

TopLeft

TopRight

BottomRight

2-3993



Tiff class

BottomLeft

LeftTop

RightTop

RightBottom

LeftBottom

Example:

tiffobj.setTag('Orientation', Tiff.Orientation.TopRight);

Photometric

Specify color space of image data

This property identifies all supported values for the Photometric
tag. Use this property to specify the value of this tag when using
the setTag method.

Supported Values

MinIsWhite

MinIsBlack

RGB

Palette

Mask

Separated (CMYK)

YCbCr

CIELab

ICCLab

ITULab

LogL

LogLUV

2-3994



Tiff class

CFA

LinearRaw

Example:

tiffobj.setTag('Photometric', Tiff.Photometric.RGB);

PlanarConfiguration

Specifies how image data components are stored on disk

This property identifies all supported values for the
PlanarConfiguration tag. Use this property to specify the value
of this tag when using the setTag method.

Supported Values

Chunky Store component values for each pixel
contiguously. For example, in the case of RGB
data, the first three pixels would be stored in
the file as RGBRGBRGB etc. Almost all TIFF
images have contiguous planar configurations.

Separate Store component values for each pixel
separately. For example, in the case of RGB
data, the red component would be stored
separately in the file from the green and blue
components.

Example:

tiffobj.setTag('PlanarConfiguration', Tiff.PlanarConfiguration

ResolutionUnit

Specify unit of measurement used for XResolution and
YResolution tags

2-3995



Tiff class

This property identifies all supported values for the XResolution
and YResolution tags. Use this property to specify the value of
this tag when using the setTag method.

Supported Values

None (default)

Inch

Centimeter

Example:

tiffobj.setTag('YResolution', Tiff.ResolutionUnit.Inch);

SampleFormat

Specify how to interpret each pixel sample

This property identifies all supported values for the SampleFormat
tag. Use this property to specify the value of this tag when using
the setTag method.

Supported Values

Uint

Int

IEEEFP

Void

ComplexInt

ComplexIEEEFP

Example:

tiffobj.setTag('SampleFormat', Tiff.SampleFormat.IEEEFP);

SGILogDataFmt

2-3996



Tiff class

Specify control of client data for SGILog codec

These enumerated values should only be used when the
photometric interpretation value is LogL or LogLUV. The
BitsPerSample, SamplesPerPixel, and SampleFormat tags should
not be set if the image type is LogL or LogLuv. The choice of
SGILogDataFmt will set these tags automatically. The Float and
Bits8 settings imply a SamplesPerPixel value of 3 for LogLUV
images, but only 1 for LogL images.

Supported Values

Float Single precision samples

Bits8 uint8 samples (read only)

This tag can be set only once per instance of a LogL/LogLuv Tiff
image object instance.

Example:

tiffobj = Tiff('example.tif','r');
tiffobj.setDirectory(3); % image three is a LogLuv image
tiffobj.setTag('SGILogDataFmt', Tiff.SGILogDataFmt.Float);
imdata = tiffobj.read();

SubFileType

Specify type of image

This property identifies all supported values for the SubFileType
tag. SubFileType is a bitmask that indicates the type of the
image. Use this property to specify the value of this tag when
using the setTag method.

2-3997



Tiff class

Supported Values

Default Default value for single image file or first image.

ReducedImage The current image is a thumbnail or
reduced-resolution image that typically would
be found in a sub-IFD.

Page The image is a single image of a multi-image (or
multipage) file.

Mask The image is a transparency mask for another
image in the file. The photometric interpretation
value must be Photometric.Mask.

Example:

tiffobj.setTag('SubFileType', Tiff.SubFileType.Mask);

TagID

List of recognized TIFF tag names with their ID numbers

This property identifies all the supported TIFF tags with their
ID numbers. Use this property to specify a tag when using the
setTag method. For example, Tiff.TagID.ImageWidth returns
the ID of the ImageWidth tag. To get a list of the names of
supported tags, use the getTagNames method.

Example:

tiffobj.setTag(Tiff.TagID.ImageWidth, 300);

Thresholding

Specifies technique used to convert from gray to black and white
pixels.

This property identifies all supported values for the Thresholding
tag. Use this property to specify the value of this tag when using
the setTag method.

2-3998



Tiff class

Supported Values

BiLevel (default)

HalfTone

ErrorDiffuse

Example:

tiffobj.setTag('Thresholding', Tiff.Thresholding.HalfTone);

YCbCrPositioning

Specify relative positioning of chrominance samples

This property identifies all supported values for the
YCbCrPositioning tag. This property specifies the positioning of
chrominance components relative to luminance samples. Use this
property to specify the value of this tag when using the setTag
method.

Supported Values

Centered Specify for compatibility with industry
standards such as PostScript Level 2

Cosited Specify for compatibility with most digital video
standards such as CCIR Recommendation
601-1.

Example:

tiffobj.setTag('YCbCrPositioning', Tiff.YCbCrPositioning.Cente

Methods close Close Tiff object

computeStrip Index number of strip containing
specified coordinate

2-3999



Tiff class

computeTile Index number of tile containing
specified coordinates

currentDirectory Index of current IFD

getTag Value of specified tag

getTagNames List of recognized TIFF tags

getVersion LibTIFF library version

isTiled Determine if tiled image

lastDirectory Determine if current IFD is last
in file

nextDirectory Make next IFD current IFD

numberOfStrips Total number of strips in image

numberOfTiles Total number of tiles in image

read Read entire image

readEncodedStrip Read data from specified strip

readEncodedTile Read data from specified tile

rewriteDirectory Write modified metadata to
existing IFD

setDirectory Make specified IFD current IFD

setSubDirectory Make subIFD specified by byte
offset current IFD

setTag Set value of tag

write Write entire image

writeDirectory Create new IFD and make it
current IFD

writeEncodedStrip Write data to specified strip

writeEncodedTile Write data to specified tile

2-4000



Tiff class

Examples Create a new TIFF file using the Tiff object. To run this example,
your directory must be writable.

t = Tiff('myfile.tif', 'w');
%
% Close the Tiff object
t.close();

See Also imread | imwrite

Tutorials • “Exporting Image Data and Metadata to TIFF Files”

• “Reading Image Data and Metadata from TIFF Files”

2-4001



timer

Purpose Construct timer object

Syntax T = timer
T = timer('PropertyName1', PropertyValue1, 'PropertyName2',

PropertyValue2,...)

Description T = timer constructs a timer object with default attributes.

T = timer('PropertyName1', PropertyValue1, 'PropertyName2',
PropertyValue2,...) constructs a timer object in which the given
property name/value pairs are set on the object. See “Timer Object
Properties” on page 2-4002 for a list of all the properties supported
by the timer object.

Note that the property name/property value pairs can be in any
format supported by the set function, i.e., property/value string pairs,
structures, and property/value cell array pairs.

Examples This example constructs a timer object with a timer callback function
handle, mycallback, and a 10 second interval.

t = timer('TimerFcn',@mycallback, 'Period', 10.0);

Timer
Object
Properties

The timer object supports the following properties that control its
attributes. The table includes information about the data type of each
property and its default value.

To view the value of the properties of a particular timer object, use
the get(timer) function. To set the value of the properties of a timer
object, use the set(timer) function.

2-4002



timer

Property Name Property Description
Data Types, Values, Defaults,
Access

Data
type

double

Default NaN

AveragePeriod Average time between
TimerFcn executions since
the timer started.

Note: Value is NaN until
timer executes two timer
callbacks.

Read
only

Always

Data
type

Enumerated string

Values 'drop'
'error'
'queue'

Default 'drop'

BusyMode Action taken when a timer
has to execute TimerFcn
before the completion
of previous execution of
TimerFcn.

'drop' — Do not execute
the function.

'error' — Generate an
error. Requires ErrorFcn to
be set.

'queue' — Execute
function at next opportunity.

Read
only

While Running = 'on'

Data
type

Text string, function
handle, or cell array

Default None

ErrorFcn Function that the timer
executes when an error
occurs. This function
executes before the StopFcn.
See “Creating Callback
Functions” for more
information.

Read
only

Never

2-4003



timer

Property Name Property Description
Data Types, Values, Defaults,
Access

Data
type

Enumerated string

Values 'singleShot'
'fixedDelay'
'fixedRate'
'fixedSpacing'

Default 'singleShot'

ExecutionMode Determines how the timer
object schedules timer
events. See “Timer Object
Execution Modes” for more
information.

Read
only

While Running =
'on'

Data
type

double

Default NaN

InstantPeriod The time between the last
two executions of TimerFcn.

Read
only

Always

Data
type

Text string

Default 'timer-i', where i is
a number indicating
the ith timer object
created this session.
To reset i to 1, execute
the clear classes
command.

Name User-supplied name.

Read
only

Never

2-4004



timer

Property Name Property Description
Data Types, Values, Defaults,
Access

Data
type

Enumerated string

Values 'off'
'on'

Default 'on'

ObjectVisibility Provides a way for
application developers
to prevent end-user access
to the timer objects created
by their application. The
timerfind function does
not return an object whose
ObjectVisibility property
is set to 'off'. Objects that
are not visible are still valid.
If you have access to the
object (for example, from
within the file that created
it), you can set its properties.

Read
only

Never

Data
type

double

Value Any number >= 0.001

Default 1.0

Period Specifies the delay, in
seconds, between executions
of TimerFcn.

Read
only

While Running = 'on'

Data
type

Enumerated string

Values 'off'
'on'

Default 'off'

Running Indicates whether the timer
is currently executing.

Read
only

Always

2-4005



timer

Property Name Property Description
Data Types, Values, Defaults,
Access

Data
type

double

Values Any number >= 0

Default 0

StartDelay Specifies the delay, in
seconds, between the start
of the timer and the first
execution of the function
specified in TimerFcn.

Read
only

While Running ='on'

Data
type

Text string, function
handle, or cell array

Default None

StartFcn Function the timer calls
when it starts. See “Creating
Callback Functions” for more
information.

Read
only

Never

Date
type

Text string, function
handle, or cell array

Default None

StopFcn Function the timer calls
when it stops. The timer
stops when

• You call the timer stop
function

• The timer finishes
executing TimerFcn,
i.e., the value of
TasksExecuted reaches
the limit set by
TasksToExecute.

• An error occurs
(The ErrorFcn is called
first, followed by the
StopFcn.)

Read
only

Never

2-4006



timer

Property Name Property Description
Data Types, Values, Defaults,
Access

See “Creating Callback
Functions” for more
information.

Data
type

Text string

Default Empty string ('')

Tag User supplied label.

Read
only

Never

Data
type

double

Values Any number > 0

Default Inf

TasksToExecute Specifies the number of
times the timer should
execute the function
specified in the TimerFcn
property.

Read
only

Never

Data
type

double

Values Any number >= 0

Default 0

TasksExecuted The number of times the
timer has called TimerFcn
since the timer was started.

Read
only

Always

Data
type

Text string, function
handle, or cell array

Default None

TimerFcn Timer callback function.
See “Creating Callback
Functions” for more
information.

Read
only

Never

2-4007



timer

Property Name Property Description
Data Types, Values, Defaults,
Access

Data
type

Text string

Values 'timer'

Type Identifies the object type.

Read
only

Always

Data
type

User-defined

Default []

UserData User-supplied data.

Read
only

Never

See Also delete(timer), disp(timer), get(timer), isvalid(timer),
set(timer), start, startat, stop, timerfind, timerfindall, wait

2-4008



timerfind

Purpose Find timer objects

Syntax out = timerfind
out = timerfind('P1', V1, 'P2', V2,...)
out = timerfind(S)
out = timerfind(obj, 'P1', V1, 'P2', V2,...)

Description out = timerfind returns an array, out, of all the timer objects that
exist in memory.

out = timerfind('P1', V1, 'P2', V2,...) returns an array,
out, of timer objects whose property values match those passed as
parameter/value pairs, P1, V1, P2, V2. Parameter/value pairs may be
specified as a cell array.

out = timerfind(S) returns an array, out, of timer objects whose
property values match those defined in the structure, S. The field
names of S are timer object property names and the field values are
the corresponding property values.

out = timerfind(obj, 'P1', V1, 'P2', V2,...) restricts the
search for matching parameter/value pairs to the timer objects listed
in obj. obj can be an array of timer objects.

Note When specifying parameter/value pairs, you can use any mixture
of strings, structures, and cell arrays in the same call to timerfind.

Note that, for most properties, timerfind performs case-sensitive
searches of property values. For example, if the value of an object’s Name
property is 'MyObject', timerfind will not find a match if you specify
'myobject'. Use the get function to determine the exact format of a
property value. However, properties that have an enumerated list of
possible values are not case sensitive. For example, timerfind will find
an object with an ExecutionMode property value of 'singleShot' or
'singleshot'.

2-4009



timerfind

Examples These examples use timerfind to find timer objects with the specified
property values.

t1 = timer('Tag', 'broadcastProgress', 'Period', 5);

t2 = timer('Tag', 'displayProgress');

out1 = timerfind('Tag', 'displayProgress')

out2 = timerfind({'Period', 'Tag'}, {5, 'broadcastProgress'})

See Also get(timer), timer, timerfindall

2-4010



timerfindall

Purpose Find timer objects, including invisible objects

Syntax out = timerfindall
out = timerfindall('P1', V1, 'P2', V2,...)
out = timerfindall(S)
out = timerfindall(obj, 'P1', V1, 'P2', V2,...)

Description out = timerfindall returns an array, out, containing all the timer
objects that exist in memory, regardless of the value of the object’s
ObjectVisibility property.

out = timerfindall('P1', V1, 'P2', V2,...) returns an array,
out, of timer objects whose property values match those passed as
parameter/value pairs, P1, V1, P2, V2. Parameter/value pairs may be
specified as a cell array.

out = timerfindall(S) returns an array, out, of timer objects whose
property values match those defined in the structure, S. The field
names of S are timer object property names and the field values are
the corresponding property values.

out = timerfindall(obj, 'P1', V1, 'P2', V2,...) restricts the
search for matching parameter/value pairs to the timer objects listed
in obj. obj can be an array of timer objects.

Note When specifying parameter/value pairs, you can use any mixture
of strings, structures, and cell arrays in the same call to timerfindall.

Note that, for most properties, timerfindall performs case-sensitive
searches of property values. For example, if the value of an object’s
Name property is 'MyObject', timerfindall will not find a match
if you specify 'myobject'. Use the get function to determine the
exact format of a property value. However, properties that have an
enumerated list of possible values are not case sensitive. For example,
timerfindall will find an object with an ExecutionMode property
value of 'singleShot' or 'singleshot'.

2-4011



timerfindall

Examples Create several timer objects.

t1 = timer;
t2 = timer;
t3 = timer;

Set the ObjectVisibility property of one of the objects to 'off'.

t2.ObjectVisibility = 'off';

Use timerfind to get a listing of all the timer objects in memory. Note
that the listing does not include the timer object (timer-2) whose
ObjectVisibility property is set to 'off'.

timerfind

Timer Object Array

Index: ExecutionMode: Period: TimerFcn: Name:
1 singleShot 1 '' timer-1
2 singleShot 1 '' timer-3

Use timerfindall to get a listing of all the timer objects in memory.
This listing includes the timer object whose ObjectVisibility property
is set to 'off'.

timerfindall

Timer Object Array

Index: ExecutionMode: Period: TimerFcn: Name:
1 singleShot 1 '' timer-1
2 singleShot 1 '' timer-2
3 singleShot 1 '' timer-3

See Also get(timer), timer, timerfind

2-4012



timeseries

Purpose Create timeseries object

Syntax ts = timeseries
ts = timeseries(Data)
ts = timeseries(Name)
ts = timeseries(Data,Time)
ts = timeseries(Data,Time,Quality)
ts = timeseries(Data,...,'Parameter',Value,...)

Description ts = timeseries creates an empty time-series object.

ts = timeseries(Data) creates a time series with the specified Data,
which can be an array of samples.
ts has a default time vector that ranges from 0 to N-1 with a 1-second
interval, where N is the number of samples. The default name of the
timeseries object is 'unnamed'.

ts = timeseries(Name) creates an empty time series with the name
specified by a string Name. This name can differ from the time-series
variable name.

ts = timeseries(Data,Time) creates a time series with the specified
Data array and time vector Time. The time vector can contain duplicate
values but not decreasing values. When time values are date strings,
you must specify Time as a cell array of date strings.

ts = timeseries(Data,Time,Quality) creates a timeseries object.
The Quality attribute is an integer vector with values-128 to 127 that
specifies the quality in terms of codes defined by QualityInfo.Code.

ts = timeseries(Data,...,'Parameter',Value,...) creates a
timeseries object with optional parameter-value pairs after the
Data, Time, and Quality arguments. You can specify the following
parameters:

• Name — Time-series name entered as a string

• IsTimeFirst — Logical value (true or false) specifying whether
the time vector runs along the first or last dimension of the data
array. You can set this property when a 2-D data array is square

2-4013



timeseries

and, therefore, the dimension that is aligned with time is ambiguous.
3-D and higher-dimension data requires IsTimeFirst to be false;
for such data, time steps always lie along the last dimension. The
property value defaults to true.

Note In a future release, IsTimeFirst will default to false for 3-D
and an higher-dimensional data, and setting IsTimeFirst to true
for such data will generate an error.

Remarks Definition: timeseries

The time-series object, called timeseries, is a MATLAB variable
that contains time-indexed data and properties in a single, coherent
structure. For example, in addition to data and time values, you can
also use the time-series object to store events, descriptive information
about data and time, data quality, and the interpolation method.

Definition: Data Sample

A time-series data sample consists of one or more values recorded at a
specific time. The number of data samples in a time series is the same
as the length of the time vector.

For example, suppose that ts.data has the size 3-by-4-by-5 and the
time vector has the length 5. Then, the number of samples is 5 and the
total number of data values is 3 x 4 x 5 = 60.

Duplicate Time Values

A timeseries object can include duplicate time values. The time vector
must obey two conditions:

• Duplicated values must occupy contiguous elements.

• Time values must be non-decreasing.

2-4014



timeseries

Interpolating time series data using methods like resample and
synchronize can produce different results when the input timeseries
contains duplicate times than when time values are not duplicated.

Notes About Quality

When Quality is a vector, it must have the same length as the time
vector. In this case, each Quality value applies to the corresponding
data sample. When Quality is an array, it must have the same size
as the data array. In this case, each Quality value applies to the
corresponding data value of the ts.data array.

Examples Example 1 — Using Default Time Vector

Create a timeseries object called 'LaunchData' that contains four
data sets, each stored as a column of length 5 and using the default
time vector:

b = timeseries(rand(5, 4),'Name','LaunchData')

Example 2 — Using Uniform Time Vector

Create a timeseries object containing a single data set of length 5 and
a time vector starting at 1 and ending at 5:

b = timeseries(rand(5,1),[1 2 3 4 5])

Example 3

Create a timeseries object called 'FinancialData' containing five
data points at a single time point:

b = timeseries(rand(1,5),1,'Name','FinancialData')

See Also addsample, tscollection, tsdata.event, tsprops

2-4015

../ref/resampletimeseries.html


title

Purpose Add title to current axes

GUI
Alternative

To create or modify a plot’s title from a GUI, use Insert Title from the

figure menu. Use the Property Editor, one of the plotting tools , to
modify the position, font, and other properties of a legend. For details,
see The Property Editor in the MATLAB Graphics documentation.

Syntax title('string')
title(fname)
title(...,'PropertyName',PropertyValue,...)
title(axes_handle,...)
h = title(...)

Description Each axes graphics object can have one title. The title is located at the
top and in the center of the axes.

title('string') outputs the string at the top and in the center of
the current axes.

title(fname) evaluates the function that returns a string and displays
the string at the top and in the center of the current axes.

title(...,'PropertyName',PropertyValue,...) specifies property
name and property value pairs for the text graphics object that title
creates. Do not use the 'String' text property to set the title string;
the content of the title should be given by the first argument.

title(axes_handle,...) adds the title to the specified axes.

h = title(...) returns the handle to the text object used as the title.

Note The words default, factory, and remove are reserved words
that will not appear in a title when quoted as a normal string. In order
to display any of these words individually, type '\reserved_word'
instead of 'reserved_word'.

2-4016



title

Examples Display today’s date in the current axes:

title(date)

Include a variable’s value in a title:

f = 70;
c = (f-32)/1.8;
title(['Temperature is ',num2str(c),'C'])

Make a multi-colored title:

title(['\fontsize{16}black {\color{magenta}magenta '...
'\color[rgb]{0 .5 .5}teal \color{red}red} black again'])

Include a variable’s value in a title and set the color of the title to yellow:

n = 3;
title(['Case number #',int2str(n)],'Color','y')

Include Greek symbols in a title:

title('\ite^{\omega\tau} = cos(\omega\tau) + isin(\omega\tau)')

Include a superscript character in a title:

title('\alpha^2')

Include a subscript character in a title:

title('X_1')

The text object String property lists the available symbols.

Create a multiline title using a multiline cell array.

title({'First line';'Second line'})

2-4017



title

Remarks title sets the Title property of the current axes graphics object to
a new text graphics object. See the text String property for more
information.

See Also gtext, int2str, num2str, text, xlabel, ylabel, zlabel

“Annotating Plots” on page 1-97 for related functions

Text Properties for information on setting parameter/value pairs in
titles

Adding Titles to Graphs for more information on ways to add titles

2-4018



todatenum

Purpose Convert CDF epoch object to MATLAB datenum

Syntax n = todatenum(obj)

Description n = todatenum(obj) converts the CDF epoch object ep_obj into a
MATLAB serial date number. Note that a CDF epoch is the number of
milliseconds since 01-Jan-0000 whereas a MATLAB datenum is the
number of days since 00-Jan-0000.

Examples Construct a CDF epoch object from a date string, and then convert the
object back into a MATLAB date string:

dstr = datestr(today)
dstr =

08-Oct-2003

obj = cdfepoch(dstr)
obj =

cdfepoch object:
08-Oct-2003 00:00:00

dstr2 = datestr(todatenum(obj))
dstr2 =

08-Oct-2003

See Also cdfepoch, cdfinfo, cdfread, cdfwrite, datenum

2-4019



toeplitz

Purpose Toeplitz matrix

Syntax T = toeplitz(c,r)
T = toeplitz(r)

Description A Toeplitz matrix is defined by one row and one column. A symmetric
Toeplitz matrix is defined by just one row. toeplitz generates Toeplitz
matrices given just the row or row and column description.

T = toeplitz(c,r) returns a nonsymmetric Toeplitz matrix T having
c as its first column and r as its first row. If the first elements of c and
r are different, a message is printed and the column element is used.

For a real vector r, T = toeplitz(r) returns the symmetric Toeplitz
matrix formed from vector r, where r defines the first row of the matrix.
For a complex vector r with a real first element, T = toeplitz(r)
returns the Hermitian Toeplitz matrix formed from r, where r defines
the first row of the matrix and r' defines the first column. When the
first element of r is not real, the resulting matrix is Hermitian off the

main diagonal, i.e., T (Tij ji= conj ) for i j≠ .

Examples A Toeplitz matrix with diagonal disagreement is

c = [1 2 3 4 5];
r = [1.5 2.5 3.5 4.5 5.5];
toeplitz(c,r)
Column wins diagonal conflict:
ans =

1.000 2.500 3.500 4.500 5.500
2.000 1.000 2.500 3.500 4.500
3.000 2.000 1.000 2.500 3.500
4.000 3.000 2.000 1.000 2.500
5.000 4.000 3.000 2.000 1.000

See Also hankel, kron

2-4020



toolboxdir

Purpose Root folder for specified toolbox

Syntax toolboxdir('tbxFolderName')
s = toolboxdir('tbxFolderName')
s = toolboxdir tbxFolderName

Description toolboxdir('tbxFolderName') returns a string that is the absolute
path to the specified toolbox, tbxFolderName, where tbxFolderName is
the folder name for the toolbox.

s = toolboxdir('tbxFolderName') returns the absolute path to the
specified toolbox to the output argument, s.

s = toolboxdir tbxFolderName is the command form of the syntax.

Remarks toolboxdir is particularly useful for MATLAB Compiler software. The
base folder of all toolboxes installed with MATLAB software is:

matlabroot/toolbox/tbxFolderName

However, in deployed mode, the base folders of the toolboxes are
different. toolboxdir returns the correct root folder, whether running
from MATLAB or from an application deployed with the MATLAB
Compiler software.

Example Obtain the path for the Control System Toolbox software:

s = toolboxdir('control')

MATLAB returns:

s = \\myhome\r2009a\matlab\toolbox\control

See Also ctfroot (in the MATLAB Compiler product), fullfile, matlabroot,
path,

“Managing Files in MATLAB”

2-4021



trace

Purpose Sum of diagonal elements

Syntax b = trace(A)

Description b = trace(A) is the sum of the diagonal elements of the matrix A.

Algorithm trace is a single-statement M-file.

t = sum(diag(A));

See Also det, eig

2-4022



transpose (timeseries)

Purpose Transpose timeseries object

Syntax ts1 = transpose(ts)

Description ts1 = transpose(ts) returns a new timeseries object ts1 with
IsTimeFirst value set to the opposite of what it is for ts. For example,
if ts has the first data dimension aligned with the time vector, ts1 has
the last data dimension aligned with the time vector.

Remarks The transpose function that is overloaded for the timeseries objects
does not transpose the data. Instead, this function changes whether the
first or the last dimension of the data is aligned with the time vector.

Note To transpose the data, you must transpose the Data property of the
time series. For example, you can use the syntax transpose(ts.Data)
or (ts.Data).'. Data must be a 2-D array.

Consider a time series with 10 samples with the property
IsTimeFirst = True. When you transpose this time series, the data
size is changed from 10-by-1 to 1-by-1-by-10. Note that the first
dimension of the Data property is shown explicitly.

The following table summarizes how the size for time-series data (up to
three dimensions) display before and after transposing.

Data Size Before and After Transposing

Size of Original Data Size of Transposed Data

N-by-1 1-by-1-by-N

N-by-M M-by-1-by-N

N-by-M-by-L M-by-L-by-N

2-4023



transpose (timeseries)

Examples Suppose that a timeseries object ts has ts.Data size 10-by-3-by-2 and
its time vector has a length of 10. The IsTimeFirst property of ts is
set to true, which means that the first dimension of the data is aligned
with the time vector. transpose(ts) modifies the timeseries object
such that the last dimension of the data is now aligned with the time
vector. This permutes the data such that the size of ts.Data becomes
3-by-2-by-10.

See Also ctranspose (timeseries), tsprops

2-4024



trapz

Purpose Trapezoidal numerical integration

Syntax Z = trapz(Y)
Z = trapz(X,Y)
Z = trapz(...,dim)

Description Z = trapz(Y) computes an approximation of the integral of Y via the
trapezoidal method (with unit spacing). To compute the integral for
spacing other than one, multiply Z by the spacing increment. Input Y
can be complex.

If Y is a vector, trapz(Y) is the integral of Y.

If Y is a matrix,trapz(Y) is a row vector with the integral over each
column.

If Y is a multidimensional array, trapz(Y) works across the first
nonsingleton dimension.

Z = trapz(X,Y) computes the integral of Y with respect to X using
trapezoidal integration. Inputs X and Y can be complex.

If X is a column vector and Y an array whose first nonsingleton
dimension is length(X), trapz(X,Y) operates across this dimension.

Z = trapz(...,dim) integrates across the dimension of Y specified by
scalar dim. The length of X, if given, must be the same as size(Y,dim).

Examples Example 1

The exact value of is 2.

To approximate this numerically on a uniformly spaced grid, use

X = 0:pi/100:pi;
Y = sin(X);

Then both

Z = trapz(X,Y)

2-4025



trapz

and

Z = pi/100*trapz(Y)

produce

Z =
1.9998

Example 2

A nonuniformly spaced example is generated by

X = sort(rand(1,101)*pi);
Y = sin(X);
Z = trapz(X,Y);

The result is not as accurate as the uniformly spaced grid. One random
sample produced

Z =
1.9984

Example 3

This example uses two complex inputs:

z = exp(1i*pi*(0:100)/100);

trapz(z, 1./z)
ans =

0.0000 + 3.1411i

See Also cumsum, cumtrapz

2-4026



treelayout

Purpose Lay out tree or forest

Syntax [x,y] = treelayout(parent,post)
[x,y,h,s] = treelayout(parent,post)

Description [x,y] = treelayout(parent,post) lays out a tree or a forest. parent
is the vector of parent pointers, with 0 for a root. post is an optional
postorder permutation on the tree nodes. If you omit post, treelayout
computes it. x and y are vectors of coordinates in the unit square at
which to lay out the nodes of the tree to make a nice picture.

[x,y,h,s] = treelayout(parent,post) also returns the height of the
tree h and the number of vertices s in the top-level separator.

See Also etree, treeplot, etreeplot, symbfact

2-4027



treeplot

Purpose Plot picture of tree

Syntax treeplot(p)
treeplot(p,nodeSpec,edgeSpec)

Description treeplot(p) plots a picture of a tree given a vector of parent pointers,
with p(i) = 0 for a root.

treeplot(p,nodeSpec,edgeSpec) allows optional parameters
nodeSpec and edgeSpec to set the node or edge color, marker, and
linestyle. Use '' to omit one or both.

Examples To plot a tree with 12 nodes, call treeplot with a 12-element input
vector. The index of each element in the vector is shown adjacent to each
node in the figure below. (These indices are shown only for the point of
illustrating the example; they are not part of the treeplot output.)

To generate this plot, set the value of each element in the nodes vector
to the index of its parent, (setting the parent of the root node to zero).

2-4028



treeplot

The node marked 1 in the figure is represented by nodes(1) in the
input vector, and because this is the root node which has a parent of
zero, you set its value to zero:

nodes(1) = 0; % Root node

nodes(2) and nodes(8) are children of nodes(1), so set these elements
of the input vector to 1:

nodes(2) = 1; nodes(8) = 1;

nodes(5:7) are children of nodes(4), so set these elements to 4:

nodes(5) = 4; nodes(6) = 4; nodes(7) = 4;

Continue in this manner until each element of the vector identifies its
parent. For the plot shown above, the nodes vector now looks like this:

nodes = [0 1 2 2 4 4 4 1 8 8 10 10];

Now call treeplot to generate the plot:

treeplot(nodes)

See Also etree, etreeplot, treelayout

2-4029



tril

Purpose Lower triangular part of matrix

Syntax L = tril(X)
L = tril(X,k)

Description L = tril(X) returns the lower triangular part of X.

L = tril(X,k) returns the elements on and below the kth diagonal of
X. k = 0 is the main diagonal, k > 0 is above the main diagonal, and k
< 0 is below the main diagonal.

Examples tril(ones(4,4),-1)

ans =

0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0

See Also diag, triu

2-4030



trimesh

Purpose Triangular mesh plot

Syntax trimesh(Tri,X,Y,Z,C)
trimesh(Tri,X,Y,Z)
trimesh(Tri, X, Y)
trimesh(TR)
trimesh(...'PropertyName',PropertyValue...)
h = trimesh(...)

Description trimesh(Tri,X,Y,Z,C) displays triangles defined in the m-by-3 face
matrix Tri as a mesh. Each row of Tri defines a single triangular face
by indexing into the vectors or matrices that contain the X, Y, and Z
vertices. The edge color is defined by the vector C.

trimesh(Tri,X,Y,Z) uses C = Z so color is proportional to surface
height.

trimesh(Tri, X, Y) displays the triangles in a 2-D plot.

trimesh(TR) displays the triangles in a TriRep triangulation
representation.

trimesh(...'PropertyName',PropertyValue...) specifies
additional patch property names and values for the patch graphics
object created by the function.

h = trimesh(...) returns a handle to the displayed triangles.

Example Create vertex vectors and a face matrix, then create a triangular mesh
plot.

[x,y]=meshgrid(1:15,1:15);
tri = delaunay(x,y);
z = peaks(15);
trimesh(tri,x,y,z)

2-4031



trimesh

If the surface is already a triangulation representation it may be plotted
as follows:

tr = TriRep(tri, x(:), y(:), z(:));
trimesh(tr)

See Also patch, trisurf, delaunay, DelaunayTri, TriRep

2-4032



triplequad

Purpose Numerically evaluate triple integral

Syntax triplequad(fun,xmin,xmax,ymin,ymax,zmin,zmax)
triplequad(fun,xmin,xmax,ymin,ymax,zmin,zmax,tol)
triplequad(fun,xmin,xmax,ymin,ymax,zmin,zmax,tol,method)

Description triplequad(fun,xmin,xmax,ymin,ymax,zmin,zmax) evaluates the
triple integral fun(x,y,z) over the three dimensional rectangular
region xmin <= x <= xmax, ymin <= y <= ymax, zmin <= z <= zmax.
fun is a function handle. See “Function Handles” in the MATLAB
Programming documentation for more information.fun(x,y,z) must
accept a vector x and scalars y and z, and return a vector of values of
the integrand.

“Parameterizing Functions”, in the MATLAB Mathematics
documentation, explains how to provide additional parameters to the
function fun, if necessary.

triplequad(fun,xmin,xmax,ymin,ymax,zmin,zmax,tol) uses a
tolerance tol instead of the default, which is 1.0e-6.

triplequad(fun,xmin,xmax,ymin,ymax,zmin,zmax,tol,method)
uses the quadrature function specified as method, instead of the default
quad. Valid values for method are @quadl or the function handle of a
user-defined quadrature method that has the same calling sequence
as quad and quadl.

Examples Pass M-file function handle @integrnd to triplequad:P

Q = triplequad(@integrnd,0,pi,0,1,-1,1);

where the M-file integrnd.m is

function f = integrnd(x,y,z)
f = y*sin(x)+z*cos(x);

Pass anonymous function handle F to triplequad:

F = @(x,y,z)y*sin(x)+z*cos(x);

2-4033



triplequad

Q = triplequad(F,0,pi,0,1,-1,1);

This example integrates y*sin(x)+z*cos(x) over the region
0 <= x <= pi, 0 <= y <= 1, -1 <= z <= 1. Note that the integrand
can be evaluated with a vector x and scalars y and z.

See Also dblquad, quad2d, quad, quadgk, quadl, function handle (@),
“Anonymous Functions”

2-4034



triplot

Purpose 2-D triangular plot

Syntax triplot(TRI,x,y)
triplot(TRI,x,y,color)
h = triplot(...)
triplot(...,'param','value','param','value'...)

Description triplot(TRI,x,y) displays the triangles defined in the m-by-3 matrix
TRI. A row of TRI contains indices into the vectors x and y that define a
single triangle. The default line color is blue.

triplot(TRI,x,y,color) uses the string color as the line color. color
can also be a line specification. See ColorSpec for a list of valid color
strings. See LineSpec for information about line specifications.

h = triplot(...) returns a vector of handles to the displayed
triangles.

triplot(...,'param','value','param','value'...) allows
additional line property name/property value pairs to be used when
creating the plot. See Line Properties for information about the
available properties.

Examples Plot a Delaunay triangulation for 10 randomly generated points.

X = rand(10,2);
dt = DelaunayTri(X);
triplot(dt)

2-4035



triplot

Plot the Delaunay triangulation in face-vertex format.

tri = dt(:,:);
triplot(tri, X(:,1), X(:,2));

See Also DelaunayTri, delaunay, trimesh, trisurf

2-4036



TriRep class

Purpose Triangulation representation

Description TriRep provides topological and geometric queries for triangulations in
2-D and 3-D space. For example, for triangular meshes you can query
triangles attached to a vertex, triangles that share an edge, neighbor
information, circumcenters, or other features. You can create a TriRep
directly using existing triangulation data. Alternatively, you can create
a Delaunay triangulation, via DelaunayTri, which provides access to
the TriRep functionality.

Construction TriRep Triangulation representation

Methods baryToCart Converts point coordinates from
barycentric to Cartesian

cartToBary Convert point coordinates from
cartesian to barycentric

circumcenters Circumcenters of specified
simplices

edgeAttachments Simplices attached to specified
edges

edges Triangulation edges

faceNormals Unit normals to specified
triangles

featureEdges Sharp edges of surface
triangulation

freeBoundary Facets referenced by only one
simplex

incenters Incenters of specified simplices

isEdge Test if vertices are joined by edge

2-4037



TriRep class

neighbors Simplex neighbor information

size Size of triangulation matrix

vertexAttachments Return simplices attached to
specified vertices

Properties X Coordinates of the points in the triangulation

Triangulation Triangulation data structure

Copy
Semantics

Value. To learn how this affects your use of the class, see Comparing
Handle and Value Classes in the MATLAB Object-Oriented
Programming documentation.

Indexing TriRep objects support indexing into the triamgulation using
parentheses (). The syntax is the same as for arrays.

Examples Load a 2-D triangulation and use the TriRep constructor to build an
array of the free boundary edges:

load trimesh2d

This loads triangulation tri and vertex coordinates x, y:

trep = TriRep(tri, x,y);
fe = freeBoundary(trep)';
triplot(trep);

2-4038



TriRep class

You can add the free edges fe to the plot:

hold on;
plot(x(fe), y(fe), 'r','LineWidth',2);
hold off;
axis([-50 350 -50 350]);
axis equal;

2-4039



TriRep class

See Also DelaunayTri class
TriScatteredInterp class

2-4040



TriRep

Purpose Triangulation representation

Syntax TR = TriRep(TRI, X, Y)
TR = TriRep(TRI, X, Y, Z)
TR = TriRep(TRI, X)

Description TR = TriRep(TRI, X, Y) creates a 2-D triangulation representation
from the triangulation matrix TRI and the vertex coordinates (X, Y).
TRI is an m-by-3 matrix that defines the triangulation in face-vertex
format, where m is the number of triangles. Each row of TRI is a triangle
defined by indices into the column vector of vertex coordinates (X, Y).

TR = TriRep(TRI, X, Y, Z) creates a 3-D triangulation
representation from the triangulation matrix TRI and the vertex
coordinates (X, Y, Z). TRI is an m-by-3 or m-by-4 matrix that defines
the triangulation in simplex-vertex format, where where m is the
number of simplices; triangles or tetrahedra in this case. Each row of
TRI is a simplex defined by indices into the column vector of vertex
coordinates (X, Y, Z).

TR = TriRep(TRI, X) creates a triangulation representation from the
triangulation matrix TRI and the vertex coordinates X. TRI is an m-by-n
matrix that defines the triangulation in simplex-vertex format, where m
is the number of simplices and n is the number of vertices per simplex.
Each row of TRI is a simplex defined by indices into the array of vertex
coordinates X. X is anmpts-by-ndim matrix where mpts is the number of
points and ndim is the dimension of the space where the points reside,

where 2 3≤ ≤ndim .

Examples Load a 3-D tetrahedral triangulation compute the free boundary. First,
load triangulation tet and vertex coordinates X.

load tetmesh

Create the triangulation representation and compute the free boundary.

trep = TriRep(tet, X);
[tri, Xb] = freeBoundary(trep);

2-4041



TriRep

See Also TriScatteredInterp
“Interpolation”— A guide to MATLAB’s object-oriented and
functional capabilities for computational geometry.

2-4042



TriScatteredInterp class

Purpose Interpolate scattered data

Description A scattered data set defined by locations X and corresponding values V
can be interpolated using a Delaunay triangulation of X. This produces a
surface of the form V = F(X). The surface can be evaluated at any query
location QX, using QV = F(QX), where QX lies within the convex hull
of X. The interpolant F always goes through the data points specified
by the sample.

Definitions The Delaunay triangulation of a set of points is a triangulation such
that the unique circle circumscribed about each triangle contains no
other points in the set. The convex hull of a set of points is the smallest
convex set containing all points of the original set. These definitions
extend naturally to higher dimensions.

Construction TriScatteredInterp Interpolate scattered data

Properties X Defines locations of scattered data points in
2-D or 3-D space.

V Defines value associated with each data point.

Defines method used to interpolate the data .

natural Natural neighbor
interpolation

linear Linear interpolation
(default)

Method

nearest Nearest neighbor
interpolation

Copy
Semantics

Value. To learn how this affects your use of the class, see Comparing
Handle and Value Classes in the MATLAB Object-Oriented
Programming documentation.

2-4043



TriScatteredInterp class

Examples Create a data set:

x = rand(100,1)*4-2;
y = rand(100,1)*4-2;
z = x.*exp(-x.^2-y.^2);

Construct the interpolant:

F = TriScatteredInterp(x,y,z);

Evaluate the interpolant at the locations (qx, qy). The corresponding
value at these locations is qz:

ti = -2:.25:2;
[qx,qy] = meshgrid(ti,ti);
qz = F(qx,qy);
mesh(qx,qy,qz);
hold on;
plot3(x,y,z,'o');

2-4044



TriScatteredInterp class

See Also DelaunayTri
interp1
interp2
interp3
meshgrid

2-4045



TriScatteredInterp

Purpose Interpolate scattered data

Syntax F = TriScatteredInterp()
F = TriScatteredInterp(X, V)
F = TriScatteredInterp(X, Y, V)
F = TriScatteredInterp(X, Y, Z, V)
F = TriScatteredInterp(DT, V)
F = TriScatteredInterp(..., method)

Description F = TriScatteredInterp() creates an empty scattered data
interpolant. This can subsequently be initialized with sample data
points and values (Xdata, Vdata) via F.X = Xdata and F.V = Vdata.

F = TriScatteredInterp(X, V) creates an interpolant that fits a
surface of the form V = F(X) to the scattered data in (X, V). X is a matrix
of size mpts-by-ndim, where mpts is the number of points and ndim is the
dimension of the space where the points reside, ndim >= 2. The column
vector V defines the values at X, where the length of V equals mpts.

F = TriScatteredInterp(X, Y, V) and F = TriScatteredInterp(X,
Y, Z, V) allow the data point locations to be specified in alternative
column vector format when working in 2-D and 3-D.

F = TriScatteredInterp(DT, V) uses the specified DelaunayTri
object DT as a basis for computing the interpolant. The matrix DT.X is
of size mpts-by-ndim, where mpts is the number of points and ndim is
the dimension of the space where the points reside, 2 <= ndim <= 3. V
is a column vector that defines the values at DT.X, where the length of
V equals mpts.

F = TriScatteredInterp(..., method) allows selection of the
technique method used to interpolate the data.

2-4046



TriScatteredInterp

Input
Arguments

X Matrix of size mpts-by-ndim, where mpts is the
number of points and ndim is the dimension of
the space where the points reside.

V Column vector that defines the values at X,
where the length of V equals mpts.

DT Delaunay triangulation of the scattered data
locations
natural Natural neighbor

interpolation
linear Linear interpolation

(default)

method

nearest Nearest-neighbor
interpolation

Output
Arguments

F Creates an interpolant that fits a surface of
the form V = F(X) to the scattered data.

Evaluation To evaluate the interpolant, express the statement in Monge’s form
V=F(x), V=F(x,y), or V=F(x,y,z).

Definitions The Delaunay triangulation of a set of points is a triangulation such
that the unique circle circumscribed about each triangle contains no
other points in the set.

Examples Create a data set:

x = rand(100,1)*4-2;
y = rand(100,1)*4-2;
z = x.*exp(-x.^2-y.^2);

Construct the interpolant:

F = TriScatteredInterp(x,y,z);

2-4047



TriScatteredInterp

Evaluate the interpolant at the locations (qx, qy). The corresponding
value at these locations is qz .

ti = -2:.25:2;
[qx,qy] = meshgrid(ti,ti);
qz = F(qx,qy);
mesh(qx,qy,qz);
hold on;
plot3(x,y,z,'o');

See Also DelaunayTri
interp1
interp2
interp3
meshgrid

2-4048



trisurf

Purpose Triangular surface plot

Syntax trisurf(Tri,X,Y,Z,C)
trisurf(Tri,X,Y,Z)
trisurf(tr)
trisurf(...'PropertyName',PropertyValue...)
h = trisurf(...)

Description trisurf(Tri,X,Y,Z,C) displays triangles defined in the m-by-3 face
matrix Tri as a surface. Each row of Tri defines a single triangular
face by indexing into the vectors or matrices that contain the X, Y, and Z
vertices. The color is defined by the vector C.

trisurf(Tri,X,Y,Z) uses C=Z so color is proportional to surface height.

trisurf(tr) displays the triangles in a TriRep triangulation
representation. It uses C = TR.X(:,3) so surface color is proportional
to height.

trisurf(...'PropertyName',PropertyValue...) specifies
additional patch property names and values for the patch graphics
object created by the function.

h = trisurf(...) returns a patch handle.

Example Create vertex vectors and a face matrix, then create a triangular
surface plot.

[x,y]=meshgrid(1:15,1:15);
tri = delaunay(x,y);
z = peaks(15);
trisurf(tri,x,y,z)

If the surface is in the form of a TriRep triangulation representation,
plot it as follows:

tr = TriRep(tri, x(:), y(:), z(:));
trisurf(tr)

2-4049



trisurf

See Also patch, surf, tetramesh, trimesh, triplot, delaunay, TriRep,
DelaunayTri

“Surface and Mesh Creation” on page 1-107 for related functions

2-4050



triu

Purpose Upper triangular part of matrix

Syntax U = triu(X)
U = triu(X,k)

Description U = triu(X) returns the upper triangular part of X.

U = triu(X,k) returns the element on and above the kth diagonal of X.
k = 0 is the main diagonal, k > 0 is above the main diagonal, and k
< 0 is below the main diagonal.

Examples triu(ones(4,4),-1)

ans =

1 1 1 1
1 1 1 1
0 1 1 1
0 0 1 1

See Also diag, tril

2-4051



true

Purpose Logical 1 (true)

Syntax true
true(n)
true(m, n)
true(m, n, p, ...)
true(size(A))

Description true is shorthand for logical 1.

true(n) is an n-by-n matrix of logical ones.

true(m, n) or true([m, n]) is an m-by-n matrix of logical ones.

true(m, n, p, ...) or true([m n p ...]) is an m-by-n-by-p-by-...
array of logical ones.

Note The size inputs m, n, p, ... should be nonnegative integers.
Negative integers are treated as 0.

true(size(A)) is an array of logical ones that is the same size as
array A.

Remarks true(n) is much faster and more memory efficient than
logical(ones(n)).

See Also false, logical

2-4052



try

Purpose Execute statements and catch resulting errors

Syntax try
program statements

:
catch exception

error-handling statements
:

end

Description try plus one or more program statements that follow it make up the
first part of a try-catch statement. This part is often referred to as a try
block, and is always immediately followed by a catch block. The catch
block consists of the catch exception command followed by one or
more error-handling statements. The try-catch statement is used in
detecting and handling errors. It enables you to implement your own
error handling for selected segments of your program code.

The try block begins with the try keyword and ends just before the
catch keyword. It contains one or more commands for which special
error handling is required by your program. Any error detected while
executing statements in the try block immediately turns program
control over to the catch block. Code in the catch block provides error
handling that specifically addresses errors that might originate from
statements in the preceding try block.

Both the try and catch blocks may contain additional try-catch
statements nested within them.

See “The try-catch Statement” in the Programming Fundamentals
documentation for more information.

Remarks Specifying the try, catch, and end commands, as well as the
commands that make up the try and catch blocks, on separate lines
is recommended. If you combine any of these components on the same
line, separate them with commas.

2-4053



try

Examples Example 1

The first part of this example attempts to vertically concatenate two
matrices that have an unequal number of columns:

A = rand(5,3); B = rand(4,5);
C = [A; B];
??? Error using ==> vertcat
CAT arguments dimensions are not consistent.

Using a try-catch statement, you can provide more information about
what went wrong:

function C = catchErr(A, B);
try

C = [A; B];
catch exception

% Branch here on an exception. If problem is a
% dimension mismatch, throw the appropriate error.
if (strcmp(exception.identifier, ...
'MATLAB:catenate:dimensionMismatch'))

msg = longMsg(size(A,2), size(B,2));
error('MATLAB:myFunction:Dimensionality', msg);

% Otherwise, just let the error propagate.
else

throw(exception);
end

end % end try-catch

% Subfunction to put longish message together.
function msg = longMsg(Acols, Bcols)
msg = sprintf('%s', ...

'Dimension mismatch occured: First argument has ', ...
num2str(Acols), ' columns while second argument has ', ...
num2str(Bcols), ' columns.');

Running the program displays the following message:

2-4054



try

catchErr(A, B)
??? Error using ==> catchErr at 8
Dimension mismatch occured: First argument has 3 columns
while second argument has 5 columns.

Example 2

The catch block in this example checks to see if the specified file could
not be found. If this is the case, the program allows for the possibility
that a common variation of the filename extension (e.g., jpeg instead
of jpg) was used by retrying the operation with a modified extension.
This is done using a try-catch statement that is nested within the
original try-catch.

function d_in = read_image(filename)
[path name ext] = fileparts(filename);
try

fid = fopen(filename, 'r');
d_in = fread(fid);

catch exception

% Did the read fail because the file could not be found?
if ~exist(filename, 'file')

% Yes. Try modifying the filename extension.
switch ext
case '.jpg' % Change jpg to jpeg

altFilename = strrep(filename, '.jpg', '.jpeg')
case '.jpeg' % Change jpeg to jpg

altFilename = strrep(filename, '.jpeg', '.jpg')
case '.tif' % Change tif to tiff

altFilename = strrep(filename, '.tif', '.tiff')
case '.tiff' % Change tiff to tif

altFilename = strrep(filename, '.tiff', '.tif')
otherwise

rethrow(exception);
end

2-4055



try

% Try again, with modifed filename.
try

fid = fopen(altFilename, 'r');
d_in = fread(fid);

catch
rethrow(exception)

end
end

end

See Also catch, error, assert, MException, throw(MException),
rethrow(MException), throwAsCaller(MException),
addCause(MException), getReport(MException), last(MException)

2-4056



tscollection

Purpose Create tscollection object

Syntax tsc = tscollection(TimeSeries)
tsc = tscollection(Time)
tsc = tscollection(Time,TimeSeries,'Parameter',Value,...)

Description tsc = tscollection(TimeSeries) creates a tscollection object
tsc with one or more timeseries objects already in the MATLAB
workspace. The argument TimeSeries can be a

• Single timeseries object

• Cell array of timeseries objects

tsc = tscollection(Time) creates an empty tscollection object
with the time vector Time. When time values are date strings, you must
specify Time as a cell array of date strings.

tsc = tscollection(Time,TimeSeries,'Parameter',Value,...)
creates a tscollection object with optional parameter-value pairs
you enter after the Time and TimeSeries arguments. You can specify
the following parameter:

• Name— String that specifies the name of this tscollection object

Remarks Definition: Time Series Collection

A time series collection object is a MATLAB variable that groups several
time series with a common time vector. The time series that you include
in the collection are called members of this collection.

Properties of Time Series Collection Objects

This table lists the properties of the tscollection object. You can
specify the Time, TimeSeries, and Name properties as input arguments
in the constructor.

2-4057



tscollection

Property Description

Name tscollection name as a string. This can differ from the
tscollection name in the MATLAB workspace.

Time When TimeInfo.StartDate is empty, values are
measured relative to 0 . When TimeInfo.StartDate is
defined, values represent date strings measured relative
to the StartDate.

The length of Time must be the same as the first or the
last dimension of Data for each collection .

TimeInfo Contains fields for contextual information about Time:

• Units— Time units with any of the following values:
'weeks', 'days', 'hours', 'minutes', 'seconds',
'milliseconds', 'microseconds', 'nanoseconds'

• Start — Start time

• End — End time (read only)

• Increment — Interval between subsequent time
values. NaN when times are not uniformly sampled.

• Length— Length of the time vector (read only)

• Format — String defining the date string display
format. See datestr.

• StartDate— Date string defining the reference date.
See setabstime (tscollection).

• UserData— Any additional user-defined information

Examples The following example shows how to create a tscollection object.

1 Import the sample data.

load count.dat

2-4058



tscollection

2 Create three timeseries objects to store each set of data:

count1 = timeseries(count(:,1),1:24,'name', 'ts1');
count2 = timeseries(count(:,2),1:24,'name', 'ts2');

3 Create a tscollection object named tsc and add to it two out of
three time series already in the MATLAB workspace, by using the
following syntax:

tsc = tscollection({count1 count2},'name','tsc')

See Also addts, datestr, setabstime (tscollection), timeseries, tsprops

2-4059



tsdata.event

Purpose Construct event object for timeseries object

Syntax e = tsdata.event(Name,Time)
e = tsdata.event(Name,Time,'Datenum')

Description e = tsdata.event(Name,Time) creates an event object with the
specified Name that occurs at the time Time. Time can either be a real
value or a date string.

e = tsdata.event(Name,Time,'Datenum') uses 'Datenum' to
indicate that the Time value is a serial date number generated by the
datenum function. The Time value is converted to a date string after
the event is created.

Remarks You add events by using the addevent method.

Fields of the tsdata.event object include the following:

• EventData — MATLAB array that stores any user-defined
information about the event

• Name — String that specifies the name of the event

• Time— Time value when this event occurs, specified as a real number

• Units — Time units

• StartDate—A reference date, specified in MATLAB datestr format.
StartDate is empty when you have a numerical (non-date-string)
time vector.

2-4060



tsearch

Purpose Search for enclosing Delaunay triangle

tsearch will be removed in a future release. Use
DelaunayTri/pointLocation instead.

Syntax T = tsearch(x,y,TRI,xi,yi)

Description T = tsearch(x,y,TRI,xi,yi) returns an index into the rows of TRI for
each point in xi, yi. The tsearch command returns NaN for all points
outside the convex hull. Requires a triangulation TRI of the points x,y
obtained from delaunay.

See Also DelaunayTri, delaunay, delaunayn, tsearchn

2-4061



tsearchn

Purpose N-D closest simplex search

Syntax t = tsearchn(X,TES,XI)
[t,P] = tsearchn(X,TES,XI)

Description t = tsearchn(X,TES,XI) returns the indices t of the enclosing simplex
of the Delaunay tessellation TES for each point in XI. X is an m-by-n
matrix, representing m points in N-dimensional space. XI is a p-by-n
matrix, representing p points in N-dimensional space. tsearchn returns
NaN for all points outside the convex hull of X. tsearchn requires a
tessellation TES of the points X obtained from delaunayn.

[t,P] = tsearchn(X,TES,XI) also returns the barycentric coordinate
P of XI in the simplex TES. P is a p-by-n+1 matrix. Each row of P is the
Barycentric coordinate of the corresponding point in XI. It is useful
for interpolation.

Algorithm tsearchn is based on Qhull [1]. For information about Qhull,
see http://www.qhull.org/. For copyright information, see
http://www.qhull.org/COPYING.txt.

See Also DelaunayTri, tsearch

Reference [1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, “The Quickhull
Algorithm for Convex Hulls,” ACM Transactions on Mathematical
Software, Vol. 22, No. 4, Dec. 1996, p. 469–483.

2-4062

http://www.qhull.org/
http://www.qhull.org/COPYING.txt


tsprops

Purpose Help on timeseries object properties

Syntax help timeseries/tsprops

Description help timeseries/tsprops lists the properties of the timeseries
object and briefly describes each property.

Time Series Object Properties

Property Description

Data Time-series data, where each data sample corresponds to a
specific time.

The data can be a scalar, a vector, or a multidimensional array.
Either the first or last dimension of the data must be aligned
with Time.

By default, NaNs are used to represent missing or unspecified
data. Set the TreatNaNasMissing property to determine how
missing data is treated in calculations.

DataInfo Contains fields for storing contextual information about Data:

• Unit — String that specifies data units

• Interpolation — A tsdata.interpolation object that
specifies the interpolation method for this time series.

Fields of the tsdata.interpolation object include:

- Fhandle— Function handle to a user-defined interpolation
function

- Name — String that specifies the name of the interpolation
method. Predefined methods include 'linear' and 'zoh'
(zero-order hold). 'linear' is the default.

• UserData— Any user-defined information entered as a string

2-4063



tsprops

Time Series Object Properties (Continued)

Property Description

Events An array of tsdata.event objects that stores event information
for this time series. You add events by using the addevent
method.

Fields of the tsdata.event object include the following:

• EventData— Any user-defined information about the event

• Name— String that specifies the name of the event

• Time— Time value when this event occurs, specified as a real
number or a date string

• Units — Time units

• StartDate — A reference date specified in MATLAB
date-string format. StartDate is empty when you have a
numerical (non-date-string) time vector.

IsTimeFirst Logical value (true or false) specifies whether the first or last
dimension of the Data array is aligned with the time vector.

You can set this property when the Data array is square and it is
ambiguous which dimension is aligned with time. By default, the
first Data dimension that matches the length of the time vector is
aligned with the time vector.

When you set this property to:

• true — The first dimension of the data array is aligned with
the time vector. For example:
ts=timeseries(rand(3,3),1:3, 'IsTimeFirst',true);

• false — The last dimension of the data array is aligned with
the time vector. For example:
ts=timeseries(rand(3,3),1:3, 'IsTimeFirst',false);

2-4064



tsprops

Time Series Object Properties (Continued)

Property Description

After a time series is created, this property is read only.

Name Time-series name entered as a string. This name can differ from
the name of the time-series variable in the MATLAB workspace.

Quality An integer vector or array containing values -128 to 127
that specifies the quality in terms of codes defined by
QualityInfo.Code.

When Quality is a vector, it must have the same length as
the time vector. In this case, each Quality value applies to a
corresponding data sample.

When Quality is an array, it must have the same size as the
data array. In this case, each Quality value applies to the
corresponding value of the data array.

QualityInfo Provides a lookup table that converts numerical Quality codes to
readable descriptions. QualityInfo fields include the following:

• Code — Integer vector containing values -128 to 127 that
define the “dictionary” of quality codes, which you can assign
to each Data value by using the Quality property

• Description — Cell vector of strings, where each element
provides a readable description of the associated quality Code

• UserData— Stores any additional user-defined information

Lengths of Code and Description must match.

2-4065



tsprops

Time Series Object Properties (Continued)

Property Description

Time Array of time values.

When TimeInfo.StartDate is empty, the numerical Time
values are measured relative to 0 in specified units. When
TimeInfo.StartDate is defined, the time values are date strings
measured relative to the StartDate in specified units.

The length of Time must be the same as either the first or the
last dimension of Data.

TimeInfo Uses the following fields for storing contextual information about
Time:

• Units— Time units can have any of following values: 'weeks',
'days', 'hours', 'minutes', 'seconds', 'milliseconds',
'microseconds', or 'nanoseconds'

• Start — Start time

• End — End time (read only)

• Increment— Interval between two subsequent time values

• Length — Length of the time vector (read only)

• Format — String defining the date string display format.
See the MATLAB datestr function reference page for more
information.

• StartDate— Date string defining the reference date. See the
MATLAB setabstime (timeseries) function reference page
for more information.

• UserData— Stores any additional user-defined information

2-4066



tsprops

Time Series Object Properties (Continued)

Property Description

TreatNaNasMissing Logical value that specifies how to treat NaN values in Data:

• true — (Default) Treat all NaN values as missing data except
during statistical calculations.

• false — Include NaN values in statistical calculations, in
which case NaN values are propagated to the result.

See Also datestr, get (timeseries), set (timeseries), setabstime
(timeseries)

2-4067



tstool

Purpose Open Time Series Tools GUI

Syntax tstool
tstool(ts)
tstool(tsc)
tstool(sldata)
tstool(ModelDataLogs,'replace')

Description tstool starts the Time Series Tools GUI without loading any data.

tstool(ts) starts the Time Series Tools GUI and loads the time-series
object ts from the MATLAB workspace.

tstool(tsc) starts the Time Series Tools GUI and loads the
time-series collection object tsc from the MATLAB workspace.

tstool(sldata) starts the Time Series Tools GUI and loads the
logged-signal data sldata from a Simulink model. If a Simulink logged
signal Name property contains a /, the entire logged signal, including all
levels of the signal hierarchy, is not imported into Time Series Tools.

tstool(ModelDataLogs,'replace') replaces the logged-signal data
object ModelDataLogs in the Time Series Tools GUI with an updated
logged signal after you rerun the Simulink model. Use this command to
update the ModelDataLogs object in the Time Series Tools GUI if you
change the model or the logged-signal data settings.

See Also timeseries, tscollection

2-4068



type

Purpose Display contents of file

Syntax type('filename')
type filename

Description type('filename') displays the contents of the specified file in the
MATLAB Command Window. Use the full path for filename, or use
a MATLAB relative partial path.

If you do not specify a file extension and there is no filename file
without an extension, the type function adds the .m extension by
default. The type function checks the directories specified in the
MATLAB search path, which makes it convenient for listing the
contents of files on the screen. Use type with more on to see the listing
one screen at a time.

type filename is the command form of the syntax.

Examples type('foo.bar') lists the contents of the file foo.bar.

type foo lists the contents of the file foo. If foo does not exist, type
foo lists the contents of the file foo.m.

See Also cd, dbtype, delete, dir, more, path, what, who

2-4069



typecast

Purpose Convert data types without changing underlying data

Syntax Y = typecast(X, type)

Description Y = typecast(X, type) converts a numeric value in X to the data
type specified by type. Input X must be a full, noncomplex, numeric
scalar or vector. The type input is a string set to one of the following:
'uint8', 'int8', 'uint16', 'int16', 'uint32', 'int32', 'uint64',
'int64', 'single', or 'double'.

typecast is different from the MATLAB cast function in that it does
not alter the input data. typecast always returns the same number of
bytes in the output Y as were in the input X. For example, casting the
16-bit integer 1000 to uint8 with typecast returns the full 16 bits in
two 8-bit segments (3 and 232) thus keeping its original value (3*256
+ 232 = 1000). The cast function, on the other hand, truncates the
input value to 255.

The output of typecast can be formatted differently depending on what
system you use it on. Some computer systems store data starting with
its most significant byte (an ordering called big-endian), while others
start with the least significant byte (called little-endian).

Note MATLAB issues an error if X contains fewer values than are
needed to make an output value.

Examples Example 1

This example converts between data types of the same size:

typecast(uint8(255), 'int8')
ans =

-1

typecast(int16(-1), 'uint16')
ans =

2-4070



typecast

65535

Example 2

Set X to a 1-by-3 vector of 32-bit integers, then cast it to an 8-bit integer
type:

X = uint32([1 255 256])
X =

1 255 256

Running this on a little-endian system produces the following results.
Each 32-bit value is divided up into four 8-bit segments:

Y = typecast(X, 'uint8')
Y =

1 0 0 0 255 0 0 0 0 1 0 0

The third element of X, 256, exceeds the 8 bits that it is being converted
to in Y(9) and thus overflows to Y(10):

Y(9:12)
ans =

0 1 0 0

Note that length(Y) is equal to 4.*length(X). Also note the difference
between the output of typecast versus that of cast:

Z = cast(X, 'uint8')
Z =

1 255 255

Example 3

This example casts a smaller data type (uint8) into a larger one
(uint16). Displaying the numbers in hexadecimal format makes it
easier to see just how the data is being rearranged:

format hex
X = uint8([44 55 66 77])
X =

2-4071



typecast

2c 37 42 4d

The first typecast is done on a big-endian system. The four 8-bit
segments of the input data are combined to produce two 16-bit segments:

Y = typecast(X, 'uint16')
Y =

2c37 424d

The second is done on a little-endian system. Note the difference in
byte ordering:

Y = typecast(X, 'uint16')
Y =

372c 4d42

You can format the little-endian output into big-endian (and vice versa)
using the swapbytes function:

Y = swapbytes(typecast(X, 'uint16'))
Y =

2c37 424d

Example 4

This example attempts to make a 32-bit value from a vector of three
8-bit values. MATLAB issues an error because there are an insufficient
number of bytes in the input:

format hex

typecast(uint8([120 86 52]), 'uint32')
??? Too few input values to make output type.

Error in ==> typecast at 29
out = typecastc(in, datatype);

Repeat the example, but with a vector of four 8-bit values, and it returns
the expected answer:

2-4072



typecast

typecast(uint8([120 86 52 18]), 'uint32')
ans =

12345678

See Also cast, class, swapbytes

2-4073



uibuttongroup

Purpose Create container object to exclusively manage radio buttons and toggle
buttons

Syntax uibuttongroup('PropertyName1',Value1,'PropertyName2',Value2,
...)

handle = uibuttongroup(...)

Description A uibuttongroup groups components and manages exclusive selection
behavior for radio buttons and toggle buttons that it contains. It
can also contain other user interface controls, axes, uipanels, and
uibuttongroups. It cannot contain ActiveX controls.

uibuttongroup('PropertyName1',Value1,'PropertyName2',Value2,...)
creates a visible container component in the current figure window.
This component manages exclusive selection behavior for uicontrols of
style radiobutton and togglebutton.

handle = uibuttongroup(...) creates a uibuttongroup object and
returns a handle to it in handle.

A uibuttongroup object can have axes, uicontrol, uipanel, and
uibuttongroup objects as children. However, only uicontrols of style
radiobutton and togglebutton are managed by the component.

When programming a button group, you do not code callbacks for the
individual buttons; instead, use its SelectionChangeFcn callback to
manage responses to selections. The following example illustrates how
you use uibuttongroup event data to do this.

For the children of a uibuttongroup object, the Position property is
interpreted relative to the button group. If you move the button group,
the children automatically move with it and maintain their positions
in the button group.

If you have a button group that contains a set of radio buttons and
toggle buttons and you want:

• An immediate action to occur when a radio button or toggle button is
selected, you must include the code to control the radio and toggle
buttons in the button group’s SelectionChangeFcn callback function,

2-4074



uibuttongroup

not in the individual toggle button Callback functions. See the
SelectionChangeFcn property and the example on this reference
page for more information.

• Another component such as a push button to base its action on the
selection, then that component’s Callback callback can get the
handle of the selected radio button or toggle button from the button
group’s SelectedObject property.

Use the Parent property to specify the parent as a figure, uipanel, or
uibuttongroup. If you do not specify a parent, uibuttongroup adds the
button group to the current figure. If no figure exists, one is created.

See the Uibuttongroup Properties reference page for more information.

After creating a uibuttongroup, you can set and query its property
values using set and get. Run get(handle) to see a list of properties
and their current values. Run set(handle) to see a list of object
properties you can set and their legal values.

Remarks If you set the Visible property of a uibuttongroup object to 'off',
any child objects it contains (buttons, button groups, etc.) become
invisible along with the uibuttongroup panel itself. However, doing
this does not affect the settings of the Visible property of any of its
child objects, even though all of them remain invisible until the button
group’s visibility is set to 'on'. uipanel components also behave in
this manner.

Examples This example creates a uibuttongroup with three radiobuttons. It
manages the radiobuttons with the SelectionChangeFcn callback,
selcbk.

When you select a new radio button, selcbk displays the uibuttongroup
handle on one line, the EventName, OldValue, and NewValue fields
of the event data structure on a second line, and the value of the
SelectedObject property on a third line.

% Create the button group.

h = uibuttongroup('visible','off','Position',[0 0 .2 1]);

2-4075



uibuttongroup

% Create three radio buttons in the button group.

u0 = uicontrol('Style','Radio','String','Option 1',...

'pos',[10 350 100 30],'parent',h,'HandleVisibility','off');

u1 = uicontrol('Style','Radio','String','Option 2',...

'pos',[10 250 100 30],'parent',h,'HandleVisibility','off');

u2 = uicontrol('Style','Radio','String','Option 3',...

'pos',[10 150 100 30],'parent',h,'HandleVisibility','off');

% Initialize some button group properties.

set(h,'SelectionChangeFcn',@selcbk);

set(h,'SelectedObject',[]); % No selection

set(h,'Visible','on');

For the SelectionChangeFcn callback, selcbk, the source and event
data structure arguments are available only if selcbk is called using a
function handle. See SelectionChangeFcn for more information.

function selcbk(source,eventdata)
disp(source);
disp([eventdata.EventName,' ',...

get(eventdata.OldValue,'String'),' ', ...
get(eventdata.NewValue,'String')]);

disp(get(get(source,'SelectedObject'),'String'));

2-4076



uibuttongroup

If you click Option 2 with no option selected, the SelectionChangeFcn
callback, selcbk, displays:

3.0011

SelectionChanged Option 2
Option 2

If you then click Option 1, the SelectionChangeFcn callback, selcbk,
displays:

3.0011

SelectionChanged Option 2 Option 1
Option 1

2-4077



uibuttongroup

See Also uicontrol, uipanel

2-4078



Uibuttongroup Properties

Purpose Describe button group properties

Modifying
Properties

You can set and query graphics object properties in two ways:

• The Property Inspector is an interactive tool that enables you to
see and change object property values. The Property inspector is
available from GUIDE, or use the inspect function at the command
line.

• The set and get functions enable you to set and query the values of
properties.

Uibuttongroup takes its default property values from uipanel. To
set a uibuttongroup default property value, set the default for the
corresponding uipanel property. Note that you can set no default values
for the uibuttongroup SelectedObject and SelectionChangeFcn
properties.

For more information about changing the default value of a property see
“Setting Default Property Values”. For an example, see the CreateFcn
property.

Uibuttongroup
Properties

This section describes all properties useful to uibuttongroup objects
and lists valid values. Curly braces { } enclose default values.

Property Name Description

BackgroundColor Color of the button group background

BeingDeleted This object is being deleted

BorderType Type of border around the button group

BorderWidth Width of the button group border in pixels

BusyAction Interruption of other callback routines

ButtonDownFcn Button-press callback routine

Children All children of the button group

2-4079



Uibuttongroup Properties

Property Name Description

Clipping Clipping of child axes, panels, and button
groups to the button group. Does not affect
child user interface controls (uicontrol)

CreateFcn Callback routine executed during object
creation

DeleteFcn Callback routine executed during object
deletion

FontAngle Title font angle

FontName Title font name

FontSize Title font size

FontUnits Title font units

FontWeight Title font weight

ForegroundColor Title font color and color of 2-D border line

HandleVisibility Handle accessibility from command line and
GUIs

HighlightColor 3-D frame highlight color

Interruptible Callback routine interruption mode

Parent uibuttongroup object’s parent

Position Button group position relative to parent figure,
panel, or button group

ResizeFcn User-specified resize routine

Selected Whether object is selected

SelectedObject Currently selected uicontrol of style
radiobutton or togglebutton

SelectionChangeFcn Callback routine executed when the selected
radio button or toggle button changes

SelectionHighlight Object highlighted when selected

2-4080



Uibuttongroup Properties

Property Name Description

ShadowColor 3-D frame shadow color

Tag User-specified object identifier

Title Title string

TitlePosition Location of title string in relation to the button
group

Type Object class

UIContextMenu Associate context menu with the button group

Units Units used to interpret the position vector

UserData User-specified data

Visible Button group visibility

Note Controls the visibility of a uibuttongroup
and of its child axes, uibuttongroups. uipanels,
and child uicontrols. Setting it does not change
their Visible property.

BackgroundColor
ColorSpec

Color of the uibuttongroup background. A three-element RGB
vector or one of the MATLAB predefined names, specifying the
background color. See the ColorSpec reference page for more
information on specifying color.

BeingDeleted
on | {off} Read Only

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in
the process of being deleted. MATLAB sets the BeingDeleted

2-4081



Uibuttongroup Properties

property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions
that act on a number of different objects. These functions might
not need to perform actions on objects if the objects are going to
be deleted, and therefore, can check the object’s BeingDeleted
property before acting.

BorderType
none | {etchedin} | etchedout |
beveledin | beveledout | line

Border of the uibuttongroup area. Used to define the button group
area graphically. Etched and beveled borders provide a 3-D look.
Use the HighlightColor and ShadowColor properties to specify
the border color of etched and beveled borders. A line border is
2-D. Use the ForegroundColor property to specify its color.

BorderWidth
integer

Width of the button group border. The width of the button group
borders in pixels. The default border width is 1 pixel. 3-D borders
wider than 3 may not appear correctly at the corners.

BusyAction
cancel | {queue}

Callback routine interruption. If a callback is executing and the
user triggers an event (such as a mouse click) on an object for
which a callback is defined, the callback associated with the new
event uses the value of BusyAction to decide whether or not to
attempt to interrupt the executing callback.

• If the value is cancel, the event is discarded and the second
callback does not execute.

2-4082



Uibuttongroup Properties

• If the value is queue, and the Interruptible property of the
first callback is on, the second callback is added to the event
queue and executes in its turn after the first callback finishes
execution.

Note If the interrupting callback is a DeleteFcn or CreateFcn
callback or a figure’s CloseRequest or ResizeFcn callback,
it interrupts an executing callback regardless of the value of
that object’s Interruptible property. See the Interruptible
property for information about controlling a callback’s
interruptibility.

ButtonDownFcn
string or function handle

Button-press callback routine. A callback routine that executes
when you press a mouse button while the pointer is in a 5-pixel
wide border around the uibuttongroup. This is useful for
implementing actions to interactively modify object properties,
such as size and position, when they are clicked on (using the
selectmoveresize function, for example).

If you define this routine as a string, the string can be a valid
MATLAB expression or the name of a code file. The expression
executes in the MATLAB workspace.

Children
vector of handles

Children of the uibuttongroup. A vector containing the handles
of all children of the uibuttongroup. Although a uibuttongroup
manages only uicontrols of style radiobutton and togglebutton,
its children can be axes, uipanels, uibuttongroups, and other
uicontrols. You can use this property to reorder the children.

2-4083



Uibuttongroup Properties

Clipping
{on} | off

Clipping mode. By default, MATLAB clips a uibuttongroup’s
child axes, uipanels, and uibuttongroups to the uibuttongroup
rectangle. If you set Clipping to off, the axis, uipanel, or
uibuttongroup is displayed outside the button group rectangle.
This property does not affect child uicontrols which, by default,
can display outside the button group rectangle.

CreateFcn
string or function handle

Callback routine executed during object creation. The specified
function executes when MATLAB creates a uibuttongroup object.
MATLAB sets all property values for the uibuttongroup before
executing the CreateFcn callback so these values are available to
the callback. Within the function, use gcbo to get the handle of
the uibuttongroup being created.

Setting this property on an existing uibuttongroup object has no
effect.

To define a default CreateFcn callback for all new uibuttongroups
you must define the same default for all uipanels. This default
applies unless you override it by specifying a different CreateFcn
callback when you call uibuttongroup. For example, the code

set(0,'DefaultUipanelCreateFcn','set(gcbo,...
''FontName'',''arial'',''FontSize'',12)')

creates a default CreateFcn callback that runs whenever you
create a new panel or button group. It sets the default font name
and font size of the uipanel or uibuttongroup title.

To override this default and create a button group whose
FontName and FontSize properties are set to different values, call
uibuttongroup with code similar to

2-4084



Uibuttongroup Properties

hpt = uibuttongroup(...,'CreateFcn','set(gcbo,...
''FontName'',''times'',''FontSize'',14)')

Note To override a default CreateFcn callback you must provide
a new callback and not just provide different values for the
specified properties. This is because the CreateFcn callback runs
after the property values are set, and can override property values
you have set explicitly in the uibuttongroup call. In the example
above, if instead of redefining the CreateFcn property for this
uibuttongroup, you had explicitly set FontSize to 14, the default
CreateFcn callback would have set FontSize back to the system
dependent default.

Do not call copyobj or textwrap (which calls copyobj) inside
a CreateFcn. The act of copying the uicontrol object fires the
CreateFcn repeatedly, which raises a series of error messages
after exceeding the root object’s RecursionLimit property.

See “Function Handle Callbacks” for information on how to use
function handles to define a callback function.

DeleteFcn
string or function handle

Callback routine executed during object deletion. A callback
routine that executes when you delete the uibuttongroup object
(e.g., when you issue a delete command or clear the figure
containing the uibuttongroup). MATLAB executes the routine
before destroying the object’s properties so these values are
available to the callback routine. The handle of the object whose
DeleteFcn is being executed is accessible only through the root
CallbackObject property, which you can query using gcbo.

FontAngle
{normal} | italic | oblique

2-4085

../ref/rootobject_props.html#RecursionLimit


Uibuttongroup Properties

Character slant used in the Title. MATLAB uses this property
to select a font from those available on your particular system.
Setting this property to italic or oblique selects a slanted
version of the font, when it is available on your system.

FontName
string

Font family used in the Title. The name of the font in which
to display the Title. To display and print properly, this must
be a font that your system supports. The default font is system
dependent. To eliminate the need to hard code the name of a
fixed-width font, which may not display text properly on systems
that do not use ASCII character encoding (such as in Japan), set
FontName to the string FixedWidth. This string value is case
insensitive.

set(uicontrol_handle,'FontName','FixedWidth')

This then uses the value of the root FixedWidthFontName
property, which can be set to the appropriate value for a locale
from startup.m in the end user’s environment. Setting the root
FixedWidthFontName property causes an immediate update of
the display to use the new font.

FontSize
integer

Title font size. A number specifying the size of the font in which
to display the Title, in units determined by the FontUnits
property. The default size is system dependent.

FontUnits
inches | centimeters | normalized |
{points} |pixels

Title font size units. Normalized units interpret FontSize as
a fraction of the height of the uibuttongroup. When you resize
the uibuttongroup, MATLAB modifies the screen FontSize

2-4086



Uibuttongroup Properties

accordingly. pixels, inches, centimeters, and points are
absolute units (1 point = 1/72 inch).

FontWeight
light | {normal} | demi | bold

Weight of characters in the title. MATLAB uses this property
to select a font from those available on your particular system.
Setting this property to bold causes MATLAB to use a bold version
of the font, when it is available on your system.

ForegroundColor
ColorSpec

Color used for title font and 2-D border line. A three-element RGB
vector or one of the MATLAB predefined names, specifying the
font or line color. See the ColorSpec reference page for more
information on specifying color.

HandleVisibility
{on} | callback | off

Control access to object’s handle. This property determines when
an object’s handle is visible in its parent’s list of children. When
a handle is not visible in its parent’s list of children, it is not
returned by functions that obtain handles by searching the object
hierarchy or querying handle properties. This includes get,
findobj, gca, gcf, gco, newplot, cla, clf, and close. Neither is
the handle visible in the parent figure’s CurrentObject property.
Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties, and pass it to any
function that operates on handles.

• Handles are always visible when HandleVisibility is on.

• Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by
callback routines, but not from within functions invoked from
the command line. This provides a means to protect GUIs from

2-4087



Uibuttongroup Properties

command-line users, while allowing callback routines to have
complete access to object handles.

• Setting HandleVisibility to off makes handles invisible
at all times. This may be necessary when a callback routine
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string), and so temporarily
hides its own handles during the execution of that function.

Note Uicontrols of style radiobutton and togglebutton
that are managed by a uibuttongroup should not be accessed
outside the button group. Set the HandleVisibility of such
radio buttons and toggle buttons to off or callback to prevent
inadvertent access.

You can set the root ShowHiddenHandles property to on to
make all handles visible, regardless of their HandleVisibility
settings. This does not affect the values of the HandleVisibility
properties.

HighlightColor
ColorSpec

3-D frame highlight color. A three-element RGB vector or one
of the MATLAB predefined names, specifying the highlight
color. See the ColorSpec reference page for more information
on specifying color.

Interruptible
{on} | off

Callback routine interruption mode. If a callback is executing and
the user triggers an event (such as a mouse click) on an object for
which a callback is defined, that callback attempts to interrupt
the first callback. MATLAB processes the callbacks according to
these factors:

2-4088



Uibuttongroup Properties

• The Interruptible property of the object whose callback is
executing

• Whether the executing callback contains drawnow, figure,
getframe, pause, or waitfor statements

• The BusyAction property of the object whose callback is waiting
to execute

If the Interruptible property of the object whose callback is
executing is on (the default), the callback can be interrupted.
Whenever the callback calls one of the drawnow, figure,
getframe, pause, or waitfor functions, the function processes
any events in the event queue, including the waiting callback,
before performing its defined task.

If the Interruptible property of the object whose callback is
executing is off, the callback cannot be interrupted (except by
certain callbacks; see the note below). The BusyAction property
of the object whose callback is waiting to execute determines what
happens to the waiting callback.

Note If the interrupting callback is a DeleteFcn or CreateFcn
callback or a figure’s CloseRequest or ResizeFcn callback, it
interrupts an executing callback regardless of the value of that
object’s Interruptible property. The interrupting callback
starts execution at the next drawnow, figure, getframe, pause,
or waitfor statement. A figure’s WindowButtonDownFcn callback
routine, or an object’s ButtonDownFcn or Callback routine is
processed according to the rules described above.

Parent
handle

Uibuttongroup parent. The handle of the uibuttongroup’s parent
figure, uipanel, or uibuttongroup. You can move a uibuttongroup

2-4089



Uibuttongroup Properties

object to another figure, uipanel, or uibuttongroup by setting this
property to the handle of the new parent.

Position
position rectangle

Size and location of uibuttongroup relative to parent. The
rectangle defined by this property specifies the size and location
of the button group within the parent figure window, uipanel, or
uibuttongroup. Specify Position as

[left bottom width height]

left and bottom are the distance from the lower-left corner of
the parent object to the lower-left corner of the uibuttongroup
object. width and height are the dimensions of the uibuttongroup
rectangle, including the title. All measurements are in units
specified by the Units property.

ResizeFcn
string or function handle

Resize callback routine. MATLAB executes this callback routine
whenever a user resizes the uibuttongroup and the figure Resize
property is set to on, or in GUIDE, the Resize behavior option
is set to Other. You can query the uibuttongroup Position
property to determine its new size and position. During execution
of the callback routine, the handle to the figure being resized is
accessible only through the root CallbackObject property, which
you can query using gcbo.

You can use ResizeFcn to maintain a GUI layout that is not
directly supported by the MATLAB Position/Units paradigm.

For example, consider a GUI layout that maintains an object
at a constant height in pixels and attached to the top of the
figure, but always matches the width of the figure. The following
ResizeFcn accomplishes this; it keeps the uicontrol whose Tag is

2-4090



Uibuttongroup Properties

'StatusBar' 20 pixels high, as wide as the figure, and attached to
the top of the figure. Note the use of the Tag property to retrieve
the uicontrol handle, and the gcbo function to retrieve the figure
handle. Also note the defensive programming regarding figure
Units, which the callback requires to be in pixels in order to work
correctly, but which the callback also restores to their previous
value afterwards.

u = findobj('Tag','StatusBar');
fig = gcbo;
old_units = get(fig,'Units');
set(fig,'Units','pixels');
figpos = get(fig,'Position');
upos = [0, figpos(4) - 20, figpos(3), 20];
set(u,'Position',upos);
set(fig,'Units',old_units);

You can change the figure Position from within the ResizeFcn
callback; however, the ResizeFcn is not called again as a result.

Note that the print command can cause the ResizeFcn to be
called if the PaperPositionMode property is set to manual and
you have defined a resize function. If you do not want your resize
function called by print, set the PaperPositionMode to auto.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

Selected
on | off (read only)

Is object selected? This property indicates whether the button
group is selected. When this property is on, MATLAB displays
selection handles if the SelectionHighlight property is also on.
You can, for example, define the ButtonDownFcn function to set
this property, allowing users to select the object with the mouse.

2-4091



Uibuttongroup Properties

SelectedObject
scalar handle

Currently selected radio button or toggle button uicontrol in the
managed group of components. Use this property to determine
the currently selected component or to initialize selection of one of
the radio buttons or toggle buttons. By default, SelectedObject
is set to the first uicontrol radio button or toggle button that
is added. Set it to [] if you want no selection. Note that
SelectionChangeFcn does not execute when this property is set
by the user.

SelectionChangeFcn
string or function handle

Callback routine executed when the selected radio button or toggle
button changes. If this routine is called as a function handle,
uibuttongroup passes it two arguments. The first argument,
source, is the handle of the uibuttongroup. The second argument,
eventdata, is an event data structure that contains the fields
shown in the following table.

Event Data
Structure Field Description

EventName 'SelectionChanged'

OldValue Handle of the object selected before this
event. [] if none was selected.

NewValue Handle of the currently selected object.

If you have a button group that contains a set of radio buttons
and/or toggle buttons and you want an immediate action to
occur when a radio button or toggle button is selected, you must
include the code to control the radio and toggle buttons in the
button group’s SelectionChangeFcn callback function, not in the
individual toggle button Callback functions.

2-4092



Uibuttongroup Properties

If you want another component such as a push button to base its
action on the selection, then that component’s Callback callback
can get the handle of the selected radio button or toggle button
from the button group’s SelectedObject property.

Note For GUIDE GUIs, hObject contains the handle of
the selected radio button or toggle button. See “Examples:
Programming GUIDE GUI Components” for more information.

SelectionHighlight
{on} | off

Object highlighted when selected. When the Selected property
is on, MATLAB indicates the selected state by drawing four edge
handles and four corner handles. When SelectionHighlight is
off, MATLAB does not draw the handles.

ShadowColor
ColorSpec

3-D frame shadow color. ShadowColor is a three-element RGB
vector or one of the MATLAB predefined names, specifying
the shadow color. See the ColorSpec reference page for more
information on specifying color.

Tag
string

User-specified object identifier. The Tag property provides a
means to identify graphics objects with a user-specified label. You
can define Tag as any string.

With the findobj function, you can locate an object with a given
Tag property value. This saves you from defining object handles
as global variables. For example, this function call returns the

2-4093



Uibuttongroup Properties

handles of all children (of the specified figures) that have the Tag
value 'FormatTb'.

h = findobj(figurehandles,'Tag','FormatTb')

Title
string

Title string. The text displayed in the button group title. You can
position the title using the TitlePosition property.

If the string value is specified as a cell array of strings or padded
string matrix, only the first string in the cell array or padded
string matrix is displayed; the rest are ignored. Vertical slash (’|’)
characters are not interpreted as line breaks and instead show up
in the text displayed in the uibuttongroup title.

Setting a property value to default, remove, or factory produces
the effect described in “Defining Default Values”. To set Title to
one of these words, you must precede the word with the backslash
character. For example,

hp = uibuttongroup(...,'Title','\Default');

TitlePosition
{lefttop} | centertop | righttop |
leftbottom | centerbottom | rightbottom

Location ofthe title. This property determines the location of the
title string, in relation to the uibuttongroup.

Type
string (read-only)

Object class. This property identifies the kind of graphics object.
For uibuttongroup objects, Type is always the string 'uipanel',
because its default properties derive from uipanels.

2-4094



Uibuttongroup Properties

UIContextMenu
handle

Associate a context menu with a uibuttongroup. Assign this
property the handle of a Uicontextmenu object. MATLAB displays
the context menu whenever you right-click the uibuttongroup.
Use the uicontextmenu function to create the context menu.

Units
inches | centimeters | {normalized} |
points | pixels | characters

Units of measurement. MATLAB uses these units to interpret
the Position property. For the button group itself, units are
measured from the lower-left corner of its parent figure window,
panel, or button group. For children of the button group, they are
measured from the lower-left corner of the button group.

• Normalized units map the lower-left corner of the button group
or figure window to (0,0) and the upper-right corner to (1.0,1.0).

• pixels, inches, centimeters, and points are absolute units
(1 point = 1/72 inch).

• Character units are characters using the default system font;
the width of one character is the width of the letter x, the
height of one character is the distance between the baselines of
two lines of text.

If you change the value of Units, it is good practice to return it
to its default value after completing your computation so as not
to affect other functions that assume Units is set to the default
value.

UserData
matrix

2-4095



Uibuttongroup Properties

User-specified data. Any data you want to associate with the
uibuttongroup object. MATLAB does not use this data, but you
can access it using set and get.

Visible
{on} | off

Uibuttongroup visibility. By default, a uibuttongroup object is
visible. When set to 'off', the uibuttongroup is not visible, as
are all child objects of the button group. When a button group is
hidden in this manner, you can still query and set its properties.

Note The value of a uibuttongroup’s Visible property determines
whether its child components, such as axes, buttons, uipanels,
and other uibuttongroups, are visible. However, changing the
Visible property of a button group does not change the settings of
the Visible property of its child components even though hiding
the button group causes them to be hidden.

2-4096



uicontextmenu

Purpose Create context menu

Syntax handle = uicontextmenu('PropertyName',PropertyValue,...)

Description handle = uicontextmenu('PropertyName',PropertyValue,...)
creates a context menu, which is a menu that appears when the user
right-clicks on a graphics object. See Uicontextmenu Properties for
more information.

In its initial state, a context menu has no menu items. You create menu
items within the context menu using the uimenu function. Menu items
appear in the order in which the uimenu statements appear. You then
associate a context menu with an object by specifying the handle of the
context menu as the value for its UIContextMenu property.

Example The following statements define a context menu associated with a line
on a graph. The menu items enable you to change the line style.

% Create axes and save handle
hax = axes;
% Plot three lines
plot(rand(20,3));
% Define a context menu; it is not attached to anything
hcmenu = uicontextmenu;
% Define callbacks for context menu items that change linestyle
hcb1 = ['set(gco, ''LineStyle'', ''--'')'];
hcb2 = ['set(gco, ''LineStyle'', '':'')'];
hcb3 = ['set(gco, ''LineStyle'', ''-'')'];
% Define the context menu items and install their callbacks
item1 = uimenu(hcmenu, 'Label', 'dashed', 'Callback', hcb1);
item2 = uimenu(hcmenu, 'Label', 'dotted', 'Callback', hcb2);
item3 = uimenu(hcmenu, 'Label', 'solid', 'Callback', hcb3);
% Locate line objects
hlines = findall(hax,'Type','line');
% Attach the context menu to each line
for line = 1:length(hlines)

set(hlines(line),'uicontextmenu',hcmenu)

2-4097



uicontextmenu

end

When you right-click on any line (or, on a Macintosh computer with
a one-button mouse, press the Ctrl key and click), the context menu
appears, as shown in the following figure.

To make context menus available immediately, attach them to lines at
the time they are plotted. Therefore, when creating a GUI that uses
such context menus, place code like the preceding in the callbacks that
perform plotting for the GUI.

A best practice is to use function handles for callbacks. Only define
callbacks as strings for simple actions. For example, you can add check
marks to menu items (using the Checked uimenu property) to indicate
the current style for each line. To manage the check marks, define
the menu item callbacks as function handles. Place the code for the
functions in the GUI code file rather than placing callback strings in
the figure.

2-4098



uicontextmenu

Generally, you need to attach context menus to lines at the time
they are plotted in order to be sure that the menus are immediately
available. Therefore, code such as the above could be placed in or called
from the callbacks that perform plotting for the GUI.

See Also uibuttongroup, uicontrol, uimenu, uipanel

Tutorials See “Context Menus” in the MATLAB Creating Graphical User
Interfaces documentation.

2-4099



Uicontextmenu Properties

Purpose Describe context menu properties

Modifying
Properties

You can set and query graphics object properties in two ways:

• The Property Inspector is an interactive tool that enables you to
see and change object property values. The Property inspector is
available from GUIDE, or use the inspect function at the command
line.

• The set and get functions enable you to set and query the values of
properties.

For more information about changing the default value of a property see
“Setting Default Property Values”. For an example, see the CreateFcn
property.

Uicontext-
menu
Properties

This section lists all properties useful to uicontextmenu objects along
with valid values and descriptions of their use. Curly braces {} enclose
default values.

Property Purpose

BeingDeleted This object is being deleted

BusyAction Callback routine interruption

Callback Control action

Children The uimenus defined for the uicontextmenu

CreateFcn Callback routine executed during object
creation

DeleteFcn Callback routine executed during object
deletion

HandleVisibility Whether handle is accessible from command
line and GUIs

Interruptible Callback routine interruption mode

Parent Uicontextmenu object’s parent

2-4100



Uicontextmenu Properties

Property Purpose

Position Location of uicontextmenu when Visible is
set to on

Tag User-specified object identifier

Type Class of graphics object

UserData User-specified data

Visible Uicontextmenu visibility

BeingDeleted

on | {off} Read Only

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in
the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions
that act on a number of different objects. These functions might
not need to perform actions on objects if the objects are going to
be deleted, and therefore, can check the object’s BeingDeleted
property before acting.

BusyAction
cancel | {queue}

Callback routine interruption. If a callback is executing and the
user triggers an event (such as a mouse click) on an object for
which a callback is defined, the callback associated with the new
event uses the value of BusyAction to decide whether or not to
attempt to interrupt the executing callback.

• If the value is cancel, the event is discarded and the second
callback does not execute.

2-4101



Uicontextmenu Properties

• If the value is queue, and the Interruptible property of the
first callback is on, the second callback is added to the event
queue and executes in its turn after the first callback finishes
execution.

Note If the interrupting callback is a DeleteFcn or CreateFcn
callback or a figure’s CloseRequest or ResizeFcn callback,
it interrupts an executing callback regardless of the value of
that object’s Interruptible property. See the Interruptible
property for information about controlling a callback’s
interruptibility.

Callback
string

Control action. A routine that executes whenever you right-click
an object for which a context menu is defined. The routine
executes immediately before the context menu is posted. Define
this routine as a string that is a valid MATLAB expression or
the name of a code file. The expression executes in the MATLAB
workspace.

Children
matrix

The uimenu items defined for the uicontextmenu.

CreateFcn
string or function handle

Callback routine executed during object creation. The specified
function executes when MATLAB creates a uicontextmenu object.
MATLAB sets all property values for the uicontextmenu before
executing the CreateFcn callback so these values are available to
the callback. Within the function, use gcbo to get the handle of
the uicontextmenu being created.

2-4102



Uicontextmenu Properties

Setting this property on an existing uicontextmenu object has no
effect.

You can define a default CreateFcn callback for all new
uicontextmenus. This default applies unless you override it
by specifying a different CreateFcn callback when you call
uicontextmenu. For example, the code

set(0,'DefaultUicontextmenuCreateFcn','set(gcbo,...
''Visible'',''on'')')

creates a default CreateFcn callback that runs whenever you
create a new context menu. It sets the default Visible property
of a context menu.

To override this default and create a context menu whose Visible
property is set to a different value, call uicontextmenu with code
similar to

hpt = uicontextmenu(...,'CreateFcn','set(gcbo,...
''Visible'',''off'')')

Note To override a default CreateFcn callback you must provide
a new callback and not just provide different values for the
specified properties. This is because the CreateFcn callback
runs after the property values are set, and can override property
values you have set explicitly in the uicontextmenu call. In the
example above, if instead of redefining the CreateFcn property
for this uicontextmenu, you had explicitly set Visible to off,
the default CreateFcn callback would have set Visible back to
the default, i.e., on.

Do not call copyobj or textwrap (which calls copyobj) inside
a CreateFcn. The act of copying the uicontrol object fires the
CreateFcn repeatedly, which raises a series of error messages
after exceeding the root object’s RecursionLimit property.

2-4103

../ref/rootobject_props.html#RecursionLimit


Uicontextmenu Properties

See “Function Handle Callbacks” for information on how to use
function handles to define a callback function.

DeleteFcn
string or function handle

Delete uicontextmenu callback routine. A callback routine that
executes when you delete the uicontextmenu object (for example,
when you issue a delete command or clear the figure containing
the uicontextmenu). MATLAB executes the routine before
destroying the object’s properties so these values are available
to the callback routine.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define a callback function.

HandleVisibility
{on} | callback | off

Control access to object’s handle. This property determines when
an object’s handle is visible in its parent’s list of children. When
a handle is not visible in its parent’s list of children, it is not
returned by functions that obtain handles by searching the object
hierarchy or querying handle properties. This includes get,
findobj, gca, gcf, gco, newplot, cla, clf, and close. Neither is
the handle visible in the parent figure’s CurrentObject property.
Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties, and pass it to any
function that operates on handles.

• Handles are always visible when HandleVisibility is on.

• Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by
callback routines, but not from within functions invoked from

2-4104



Uicontextmenu Properties

the command line. This provides a means to protect GUIs from
command-line users, while allowing callback routines to have
complete access to object handles.

• Setting HandleVisibility to off makes handles invisible
at all times. This may be necessary when a callback routine
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string), and so temporarily
hides its own handles during the execution of that function.

You can set the root ShowHiddenHandles property to on to
make all handles visible, regardless of their HandleVisibility
settings. This does not affect the values of the HandleVisibility
properties.

Interruptible
{on} | off

Callback routine interruption mode. If a callback is executing and
the user triggers an event (such as a mouse click) on an object for
which a callback is defined, that callback attempts to interrupt
the first callback. MATLAB processes the callbacks according to
these factors:

• The Interruptible property of the object whose callback is
executing

• Whether the executing callback contains drawnow, figure,
getframe, pause, or waitfor statements

• The BusyAction property of the object whose callback is
waiting to execute

If the Interruptible property of the object whose callback is
executing is on (the default), the callback can be interrupted.
Whenever the callback calls one of the drawnow, figure,
getframe, pause, or waitfor functions, the function processes
any events in the event queue, including the waiting callback,
before performing its defined task.

2-4105



Uicontextmenu Properties

If the Interruptible property of the object whose callback is
executing is off, the callback cannot be interrupted (except by
certain callbacks; see the note below). The BusyAction property
of the object whose callback is waiting to execute determines what
happens to the callback.

Note If the interrupting callback is a DeleteFcn or CreateFcn
callback or a figure’s CloseRequest or ResizeFcn callback, it
interrupts an executing callback regardless of the value of that
object’s Interruptible property. The interrupting callback
starts execution at the next drawnow, figure, getframe, pause,
or waitfor statement. A figure’s WindowButtonDownFcn callback
routine, or an object’s ButtonDownFcn or Callback routine are
processed according to the rules described above.

Parent
handle

Uicontextmenu’s parent. The handle of the uicontextmenu’s
parent object, which must be a figure.

Position
vector

Uicontextmenu’s position. A two-element vector that defines the
location of a context menu posted by setting the Visible property
value to on. Specify Position as

[x y]

where vector elements represent the horizontal and vertical
distances in pixels from the bottom left corner of the figure
window, panel, or button group to the top left corner of the context
menu.

2-4106



Uicontextmenu Properties

Tag
string

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This
is particularly useful when constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callback
routines. You can define Tag as any string.

Type
string

Class of graphics object. For uicontextmenu objects, Type is
always the string 'uicontextmenu'.

UserData
matrix

User-specified data. Any data you want to associate with the
uicontextmenu object. MATLAB does not use this data, but you
can access it using set and get.

Visible
on | {off}

Uicontextmenu visibility. The Visible property can be used in
two ways:

• Its value indicates whether the context menu is currently
posted. While the context menu is posted, the property value is
on; when the context menu is not posted, its value is off.

• Its value can be set to on to force the posting of the context
menu. Similarly, setting the value to off forces the context
menu to be removed. When used in this way, the Position
property determines the location of the posted context menu.

See Also uicontextmenu

2-4107



uicontrol

Purpose Create user interface control object

Syntax handle = uicontrol('PropertyName',PropertyValue,...)
handle = uicontrol(parent,'PropertyName',PropertyValue,...)
handle = uicontrol
uicontrol(uich)

Description uicontrol creates a uicontrol graphics objects (user interface controls),
which you use to implement graphical user interfaces.

handle = uicontrol('PropertyName',PropertyValue,...) creates
a uicontrol and assigns the specified properties and values to it. It
assigns the default values to any properties you do not specify. The
default uicontrol style is a pushbutton. The default parent is the
current figure. See the Uicontrol Properties reference page for more
information.

handle = uicontrol(parent,'PropertyName',PropertyValue,...)
creates a uicontrol in the object specified by the handle, parent. If you
also specify a different value for the Parent property, the value of the
Parent property takes precedence. parent can be the handle of a figure,
uipanel, or uibuttongroup.

handle = uicontrol creates a pushbutton in the current figure. The
uicontrol function assigns all properties their default values.

uicontrol(uich) gives focus to the uicontrol specified by the handle,
uich.

When selected, most uicontrol objects perform a predefined action.
MATLAB software supports numerous styles of uicontrols, each suited
for a different purpose:

• Check boxes

• Editable text fields

• Frames

• List boxes

2-4108



uicontrol

• Pop-up menus

• Push buttons

• Radio buttons

• Sliders

• Static text labels

• Toggle buttons

For information on using these uicontrols within GUIDE, the MATLAB
GUI development environment, see Examples: Programming GUI
Components in the MATLAB Creating GUIs documentation

Specifying the Uicontrol Style

To create a specific type of uicontrol, set the Style property as one of
the following strings:

• 'checkbox' – Check boxes generate an action when selected.
These devices are useful when providing the user with a number of
independent choices. To activate a check box, click the mouse button
on the object. The state of the device is indicated on the display.

• 'edit' – Editable text fields enable users to enter or modify text
values. Use editable text when you want text as input. If Max-Min>1,
then multiple lines are allowed. For multi-line edit boxes, a vertical
scrollbar enables scrolling, as do the arrow keys.

• 'frame' – Frames are rectangles that provide a visual enclosure for
regions of a figure window. Frames can make a user interface easier
to understand by grouping related controls. Frames have no callback
routines associated with them. Only other uicontrols can appear
within frames.

Frames are opaque, not transparent, so the order in which you define
uicontrols is important in determining whether uicontrols within
a frame are covered by the frame or are visible. Stacking order
determines the order objects are drawn: objects defined first are
drawn first; objects defined later are drawn over existing objects. If

2-4109



uicontrol

you use a frame to enclose objects, you must define the frame before
you define the objects.

Note Most frames in existing GUIs can now be replaced with panels
(uipanel) or button groups (uibuttongroup). GUIDE continues
to support frames in those GUIs that contain them, but the frame
component does not appear in the GUIDE Layout Editor component
palette.

• 'listbox' – List boxes display a list of items and enable users to
select one or more items. The Min and Max properties control the
selection mode:

If Max-Min>1, then multiple selection is allowed.

If Max-Min<=1, then only single selection is allowed.

The Value property indicates selected entries and contains the
indices into the list of strings; a vector value indicates multiple
selections. MATLAB evaluates the list box’s callback routine after
any mouse button up event that changes the Value property.
Therefore, you may need to add a "Done" button to delay action
caused by multiple clicks on list items.

List boxes whose Enable property is on differentiate between single
and double left clicks and set the figure SelectionType property to
normal or open accordingly before evaluating the list box’s Callback
property. For such list boxes, Ctrl-left click and Shift-left click also
set the figure SelectionType property to normal or open to indicate
a single or double click.

• 'popupmenu' – Pop-up menus (also known as drop-down menus or
combo boxes) open to display a list of choices when pressed. When not
open, a pop-up menu indicates the current choice. Pop-up menus are
useful when you want to provide users with a number of mutually
exclusive choices, but do not want to take up the amount of space
that a series of radio buttons requires.

2-4110



uicontrol

• 'pushbutton' – Push buttons generate an action when pressed. To
activate a push button, click the mouse button on the push button.

• 'radiobutton' – Radio buttons are similar to check boxes, but are
intended to be mutually exclusive within a group of related radio
buttons (i.e., only one is in a pressed state at any given time). To
activate a radio button, click the mouse button on the object. The
state of the device is indicated on the display. Note that your code
can implement mutually exclusive behavior for radio buttons.

• 'slider' – Sliders accept numeric input within a specific range
by enabling the user to move a sliding bar. Users move the bar by
pressing the mouse button and dragging the pointer over the bar,
or by clicking in the trough or on an arrow. The location of the bar
indicates a numeric value, which is selected by releasing the mouse
button. You can set the minimum, maximum, and current values of
the slider.

• 'text' – Static text boxes display lines of text. Static text is typically
used to label other controls, provide directions to the user, or indicate
values associated with a slider. Users cannot change static text
interactively and there is no way to invoke the callback routine
associated with it.

• 'togglebutton' – Toggle buttons are controls that execute callbacks
when clicked on and indicate their state, either on or off. Toggle
buttons are useful for building toolbars.

Remarks • Adding a uicontrol to a figure removes the figure toolbar when the
figure’s Toolbar property is set to 'auto' (which is the default). To
prevent this from happening, set the Toolbar property to 'figure'.
The user can restore the toolbar by selecting Figure Toolbar from
the View menu regardless of this property setting.

• The uicontrol function accepts property name/property value pairs,
structures, and cell arrays as input arguments and optionally returns
the handle of the created object. You can also set and query property
values after creating the object using the set and get functions.

2-4111



uicontrol

• A uicontrol object is a child of a figure, uipanel, or uibuttongroup
and therefore does not require an axes to exist when placed in a
figure window, uipanel, or uibuttongroup.

• When MATLAB is paused and a uicontrol has focus, pressing a
keyboard key does not cause MATLAB to resume. Click anywhere
outside a uicontrol and then press any key. See the pause function
for more information.

Examples Example 1

The following statement creates a push button that clears the current
axes when pressed.

h = uicontrol('Style', 'pushbutton', 'String', 'Clear',...
'Position', [20 150 100 70], 'Callback', 'cla');

This statement gives focus to the pushbutton.

uicontrol(h)

Example 2

You can create a uicontrol object that changes figure colormaps by
specifying a pop-up menu and supplying an M-file name as the object’s
Callback:

hpop = uicontrol('Style', 'popup',...
'String', 'hsv|hot|cool|gray',...
'Position', [20 320 100 50],...
'Callback', 'setmap');

The above call to uicontrol defines four individual choices in the menu:
hsv, hot, cool, and gray. You specify these choices with the String
property, separating the choices with the "|" character.

The Callback, in this case setmap, is the name of an M-file that
defines a more complicated set of instructions than a single MATLAB
command. setmap contains these statements:

val = get(hpop,'Value');

2-4112



uicontrol

if val == 1
colormap(hsv)

elseif val == 2
colormap(hot)

elseif val == 3
colormap(cool)

elseif val == 4
colormap(gray)

end

The Value property contains a number that indicates the selected
choice. The choices are numbered sequentially from one to four. The
setmap M-file can get and then test the contents of the Value property
to determine what action to take.

See Also textwrap, uibuttongroup, uimenu, uipanel

2-4113



Uicontrol Properties

Purpose Describe user interface control (uicontrol) properties

Modifying
Properties

You can set and query graphics object properties in two ways:

• The Property Inspector is an interactive tool that enables you to
see and change object property values. The Property inspector is
available from GUIDE, or use the inspect function at the command
line.

• The set and get commands enable you to set and query the values of
properties

To change the default value of properties see “Setting Default Property
Values”. You can also set default uicontrol properties on the root and
figure levels:

set(0,'DefaultUicontrolProperty',PropertyValue...)
set(gcf,'DefaultUicontrolProperty',PropertyValue...)

where Property is the name of the uicontrol property whose default
value you want to set and PropertyValue is the value you are specifying
as the default. Use set and get to access uicontrol properties.

For information on using these uicontrols within GUIDE, the MATLAB
GUI development environment, see Programming GUI Components in
the MATLAB Creating GUIs documentation.

Uicontrol
Properties

This section lists all properties useful to uicontrol objects along with
valid values and descriptions of their use. Curly braces {} enclose
default values.

Property Purpose

BackgroundColor Object background color

BeingDeleted This object is being deleted

BusyAction Callback routine interruption

ButtonDownFcn Button-press callback routine

2-4114



Uicontrol Properties

Property Purpose

Callback Control action

CData Truecolor image displayed on the control

Children Uicontrol objects have no children

CreateFcn Callback routine executed during object
creation

DeleteFcn Callback routine executed during object
deletion

Enable Enable or disable the uicontrol

Extent position rectangle (read only)

FontAngle Character slant

FontName Font family

FontSize Font size

FontUnits Font size units

FontWeight Weight of text characters

ForegroundColor Color of text

HandleVisibility Whether handle is accessible from command
line and GUIs

HitTest Whether selectable by mouse click

HorizontalAlignment Alignment of label string

Interruptible Callback routine interruption mode

KeyPressFcn Key press callback routine

ListboxTop Index of top-most string displayed in list box

Max Maximum value (depends on uicontrol
object)

Min Minimum value (depends on uicontrol
object)

2-4115



Uicontrol Properties

Property Purpose

Parent Uicontrol object’s parent

Position Size and location of uicontrol object

Selected Whether object is selected

SelectionHighlight Object highlighted when selected

SliderStep Slider step size

String Uicontrol object label, also list box and
pop-up menu items

Style Type of uicontrol object

Tag User-specified object identifier

TooltipString Content of object’s tooltip

Type Class of graphics object

UIContextMenu Uicontextmenu object associated with the
uicontrol

Units Units to interpret position vector

UserData User-specified data

Value Current value of uicontrol object

Visible Uicontrol visibility

BackgroundColor
ColorSpec

Object background color. The color used to fill the uicontrol
rectangle. Specify a color using a three-element RGB vector
or one of the MATLAB predefined names. The default color
is determined by system settings. See ColorSpec for more
information on specifying color.

BeingDeleted
on | {off} Read Only

2-4116



Uicontrol Properties

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in
the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions
that act on a number of different objects. These functions might
not need to perform actions on objects if the objects are going to
be deleted, and therefore, can check the object’s BeingDeleted
property before acting.

BusyAction
cancel | {queue}

Callback routine interruption. If a callback is executing and the
user triggers an event (such as a mouse click) on an object for
which a callback is defined, the callback associated with the new
event uses the value of BusyAction to decide whether or not to
attempt to interrupt the executing callback.

• If the value is cancel, the event is discarded and the second
callback does not execute.

• If the value is queue, and the Interruptible property of the
first callback is on, the second callback is added to the event
queue and executes in its turn after the first callback finishes
execution.

Note If the interrupting callback is a DeleteFcn or CreateFcn
callback or a figure’s CloseRequest or ResizeFcn callback, it
interrupts an executing callback regardless of the value of that
object’s Interruptible property. See the Interruptible property
for information about controlling a callback’s interruptibility.

2-4117



Uicontrol Properties

ButtonDownFcn
string or function handle (GUIDE sets this property)

Button-press callback routine. A callback routine that can execute
when you press a mouse button while the pointer is on or near a
uicontrol. Specifically:

• If the uicontrol’s Enable property is set to on, the
ButtonDownFcn callback executes when you click the right or
left mouse button in a 5-pixel border around the uicontrol or
when you click the right mouse button on the control itself.

• If the uicontrol’s Enable property is set to inactive or off, the
ButtonDownFcn executes when you click the right or left mouse
button in the 5-pixel border or on the control itself.

This is useful for implementing actions to interactively modify
control object properties, such as size and position, when they are
clicked on (using selectmoveresize, for example).

Define this routine as a string that is a valid MATLAB expression
or the name of a code file. The expression executes in the
MATLAB workspace.

To add a ButtonDownFcn callback in GUIDE, select View
Callbacks from the Layout Editor View menu, then select
ButtonDownFcn. GUIDE sets this property to the appropriate
string and adds the callback to the code file the next time you
save the GUI. Alternatively, you can set this property to the
string %automatic. The next time you save the GUI, GUIDE sets
this property to the appropriate string and adds the callback to
the code file.

Use the Callback property to specify the callback routine that
executes when you activate the enabled uicontrol (e.g., click a
push button).

2-4118



Uicontrol Properties

Callback
string or function handle (GUIDE sets this property)

Control action. A routine that executes whenever you activate the
uicontrol object (e.g., when you click on a push button or move a
slider). Define this routine as a string that is a valid MATLAB
expression or the name of a code file. The expression executes in
the MATLAB workspace.

For examples of Callback callbacks for each style of component:

• For GUIDE GUIs, see “Examples: Programming GUIDE GUI
Components”.

• For programmatically created GUIs, see “Examples:
Programming GUI Components”.

Callback routines defined for static text do not execute because
no action is associated with these objects.

To execute the callback routine for an edit text control, type in the
desired text and then do one of the following:

• Click another component, the menu bar, or the background
of the GUI.

• For a single line editable text box, press Enter.

• For a multiline editable text box, press Ctl+Enter.

CData
matrix

Truecolor image displayed on control. A three-dimensional matrix
of RGB values that defines a truecolor image displayed on a
control, which must be a push button or toggle button. Each
value must be between 0.0 and 1.0. Setting CData on a radio
button or checkbox will replace the default CData on these
controls. The control will continue to work as expected, but its
state is not reflected by its appearance when clicked.

2-4119



Uicontrol Properties

For push buttons and toggle buttons, CData overlaps the
String. In the case of radio buttons and checkboxes, CData
takes precedence over String and, depending on its size, it can
displace the text.

Setting CData to [] restores the default CData for radio buttons
and checkboxes.

Children
matrix

The empty matrix; uicontrol objects have no children.

Clipping
{on} | off

This property has no effect on uicontrol objects.

CreateFcn
string or function handle

Callback routine executed during object creation. The specified
function executes when MATLAB creates a uicontrol object.
MATLAB sets all property values for the uicontrol before
executing the CreateFcn callback so these values are available
to the callback. Within the function, use gcbo to get the handle
of the uicontrol being created.

Setting this property on an existing uicontrol object has no effect.

You can define a default CreateFcn callback for all new uicontrols.
This default applies unless you override it by specifying a different
CreateFcn callback when you call uicontrol. For example, the
code

set(0,'DefaultUicontrolCreateFcn','set(gcbo,...
''BackgroundColor'',''white'')')

2-4120



Uicontrol Properties

creates a default CreateFcn callback that runs whenever you
create a new uicontrol. It sets the default background color of
all new uicontrols.

To override this default and create a uicontrol whose
BackgroundColor is set to a different value, call uicontrol with
code similar to

hpt = uicontrol(...,'CreateFcn','set(gcbo,...
''BackgroundColor'',''blue'')')

Note To override a default CreateFcn callback you must provide
a new callback and not just provide different values for the
specified properties. This is because the CreateFcn callback runs
after the property values are set, and can override property values
you have set explicitly in the uicontrol call. In the example
above, if instead of redefining the CreateFcn property for this
uicontrol, you had explicitly set BackgroundColor to blue, the
default CreateFcn callback would have set BackgroundColor
back to the default, i.e., white.

Do not call copyobj or textwrap (which calls copyobj) inside
a CreateFcn. The act of copying the uicontrol object fires the
CreateFcn repeatedly, which raises a series of error messages
after exceeding the root object’s RecursionLimit property.

See “Function Handle Callbacks” for information on how to use
function handles to define a callback function.

DeleteFcn
string or function handle

Delete uicontrol callback routine. A callback routine that executes
when you delete the uicontrol object (e.g., when you issue a delete
command or clear the figure containing the uicontrol). MATLAB

2-4121

../ref/rootobject_props.html#RecursionLimit


Uicontrol Properties

executes the routine before destroying the object’s properties so
these values are available to the callback routine.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define a callback function.

Enable
{on} | inactive | off

Enable or disable the uicontrol. This property controls how
uicontrols respond to mouse button clicks, including which
callback routines execute.

• on – The uicontrol is operational (the default).

• inactive – The uicontrol is not operational, but looks the same
as when Enable is on.

• off – The uicontrol is not operational and its image (set by the
Cdata property) is grayed out.

When you left-click on a uicontrol whose Enable property is on,
MATLAB performs these actions in this order:

1 Sets the figure SelectionType property.

2 Executes the uicontrol Callback routine, if any. (Static text
components do not use callbacks.)

3 Does not set the figure CurrentPoint property and does not
execute either the uicontrol ButtonDownFcn or the figure
WindowButtonDownFcn callback.

Single-clicking or double-clicking an enabled uicontrol with the
left mouse button sets the figure SelectionType property to
normal, unless the uicontrol Style is listbox. For list boxes,

2-4122



Uicontrol Properties

double-clicking sets the figure SelectionType property to open
on the second of the two clicks, enabling the list box callback to
detect a set of multiple choices.

When you left-click on a uicontrol whose Enable property is off
or inactive, or when you right-click a uicontrol whose Enable
property has any value, MATLAB performs these actions in this
order:

1 Sets the figure SelectionType property.

2 Sets the figure CurrentPoint property.

3 Executes the figure WindowButtonDownFcn callback, if provided.

4 Executes the uicontrol ButtonDownFcn callback, if provided.

Extent
position rectangle (read only)

Size of uicontrol character string. A four-element vector that
defines the size and position of the character string used to label
the uicontrol. It has the form:

[0,0,width,height]

The first two elements are always zero. width and height are
the dimensions of the rectangle. All measurements are in units
specified by the Units property.

Since the Extent property is defined in the same units as the
uicontrol itself, you can use this property to determine proper
sizing for the uicontrol with regard to its label. Do this by

• Defining the String property and selecting the font using the
relevant properties.

• Getting the value of the Extent property.

• Defining the width and height of the Position property to be
somewhat larger than the width and height of the Extent.

2-4123



Uicontrol Properties

For multiline strings, the Extent rectangle encompasses all
the lines of text. For single line strings, the height element of
the Extent property returned always indicates the height of a
single line, and its width element always indicates the width of
the longest line, even if the string wraps when displayed on the
control. Edit boxes are considered multiline if Max - Min > 1.

FontAngle
{normal} | italic | oblique

Character slant. MATLAB uses this property to select a font from
those available on your particular system. Setting this property
to italic or oblique selects a slanted version of the font, when
it is available on your system.

FontName
string

Font family. The name of the font in which to display the String.
To display and print properly, this must be a font that your
system supports. The default font is system dependent.

Note MATLAB GUIs do not support the Marlett and Symbol
font families.

To use a fixed-width font that looks good in any locale (and
displays properly in Japan, where multibyte character sets are
used), set FontName to the string FixedWidth (this string value
is case sensitive):

set(uicontrol_handle, 'FontName', 'FixedWidth')

This parameter value eliminates the need to hard code the name
of a fixed-width font, which may not display text properly on
systems that do not use ASCII character encoding (such as in
Japan). A properly written MATLAB application that needs to

2-4124



Uicontrol Properties

use a fixed-width font should set FontName to FixedWidth and
rely on the root FixedWidthFontName property to be set correctly
in the end user’s environment.

End users can adapt a MATLAB application to different locales or
personal environments by setting the root FixedWidthFontName
property to the appropriate value for that locale from startup.m.
Setting the root FixedWidthFontName property causes an
immediate update of the display to use the new font.

Tip To determine what fonts exist on your system (which can
differ from the GUI user’s system), use the uisetfont GUI to
select a font and return its name and other characteristics in a
MATLAB structure.

FontSize
size in FontUnits

Font size. A number specifying the size of the font in which
to display the String, in units determined by the FontUnits
property. The default point size is system dependent.

FontUnits
{points} | normalized | inches |
centimeters | pixels

Font size units. This property determines the units used by the
FontSize property. Normalized units interpret FontSize as
a fraction of the height of the uicontrol. When you resize the
uicontrol, MATLAB modifies the screen FontSize accordingly.
pixels, inches, centimeters, and points are absolute units (1
point = 1/72 inch).

FontWeight
light | {normal} | demi | bold

2-4125



Uicontrol Properties

Weight of text characters. MATLAB uses this property to select a
font from those available on your particular system. Setting this
property to bold causes MATLAB to use a bold version of the font,
when it is available on your system.

ForegroundColor
ColorSpec

Color of text. This property determines the color of the text
defined for the String property (the uicontrol label). Specify a
color using a three-element RGB vector or one of the MATLAB
predefined names. The default text color is black. See ColorSpec
for more information on specifying color.

HandleVisibility
{on} | callback | off

Control access to object’s handle. This property determines when
an object’s handle is visible in its parent’s list of children. When
a handle is not visible in its parent’s list of children, it is not
returned by functions that obtain handles by searching the object
hierarchy or querying handle properties. This includes get,
findobj, gca, gcf, gco, newplot, cla, clf, and close. Neither is
the handle visible in the parent figure’s CurrentObject property.
Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties, and pass it to any
function that operates on handles.

• Handles are always visible when HandleVisibility is on.

• Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by
callback routines, but not from within functions invoked from
the command line. This provides a means to protect GUIs from
command-line users, while allowing callback routines to have
complete access to object handles.

• Setting HandleVisibility to off makes handles invisible
at all times. This may be necessary when a callback routine

2-4126



Uicontrol Properties

invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string), and so temporarily
hides its own handles during the execution of that function.

You can set the root ShowHiddenHandles property to on to
make all handles visible, regardless of their HandleVisibility
settings. This does not affect the values of the HandleVisibility
properties.

Note Radio buttons and toggle buttons that are managed by a
uibuttongroup should not be accessed outside the button group.
Set the HandleVisibility of such radio buttons and toggle
buttons to off to prevent inadvertent access.

HitTest
{on} | off

Selectable by mouse click. This property has no effect on uicontrol
objects.

HorizontalAlignment
left | {center} | right

Horizontal alignment of label string. This property determines
the justification of the text defined for the String property (the
uicontrol label):

• left— Text is left justified with respect to the uicontrol.

• center— Text is centered with respect to the uicontrol.

• right— Text is right justified with respect to the uicontrol.

On Microsoft Windows systems, this property affects only edit
and text uicontrols.

2-4127

../ref/rootobject_props.html#ShowHiddenHandles


Uicontrol Properties

Interruptible
{on} | off

Callback routine interruption mode. If a callback is executing and
the user triggers an event (such as a mouse click) on an object for
which a callback is defined, that callback attempts to interrupt
the first callback. MATLAB processes the callbacks according to
these factors:

• The Interruptible property of the object whose callback is
executing

• Whether the executing callback contains drawnow, figure,
getframe, pause, or waitfor statements

• The BusyAction property of the object whose callback is
waiting to execute

If the Interruptible property of the object whose callback is
executing is on (the default), the callback can be interrupted.
Whenever the callback calls one of the drawnow, figure,
getframe, pause, or waitfor functions, the function processes
any events in the event queue, including the waiting callback,
before performing its defined task.

If the Interruptible property of the object whose callback is
executing is off, the callback cannot be interrupted (except by
certain callbacks; see the note below). The BusyAction property
of the object whose callback is waiting to execute determines what
happens to the callback.

2-4128



Uicontrol Properties

Note If the interrupting callback is a DeleteFcn or CreateFcn
callback or a figure’s CloseRequest or ResizeFcn callback, it
interrupts an executing callback regardless of the value of that
object’s Interruptible property. The interrupting callback
starts execution at the next drawnow, figure, getframe, pause,
or waitfor statement. A figure’s WindowButtonDownFcn callback
routine, or an object’s ButtonDownFcn or Callback routine are
processed according to the rules described above.

KeyPressFcn
string or function handle

Key press callback function. A callback routine invoked by a key
press when the callback’s uicontrol object has focus. Focus is
denoted by a border or a dotted border, respectively, in UNIX
and Microsoft Windows. If no uicontrol has focus, the figure’s key
press callback function, if any, is invoked. KeyPressFcn can be
a function handle, the name of a code file, or any legal MATLAB
expression.

If the specified value is the name of a code file, the callback
routine can query the figure’s CurrentCharacter property to
determine what particular key was pressed and thereby limit the
callback execution to specific keys.

If the specified value is a function handle, the callback routine
can retrieve information about the key that was pressed from its
event data structure argument.

2-4129

../ref/figure_props.html#CurrentCharacter


Uicontrol Properties

Examples:Event Data
Structure
Field Description a = Shift Shift/a

Character Character interpretation of
the key that was pressed.

'a' '=' '' 'A'

Modifier Current modifier, such as
'control', or an empty cell
array if there is no modifier

{1x0
cell}

{1x0
cell}

{'shift'}{'shift'}

Key Name of the key that was
pressed.

'a' 'equal' 'shift' 'a'

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

ListboxTop
scalar

Index of top-most string displayed in list box. This property
applies only to the listbox style of uicontrol. It specifies which
string appears in the top-most position in a list box that is not
large enough to display all list entries. ListboxTop is an index
into the array of strings defined by the String property and must
have a value between 1 and the number of strings. Noninteger
values are fixed to the next lowest integer.

Max
scalar

Maximum value. This property specifies the largest value allowed
for the Value property. Different styles of uicontrols interpret
Max differently:

• Check boxes – Max is the setting of the Value property while
the check box is selected.

• Editable text – The Value property does not apply. If Max - Min
> 1, then editable text boxes accept multiline input. If Max - Min

2-4130



Uicontrol Properties

<= 1, then editable text boxes accept only single line input. The
absolute values of Max and Min have no effect on the number of
lines an edit box can contain; a multiline edit box can contain
any number of lines.

• List boxes – If Max - Min > 1, then list boxes allow multiple item
selection. If Max - Min <= 1, then list boxes do not allow multiple
item selection. When they do, Value can be a vector of indices.

• Radio buttons – Max is the setting of the Value property when
the radio button is selected.

• Sliders – Max is the maximum slider value and must be greater
than the Min property. The default is 1.

• Toggle buttons – Max is the value of the Value property when
the toggle button is selected. The default is 1.

• Pop-up menus, push buttons, and static text do not use the
Max property.

Min
scalar

Minimum value. This property specifies the smallest value
allowed for the Value property. Different styles of uicontrols
interpret Min differently:

• Check boxes – Min is the setting of the Value property while
the check box is not selected.

• Editable text – The Value property does not apply. If Max - Min
> 1, then editable text boxes accept multiline input. If Max - Min
<= 1, then editable text boxes accept only single line input. The
absolute values of Max and Min have no effect on the number of
lines an edit box can contain; a multiline edit box can contain
any number of lines.

• List boxes – If Max - Min > 1, then list boxes allow multiple item
selection. If Max - Min <= 1, then list boxes allow only single
item selection. When they do, Value can be a vector of indices.

2-4131



Uicontrol Properties

• Radio buttons – Min is the setting of the Value property when
the radio button is not selected.

• Sliders – Min is the minimum slider value and must be less
than Max. The default is 0.

• Toggle buttons – Min is the value of the Value property when
the toggle button is not selected. The default is 0.

• Pop-up menus, push buttons, and static text do not use the
Min property.

Parent
handle

Uicontrol parent. The handle of the uicontrol’s parent object.
You can move a uicontrol object to another figure, uipanel, or
uibuttongroup by setting this property to the handle of the new
parent.

Position
position rectangle

Size and location of uicontrol. The rectangle defined by this
property specifies the size and location of the control within
the parent figure window, uipanel, or uibuttongroup. Specify
Position as

[left bottom width height]

left and bottom are the distance from the lower-left corner of the
parent object to the lower-left corner of the uicontrol object. width
and height are the dimensions of the uicontrol rectangle. All
measurements are in units specified by the Units property.

On Microsoft Windows systems, the height of pop-up menus is
automatically determined by the size of the font. The value you
specify for the height of the Position property has no effect.

2-4132



Uicontrol Properties

The width and height values determine the orientation of sliders.
If width is greater than height, then the slider is oriented
horizontally, If height is greater than width, then the slider is
oriented vertically.

Note The height of a pop-up menu is determined by the font size.
The height you set in the position vector is ignored. The height
element of the position vector is not changed.

On Mac platforms, the height of a horizontal slider is constrained.
If the height you set in the position vector exceeds this constraint,
the displayed height of the slider is the maximum allowed. The
height element of the position vector is not changed.

Selected
on | {off} (read only)

Is object selected. When this property is on, MATLAB displays
selection handles if the SelectionHighlight property is also
on. You can, for example, define the ButtonDownFcn to set this
property, allowing users to select the object with the mouse.

SelectionHighlight
{on} | off

Object highlight when selected. When the Selected property is
on, MATLAB indicates the selected state by drawing four edge
handles and four corner handles. When SelectionHighlight is
off, MATLAB does not draw the handles.

SliderStep
[min_step max_step]

Slider step size. This property controls the amount the
slider Value changes when you click the mouse on the arrow
button (min_step) or on the slider trough (max_step). Specify

2-4133



Uicontrol Properties

SliderStep as a two-element vector; each value must be in
the range [0,1], and min_step should be less than max_step.
Numbers outside [0 1] can cause the slider not to render or
produce unexpected results. The actual step size is a function of
the specified SliderStep and the total slider range (Max - Min).
The default, [0.01 0.10], provides a 1 percent change for clicks
on the arrow button and a 10 percent change for clicks in the
trough. and both should be positive numbers less then 1.

For example, if you create the following slider,

uicontrol('Style','slider','Min',1,'Max',7,...
'Value',2,'SliderStep',[0.1 0.6])

clicking on the arrow button moves the indicator by,

0.1*(7-1)
ans =

0.6000

and clicking in the trough moves the indicator by,

0.6*(7-1)
ans =

3.6000

Note that if the specified step size moves the slider to a value
outside the range, the indicator moves only to the Max or Min value.

See also the Max, Min, and Value properties.

String
string

Uicontrol label, list box items, pop-up menu choices.

For check boxes, editable text, push buttons, radio buttons,
static text, and toggle buttons, the text displayed on the object.

2-4134



Uicontrol Properties

For list boxes and pop-up menus, the set of entries or items
displayed in the object.

Note If you specify a numerical value for String, MATLAB
converts it to char but the result may not be what you expect. If
you have numerical data, you should first convert it to a string,
e.g., using num2str, before assigning it to the String property.

For uicontrol objects that display only one line of text
(check box, push button, radio button, toggle button), if the string
value is specified as a cell array of strings or padded string matrix,
only the first string of a cell array or of a padded string matrix
is displayed; the rest are ignored. Vertical slash (’|’) characters
are not interpreted as line breaks and instead show up in the
text displayed in the uicontrol.

For multiple line editable text or static text controls, line
breaks occur between each row of the string matrix, and each cell
of a cell array of strings. Vertical slash (’|’) characters and \n
characters are not interpreted as line breaks, and instead show
up in the text displayed in the uicontrol.

For multiple items on a list box or pop-up menu, you can
specify the items in any of the formats shown in the following
table.

2-4135



Uicontrol Properties

String Property
Format

Example

Cell array of strings {'one' 'two' 'three'}

Padded string
matrix

['one ';'two ';'three']

String vector
separated by
vertical slash (|)
characters

['one|two|three']

If you specify a component width that is too small to accommodate
one or more of the specified strings, MATLAB truncates those
strings with an ellipsis. Use the Value property to set the index of
the initial item selected.

For check boxes, push buttons, radio buttons, toggle
buttons, and the selected item in popup menus, when the
specified text is clipped because it is too long for the uicontrol, an
ellipsis (...) is appended to the text in the active GUI to indicate
that it has been clipped.

For push buttons and toggle buttons, CData overlaps the
String. In the case of radio buttons and checkboxes, CData
takes precedence over String and, depending on its size, can
displace the text.

For editable text, the String property value is set to the string
entered by the user.

2-4136



Uicontrol Properties

Reserved Words There are three reserved words: default,
remove, factory (case sensitive). If you want to use one of these
reserved words in the String property, you must precede it with
a backslash ('\') character. For example,

h = uicontrol('Style','edit','String','\default');

Style
{pushbutton} | togglebutton | radiobutton | checkbox |
edit | text | slider | frame | listbox | popupmenu

Style of uicontrol object to create. The Style property specifies the
kind of uicontrol to create. See the uicontrol Description section
for information on each type.

Tag
string (GUIDE sets this property)

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This
is particularly useful when constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callback
routines. You can define Tag as any string.

TooltipString
string

Content of tooltip for object. The TooltipString property specifies
the text of the tooltip associated with the uicontrol. When the
user moves the mouse pointer over the control and leaves it there,
the tooltip is displayed.

2-4137



Uicontrol Properties

To create a tooltip that has more than one line of text, use sprintf
to generate a string containing newline (\n) characters and then
set the TooltipString to that value. For example:

h = uicontrol('Style','pushbutton');
s = sprintf('Button tooltip line 1\nButton tooltip line 2');
set(h,'TooltipString',s)

Type
string (read only)

Class of graphics object. For uicontrol objects, Type is always the
string 'uicontrol'.

UIContextMenu
handle

Associate a context menu with uicontrol. Assign this property
the handle of a uicontextmenu object. MATLAB displays the
context menu whenever you right-click over the uicontrol. Use the
uicontextmenu function to create the context menu.

Units
{pixels} | normalized | inches | centimeters | points |
characters (GUIDE default: normalized)

Units of measurement. MATLAB uses these units to interpret the
Extent and Position properties. All units are measured from the
lower-left corner of the parent object.

• Normalized units map the lower-left corner of the parent object
to (0,0) and the upper-right corner to (1.0,1.0).

• pixels, inches, centimeters, and points are absolute units
(1 point = 1/72 inch).

• Character units are characters using the default system font;
the width of one character is the width of the letter x, the
height of one character is the distance between the baselines of
two lines of text.

2-4138



Uicontrol Properties

If you change the value of Units, it is good practice to return it
to its default value after completing your computation so as not
to affect other functions that assume Units is set to the default
value.

UserData
matrix

User-specified data. Any data you want to associate with the
uicontrol object. MATLAB does not use this data, but you can
access it using set and get.

Value
scalar or vector

Current value of uicontrol. The uicontrol style determines the
possible values this property can have:

• Check boxes set Value to Max when they are on (when selected)
and Min when off (not selected).

• List boxes set Value to a vector of indices corresponding to
the selected list entries, where 1 corresponds to the first item
in the list.

• Pop-up menus set Value to the index of the item selected, where
1 corresponds to the first item in the menu. The Examples
section shows how to use the Value property to determine
which item has been selected.

• Radio buttons set Value to Max when they are on (when
selected) and Min when off (not selected).

• Sliders set Value to the number indicated by the slider bar.

• Toggle buttons set Value to Max when they are down (selected)
and Min when up (not selected).

• Editable text, push buttons, and static text do not set this
property.

2-4139



Uicontrol Properties

Set the Value property either interactively with the mouse or
through a call to the set function. The display reflects changes
made to Value.

Visible
{on} | off

Uicontrol visibility. By default, all uicontrols are visible. When
set to off, the uicontrol is not visible, but still exists and you can
query and set its properties.

Note Setting Visible to off for uicontrols that are not displayed
initially in the GUI, can result in faster startup time for the GUI.

2-4140



uigetdir

Purpose Open standard dialog box for selecting directory

Syntax folder_name = uigetdir
folder_name = uigetdir(start_path)
folder_name = uigetdir(start_path,dialog_title)

Description folder_name = uigetdir displays a modal dialog box enabling the
user to navigate the folder hierarchy and select a folder or type the
name of a folder. If the folder exists, uigetdir returns the selected path
when the user clicks OK. If the user types the name of a folder that
does not exist, uigetdir returns the name of the current folder. If the
user clicks Cancel or closes the dialog window, uigetdir returns 0. On
Microsoft Windows platforms, uigetdir opens a dialog box in the base
folder (the Windows desktop) with the current folder selected.

folder_name = uigetdir(start_path) opens a dialog box with the
folder specified by start_path selected. If start_path is a valid path,
the dialog box opens in the specified folder. If start_path is an empty
string ('') or is not a valid path, the dialog box opens in the current
folder.

folder_name = uigetdir(start_path,dialog_title) opens a dialog
box with the specified title. On Windows and UNIX platforms, the
string replaces the default caption inside the dialog box for specifying
instructions to the user. The default dialog_title is Select folder to
Open.

On Windows platforms, you can click the New Folder button to add
a new folder to the folder hierarchy displayed. You can also drag and
drop existing directories into different folders.

On UNIX platforms, uigetdir opens a dialog box in the startup folder
(the one you are in when you start MATLAB), with the current directory
selected. The dialog_title string replaces the default title of the dialog
box. The dialog box looks like the one shown in the following figure.

2-4141



uigetdir

On Mac platforms, uigetdir opens a dialog box in the startup folder
(the one you are in when you start MATLAB), with the current directory
selected. The dialog box is like the one shown in the following figure.

2-4142



uigetdir

Note A modal dialog box prevents you from interacting with other
MATLAB windows before responding. To block MATLAB program
execution as well, use the uiwait function. For more information about
modal dialog boxes, see WindowStyle in the MATLAB Figure Properties.

The pwd and cd functions return the name of the current folder.

Examples The following statement displays directories on the C: drive.

dname = uigetdir('C:\');

The dialog box displays as follows (on Windows).

Selecting the directory Desktop, as shown in the figure, and clicking
OK, uigetdir returns

dname =
C:\WINNT\Profiles\All Users\Desktop

2-4143



uigetdir

The following statement uses the matlabroot command to display the
MATLAB root directory in the dialog box:

uigetdir(matlabroot,'MATLAB Root Directory')

Selecting the directory MATLAB6.5/notebook/pc, as shown in the
figure, returns a string like

C:\MATLAB6.5\notebook\pc

assuming that MATLAB is installed on drive C:\.

See Also uigetfile, uiputfile

2-4144



uigetfile

Purpose Open standard dialog box for retrieving files

Syntax filename = uigetfile
[FileName,PathName,FilterIndex] = uigetfile(FilterSpec)
[FileName,PathName,FilterIndex] = uigetfile(FilterSpec,

DialogTitle)
[FileName,PathName,FilterIndex] = uigetfile(FilterSpec,

DialogTitle,DefaultName)
[FileName,PathName,FilterIndex] = uigetfile(...,'MultiSelect',

selectmode)

Description Description

filename = uigetfile displays a modal dialog box that lists files in
the current folder and enables you to select or enter the name of a
file. If the filename is valid and if the file exists, uigetfile returns
the filename as a string when you click Open. Otherwise uigetfile
displays an appropriate error message, after which control returns to
the dialog box. You can then enter another filename or click Cancel.
If you click Cancel or close the dialog window, uigetfile returns 0.
Successful execution of uigetfile does not open a file; it only returns
the name of an existing file that you identify.

[FileName,PathName,FilterIndex] = uigetfile(FilterSpec)
displays only those files with extensions that match FilterSpec. On
some platforms uigetfile also displays the files that do not match
FilterSpec in grey. The uigetfile function appends 'All Files'
to the list of file types. FilterSpec can be a string or a cell array of
strings, and can include the * wildcard.

• If FilterSpec is a filename, that filename displays, selected in the
File name field. The extension of the file is the default filter.

• FilterSpec can include a path. That path can contain '.','..', \,
'/', or '~'. For example, '../*.m' lists all code files in the folder
above the current folder.

• If FilterSpec is a folder name, uigetfile displays the contents of
that folder, the File name field is empty, and no filter applies. To

2-4145



uigetfile

specify a folder name, make the last character of FilterSpec either
'\' or '/'.

• If FilterSpec is a cell array of strings, it can include two columns.
The first column contains a list of file extensions. The optional
second column contains a corresponding list of descriptions. These
descriptions replace standard descriptions in the Files of type field.
A description cannot be an empty string. The second and third
examples illustrate use of a cell array as FilterSpec.

If FilterSpec is missing or empty, uigetfile uses the default list of
file types (for example, all MATLAB files).

After you click Open and if the filename exists,uigetfile returns the
name of the file in FileName and its path in PathName. If you click
Cancel or close the dialog window, the function sets FileName and
PathName to 0.

FilterIndex is the index of the filter selected in the dialog box.
Indexing starts at 1. If you click Cancel or close the dialog window, the
function sets FilterIndex to 0.

[FileName,PathName,FilterIndex] =
uigetfile(FilterSpec,DialogTitle) displays a dialog box that
has the title DialogTitle. To use the default file types and specify a
dialog title, enter

uigetfile('',DialogTitle)

[FileName,PathName,FilterIndex] =
uigetfile(FilterSpec,DialogTitle,DefaultName) displays a dialog
box in which the filename specified by DefaultName appears in the
File name field. DefaultName can also be a path or a path/filename. In
this case, uigetfile opens the dialog box in the folder specified by the
path. You can use '.','..', \, or '/' in the DefaultName argument.
To specify a folder name, make the last character of DefaultName either
'\' or '/'. If the specified path does not exist, uigetfile opens the
dialog box in the current folder.

2-4146



uigetfile

[FileName,PathName,FilterIndex] =
uigetfile(...,'MultiSelect',selectmode) opens the dialog in
multiselect mode. Valid values for selectmode are 'on' and 'off' (the
default, which allows single selection only). If 'MultiSelect' is 'on'
and you select more than one file in the dialog box, then FileName is
a cell array of strings. Each array element contains the name of a
selected file. Filenames in the cell array are sorted in the order your
platform uses. Because multiple selections are always in the same
folder, PathName is always a string identifying a single folder.

If you include either of the “wildcard” characters '*' or '?' in a file
name, uigetfile does not respond to clicking Open. The dialog box
remains open until you cancel it or remove the wildcard characters.
This restriction applies to all platforms, even to file systems that permit
these characters in file names.

For Microsoft Windows platforms, the dialog box is the Windows dialog
box native to your platform. Depending on your version of Windows,
dialogs you see can differ from the figures shown in following examples.

For UNIX platforms, the dialog box is like the one shown in the
following figure.

2-4147



uigetfile

For Mac platforms, the dialog box is like the one shown in the following
figure.

2-4148



uigetfile

Note A modal dialog box prevents you from interacting with other
windows before responding. To block MATLAB program execution, use
the uiwait function. For more information about modal dialog boxes,
see WindowStyle in the MATLAB Figure Properties.

Examples The following statement displays a dialog box for retrieving a file.
The dialog lists all MATLAB code files within a selected directory.
uigetfile returns the name and path of the selected file in FileName
and PathName. uigetfile appends All Files(*.*) to the file types
when FilterSpec is a string.

[FileName,PathName] = uigetfile('*.m','Select the MATLAB code file');

The following figure shows the dialog box.

2-4149



uigetfile

To create a list of file types that appears in the Files of type list box,
separate the file extensions with semicolons, as in the following code.
uigetfile displays a default description for each known file type, such
as "Model files" for Simulink.mdl files.

[filename, pathname] = ...

uigetfile({'*.m';'*.mdl';'*.mat';'*.*'},'File Selector');

2-4150



uigetfile

If you want to create a list of file types and give them descriptions that
are different from the defaults, use a cell array, as in the following
code. This example also associates multiple file types with the 'MATLAB
Files' description.

[filename, pathname] = uigetfile( ...

{'*.m;*.fig;*.mat;*.mdl','MATLAB Files (*.m,*.fig,*.mat,*.mdl)';

'*.m', 'Code files (*.m)'; ...

'*.fig','Figures (*.fig)'; ...

'*.mat','MAT-files (*.mat)'; ...

'*.mdl','Models (*.mdl)'; ...

'*.*', 'All Files (*.*)'}, ...

'Pick a file');

2-4151



uigetfile

The first column of the cell array contains the file extensions, while the
second contains your descriptions of the file types. In this example,
the first entry of column one contains several extensions, separated
by semicolons, which are all associated with the description 'MATLAB
Files (*.m,*.fig,*.mat,*.mdl)'. The code produces the dialog box
shown in the following figure.

The following code lets you identify a file and then displays a message
summarizing the result.

[filename, pathname] = uigetfile('*.m', 'Select a MATLAB code file');

if isequal(filename,0)

2-4152



uigetfile

disp('User selected Cancel')

else

disp(['User selected', fullfile(pathname, filename)])

end

This example creates a list of file types and gives them descriptions that
are different from the defaults. It also enables multiple file selection.
You can select multiple files by holding down the Shift or Ctrl key and
clicking on additional file names.

[filename, pathname, filterindex] = uigetfile( ...

{ '*.mat','MAT-files (*.mat)'; ...

'*.mdl','Models (*.mdl)'; ...

'*.*', 'All Files (*.*)'}, ...

'Pick a file', ...

2-4153



uigetfile

'MultiSelect', 'on');

As mentioned previously, uigetfile does not open the file or files
you select.

This example uses the DefaultName argument to specify a start path
and a default filename for the dialog box.

uigetfile({'*.jpg;*.tif;*.png;*.gif','All Image Files';...

'*.*','All Files' },'mytitle',...

'C:\Work\myfile.jpg')

2-4154



uigetfile

Alternatives Use the dir function to return a filtered or unfiltered list of files in your
current folder or a folder you specify. dir also can return file attributes.

See Also uigetdir, uiopen, uiputfile

2-4155



uigetpref

Purpose Open dialog box for retrieving preferences

Syntax value = uigetpref(group,pref,title,question,pref_choices)
[val,dlgshown] = uigetpref(...)

Description value = uigetpref(group,pref,title,question,pref_choices)
returns one of the strings in pref_choices, by doing one of the
following:

• Prompting the user with a multiple-choice question dialog box

• Returning a previous answer stored in the preferences database

By default, the dialog box is shown, with each choice on a different
pushbutton, and with a checkbox controlling whether the returned
value should be stored in preferences and automatically reused in
subsequent invocations.

If the user checks the checkbox before choosing one of the push buttons,
the push button choice is stored in preferences and returned in value.
Subsequent calls to uigetpref detect that the last choice was stored
in preferences, and return that choice immediately without displaying
the dialog.

If the user does not check the checkbox before choosing a pushbutton,
the selected preference is not stored in preferences. Rather, a special
value, 'ask', is stored, indicating that subsequent calls to uigetpref
should display the dialog box.

Note uigetpref uses the same preference database as addpref,
getpref, ispref, rmpref, and setpref. However, it registers the
preferences it sets in a separate list so that it, and uisetpref, can
distinguish those preferences that are being managed with uigetpref.

For preferences registered with uigetpref, you can use setpref and
uisetpref to explicitly change preference values to 'ask'.

2-4156



uigetpref

group and pref define the preference. If the preference does not already
exist, uigetpref creates it.

title defines the string displayed in the dialog box titlebar.

question is a descriptive paragraph displayed in the dialog, specified as
a string array or cell array of strings. This should contain the question
the user is being asked, and should be detailed enough to give the user
a clear understanding of their choice and its impact. uigetpref inserts
line breaks between rows of the string array, between elements of the
cell array of strings, or between ’|’ or newline characters in the string
vector.

pref_choices is either a string, cell array of strings, or ’|’-separated
strings specifying the strings to be displayed on the push buttons. Each
string element is displayed in a separate push button. The string on the
selected pushbutton is returned.

Make pref_choices a 2-by-n cell array of strings if the internal
preference values are different from the strings displayed on the
pushbuttons. The first row contains the preference strings, and the
second row contains the related pushbutton strings. Note that the
preference values are returned in value, not the button labels.

[val,dlgshown] = uigetpref(...) returns whether or not the
dialog was shown.

Additional arguments can be passed in as parameter-value pairs:

(...'CheckboxState',state) sets the initial state of the checkbox,
either checked or unchecked. state can be either 0 (unchecked) or 1
(checked). By default it is 0.

(...'CheckboxString',cbstr) sets the string cbstr on the checkbox.
By default it is 'Never show this dialog again'.

(...'HelpString',hstr) sets the string hstr on the help button. By
default the string is empty and there is no help button.

(...'HelpFcn',hfcn) sets the callback that is executed when the help
button is pressed. By default it is doc('uigetpref'). Note that if there
is no 'HelpString' option, a button is not created.

2-4157



uigetpref

(...'ExtraOptions',eo)creates extra buttons which are not mapped
to any preference settings. eo can be a string or a cell array of strings.
By default it is {} and no extra buttons are created. If the user chooses
one of these buttons, the dialog is closed and the string is returned in
value.

(...'DefaultButton',dbstr) sets the string value dbstr that is
returned if the dialog is closed. By default, it is the first button. Note
that dbstr does not have to correspond to a preference or ExtraOption.

Note If the preference does not already exist in the preference
database, uigetpref creates it. Preference values are persistent and
maintain their values between MATLAB sessions. Where they are
stored is system dependent.

Examples This example creates the following preference dialog for the
'savefigurebeforeclosing' preference in the 'mygraphics' group.

It uses the cell array {'always','never';'Yes','No'} to define the
preference values as 'always' and 'never', and their corresponding
button labels as 'Yes' and 'No'.

[selectedButton,dlgShown]=uigetpref('mygraphics',... % Group

'savefigurebeforeclosing',... % Preference

'Closing Figure',... % Window title

{'Do you want to save your figure before closing?'

2-4158



uigetpref

''

'You can save your figure manually by typing ''hgsave(gcf)'''},...

{'always','never';'Yes','No'},... % Values and button strings

'ExtraOptions','Cancel',... % Additional button

'DefaultButton','Cancel',... % Default choice

'HelpString','Help',... % String for Help button

'HelpFcn','doc(''closereq'');') % Callback for Help button

See Also addpref, getpref, ispref, rmpref, setpref, uisetpref

2-4159



uiimport

Purpose Open Import Wizard to import data

Syntax uiimport
uiimport(filename)
uiimport('-file')
uiimport('-pastespecial')
S = uiimport(...)

Description uiimport starts the Import Wizard in the current directory, presenting
options to load data from a file or the clipboard.

uiimport(filename) starts the Import Wizard, opening the file
specified in filename. The Import Wizard displays a preview of the
data in the file.

uiimport('-file') works as above but presents the file selection
dialog first.

uiimport('-pastespecial') works as above but presents the
clipboard contents first.

S = uiimport(...) works as above with resulting variables stored as
fields in the struct S.

Note For ASCII data, you must verify that the Import Wizard correctly
identified the column delimiter.

See Also load, importdata, clipboard, fileformats

2-4160



uimenu

Purpose Create menus on figure windows

Syntax handle = uimenu('PropertyName',PropertyValue,...)
handle = uimenu(parent,'PropertyName',PropertyValue,...)

Description uimenu creates a hierarchy of menus and submenus that are displayed
in the figure window’s menu bar. You also use uimenu to create menu
items for context menus.

handle = uimenu('PropertyName',PropertyValue,...) creates a
menu in the current figure’s menu bar using the values of the specified
properties and assigns the menu handle to handle.

See the Uimenu Properties reference page for more information.

handle = uimenu(parent,'PropertyName',PropertyValue,...)
creates a submenu of a parent menu or a menu item on a context menu
specified by parent and assigns the menu handle to handle. If parent
refers to a figure instead of another uimenu object or a uicontextmenu,
MATLAB software creates a new menu on the referenced figure’s menu
bar.

Remarks MATLAB adds the new menu to the existing menu bar. If the figure
does not have a menu bar, MATLAB creates one. Each menu choice
can itself be a menu that displays its submenu when selected. uimenu
accepts property name/property value pairs, as well as structures and
cell arrays of properties as input arguments.

The uimenu Callback property defines the action taken when you
activate the created menu item.

Uimenus only appear in figures whose Window Style is normal. If a
figure containing uimenu children is changed to modal, the uimenu
children still exist and are contained in the Children list of the figure,
but are not displayed until the WindowStyle is changed to normal.

The value of the figure MenuBar property affects the content of the
figure menu bar. When MenuBar is figure, a set of built-in menus
precedes any user-created uimenus on the menu bar (MATLAB controls

2-4161

../ref/figure_props.html#MenuBar
../ref/figure_props.html#MenuBar
../ref/figure_props.html#WindowStyle
../ref/figure_props.html#Children
../ref/figure_props.html#MenuBar


uimenu

the built-in menus and their handles are not available to the user).
When MenuBar is none, uimenus are the only items on the menu bar
(that is, the built-in menus do not appear).

You can set and query property values after creating the menu using
set and get.

Examples This example creates a menu labeledWorkspace whose choices allow
users to create a new figure window, save workspace variables, and
exit out of MATLAB. In addition, it defines an accelerator key for the
Quit option.

f = uimenu('Label','Workspace');
uimenu(f,'Label','New Figure','Callback','figure');
uimenu(f,'Label','Save','Callback','save');
uimenu(f,'Label','Quit','Callback','exit',...

'Separator','on','Accelerator','Q');

See Also uicontrol, uicontextmenu, gcbo, set, get, figure

2-4162



Uimenu Properties

Purpose Describe menu properties

Modifying
Properties

You can set and query graphics object properties in two ways:

• The Property Inspector is an interactive tool that enables you to
see and change object property values. The Property inspector is
available from GUIDE, or use the inspect function at the command
line.

• The set and get commands enable you to set and query the values of
properties

You can set default Uimenu properties on the root, figure and menu
levels:

set(0,'DefaultUimenuPropertyName',PropertyValue...)
set(gcf,'DefaultUimenuPropertyName',PropertyValue...)
set(menu_handle,'DefaultUimenuPropertyName',PropertyValue...)

Where PropertyName is the name of the Uimenu property and
PropertyValue is the value you specify as the default for that property.

For more information about changing the default value of property see
“Setting Default Property Values”

Uimenu
Properties

This section lists all properties useful to uimenu objects along with valid
values and instructions for their use. Curly braces { } enclose default
values.

Property Name Property Description

Accelerator Keyboard equivalent

BeingDeleted This object is being deleted

BusyAction Callback routine interruption

Callback Control action

Checked Menu check indicator

2-4163



Uimenu Properties

Property Name Property Description

Children Handles of submenus

CreateFcn Callback routine executed during object
creation

DeleteFcn Callback routine executed during object
deletion

Enable Enable or disable the uimenu

ForegroundColor Color of text

HandleVisibility Whether handle is accessible from command
line and GUIs

Interruptible Callback routine interruption mode

Label Menu label

Parent Uimenu object’s parent

Position Relative uimenu position

Separator Separator line mode

Tag User-specified object identifier

Type Class of graphics object

UserData User-specified data

Visible Uimenu visibility

Accelerator
character

Keyboard equivalent. An alphabetic character specifying the
keyboard equivalent for the menu item. This allows users to select
a particular menu choice by pressing the specified character in
conjunction with another key, instead of selecting the menu item
with the mouse. The key sequence is platform specific:

2-4164



Uimenu Properties

• For Microsoft Windows systems, the sequence is
Ctrl+Accelerator. These keys are reserved for default menu
items: c, v, and x.

• For UNIX systems, the sequence is Ctrl+Accelerator. These
keys are reserved for default menu items: o, p, s, and w.

You can define an accelerator only for menu items that do not
have children menus. Accelerators work only for menu items
that directly execute a callback routine, not items that bring up
other menus.

Note that the menu item does not have to be displayed (e.g., a
submenu) for the accelerator key to work. However, the window
focus must be in the figure when the key sequence is entered.

To remove an accelerator, set Accelerator to an empty string, ''.

BeingDeleted
on | {off} Read Only

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in
the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions
that act on a number of different objects. These functions might
not need to perform actions on objects if the objects are going to
be deleted, and therefore, can check the object’s BeingDeleted
property before acting.

BusyAction
cancel | {queue}

2-4165



Uimenu Properties

Callback routine interruption. If a callback is executing and the
user triggers an event (such as a mouse click) on an object for
which a callback is defined, the callback associated with the new
event uses the value of BusyAction to decide whether or not to
attempt to interrupt the executing callback.

• If the value is cancel, the event is discarded and the second
callback does not execute.

• If the value is queue, and the Interruptible property of the
first callback is on, the second callback is added to the event
queue and executes in its turn after the first callback finishes
execution.

Note If the interrupting callback is a DeleteFcn or CreateFcn
callback or a figure’s CloseRequest or ResizeFcn callback,
it interrupts an executing callback regardless of the value of
that object’s Interruptible property. See theInterruptible
property for information about controlling a callback’s
interruptibility.

Callback
string or function handle

Menu action. A callback routine that executes whenever you
select the menu. Define this routine as a string that is a valid
MATLAB expression or the name of a code file. The expression
executes in the MATLAB workspace.

A menu with children (submenus) executes its callback routine
before displaying the submenus. A menu without children
executes its callback routine when you release the mouse button
(i.e., on the button up event).

Checked
on | {off}

2-4166



Uimenu Properties

Menu check indicator. Setting this property to on places a check
mark next to the corresponding menu item. Setting it to off
removes the check mark. You can use this feature to create
menus that indicate the state of a particular option. For example,
suppose you have a menu item called Show axes that toggles the
visibility of an axes between visible and invisible each time the
user selects the menu item. If you want a check to appear next to
the menu item when the axes are visible, add the following code to
the callback for the Show axes menu item:

if strcmp(get(gcbo, 'Checked'),'on')
set(gcbo, 'Checked', 'off');

else
set(gcbo, 'Checked', 'on');

end

This changes the value of the Checked property of the menu item
from on to off or vice versa each time a user selects the menu
item.

Note that there is no formal mechanism for indicating that an
unchecked menu item will become checked when selected.

Note This property is ignored for top level and parent menus.

Children
vector of handles

Handles of submenus. A vector containing the handles of all
children of the uimenu object. The children objects of uimenus are
other uimenus, which function as submenus. You can use this
property to reorder the menus.

CreateFcn
string or function handle

2-4167



Uimenu Properties

Callback routine executed during object creation. The specified
function executes when MATLAB creates a uimenu object.
MATLAB sets all property values for the uimenu before executing
the CreateFcn callback so these values are available to the
callback. Within the function, use gcbo to get the handle of the
uimenu being created.

Setting this property on an existing uimenu object has no effect.

You can define a default CreateFcn callback for all new uimenus.
This default applies unless you override it by specifying a different
CreateFcn callback when you call uimenu. For example, the code

set(0,'DefaultUimenuCreateFcn','set(gcbo,...
''Visible'',''on'')')

creates a default CreateFcn callback that runs whenever you
create a new menu. It sets the default Visible property of a
uimenu object.

To override this default and create a menu whose Visible
property is set to a different value, call uimenu with code similar to

hpt = uimenu(...,'CreateFcn','set(gcbo,...
''Visible'',''off'')')

Note To override a default CreateFcn callback you must provide
a new callback and not just provide different values for the
specified properties. This is because the CreateFcn callback runs
after the property values are set, and can override property values
you have set explicitly in the uimenu call. In the example above, if
instead of redefining the CreateFcn property for this uimenu, you
had explicitly set Visible to off, the default CreateFcn callback
would have set Visible back to the default, i.e., on.

2-4168



Uimenu Properties

Do not call copyobj or textwrap (which calls copyobj) inside
a CreateFcn. The act of copying the uicontrol object fires the
CreateFcn repeatedly, which raises a series of error messages
after exceeding the root object’s RecursionLimit property.

See “Function Handle Callbacks” for information on how to use
function handles to define a callback function.

DeleteFcn
string or function handle

Delete uimenu callback routine. A callback routine that executes
when you delete the uimenu object (e.g., when you issue a delete
command or cause the figure containing the uimenu to reset).
MATLAB executes the routine before destroying the object’s
properties so these values are available to the callback routine.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
is more simply queried using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define a callback function.

Enable
{on} | off

Enable or disable the uimenu. This property controls whether a
menu item can be selected. When not enabled (set to off), the
menu Label appears dimmed, indicating the user cannot select it.

ForegroundColor
ColorSpec X-Windows only

Color of menu label string. This property determines color of
the text defined for the Label property. Specify a color using a
three-element RGB vector or one of the MATLAB predefined

2-4169

../ref/rootobject_props.html#RecursionLimit


Uimenu Properties

names. The default text color is black. See ColorSpec for more
information on specifying color.

HandleVisibility
{on} | callback | off

Control access to object’s handle. This property determines when
an object’s handle is visible in its parent’s list of children. When
a handle is not visible in its parent’s list of children, it is not
returned by functions that obtain handles by searching the object
hierarchy or querying handle properties. This includes get,
findobj, gca, gcf, gco, newplot, cla, clf, and close. Neither is
the handle visible in the parent figure’s CurrentObject property.
Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties, and pass it to any
function that operates on handles.

• Handles are always visible when HandleVisibility is on.

• Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by
callback routines, but not from within functions invoked from
the command line. This provides a means to protect GUIs from
command-line users, while allowing callback routines to have
complete access to object handles.

• Setting HandleVisibility to off makes handles invisible
at all times. This may be necessary when a callback routine
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string), and so temporarily
hides its own handles during the execution of that function.

You can set the root ShowHiddenHandles property to on to
make all handles visible, regardless of their HandleVisibility
settings. This does not affect the values of the HandleVisibility
properties.

Interruptible
{on} | off

2-4170



Uimenu Properties

Callback routine interruption mode. If a callback is executing and
the user triggers an event (such as a mouse click) on an object for
which a callback is defined, that callback attempts to interrupt
the first callback. MATLAB processes the callbacks according to
these factors:

• The Interruptible property of the object whose callback is
executing

• Whether the executing callback contains drawnow, figure,
getframe, pause, or waitfor statements

• The BusyAction property of the object whose callback is
waiting to execute

If the Interruptible property of the object whose callback is
executing is on (the default), the callback can be interrupted.
Whenever the callback calls one of the drawnow, figure,
getframe, pause, or waitfor functions, the function processes
any events in the event queue, including the waiting callback,
before performing its defined task.

If the Interruptible property of the object whose callback is
executing is off, the callback cannot be interrupted (except by
certain callbacks; see the note below). The BusyAction property
of the object whose callback is waiting to execute determines what
happens to the callback.

Note If the interrupting callback is a DeleteFcn or CreateFcn
callback or a figure’s CloseRequest or ResizeFcn callback, it
interrupts an executing callback regardless of the value of that
object’s Interruptible property. The interrupting callback
starts execution at the next drawnow, figure, getframe, pause,
or waitfor statement. A figure’s WindowButtonDownFcn callback
routine, or an object’s ButtonDownFcn or Callback routine are
processed according to the rules described above.

2-4171



Uimenu Properties

Label
string

Menu label. A string specifying the text label on the menu item.
You can specify a mnemonic for the label using the '&' character.
Except as noted below, the character that follows the '&' in the
string appears underlined and selects the menu item when you
type Alt+ followed by that character while the menu is visible.
The '&' character is not displayed. To display the '&' character
in a label, use two '&' characters in the string:

’O&pen selection’ yields Open selection

’Save && Go’ yields Save & Go

'Save&&Go' yields Save & Go

'Save& Go' yields Save& Go (the space is not a mnemonic)

There are three reserved words: default, remove, factory (case
sensitive). If you want to use one of these reserved words in
the Label property, you must precede it with a backslash ('\')
character. For example:

'\remove' yields remove

'\default' yields default

'\factory' yields factory

Parent
handle

Uimenu’s parent. The handle of the uimenu’s parent object. The
parent of a uimenu object is the figure on whose menu bar it
displays, or the uimenu of which it is a submenu. You can move

2-4172



Uimenu Properties

a uimenu object to another figure by setting this property to the
handle of the new parent.

Position
scalar

Relative menu position. The value of Position indicates
placement on the menu bar or within a menu. Top-level menus
are placed from left to right on the menu bar according to
the value of their Position property, with 1 representing the
left-most position. The individual items within a given menu are
placed from top to bottom according to the value of their Position
property, with 1 representing the top-most position.

Separator
on | {off}

Separator line mode. Setting this property to on draws a dividing
line above the menu item.

Tag
string

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This
is particularly useful when constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callback
routines. You can define Tag as any string.

Type
string (read only)

Class of graphics object. For uimenu objects, Type is always the
string 'uimenu'.

UserData
matrix

2-4173



Uimenu Properties

User-specified data. Any matrix you want to associate with the
uimenu object. MATLAB does not use this data, but you can
access it using the set and get commands.

Visible
{on} | off

Uimenu visibility. By default, all uimenus are visible. When set
to off, the uimenu is not visible, but still exists and you can
query and set its properties.

2-4174



uint8, uint16, uint32, uint64

Purpose Convert to unsigned integer

Syntax I = uint8(X)
I = uint16(X)
I = uint32(X)
I = uint64(X)

Description I = uint*(X) converts the elements of array X into unsigned integers.
X can be any numeric object (such as a double). The results of a uint*
operation are shown in the next table.

Operation Output Range Output Type

Bytes
per
Element

Output
Class

uint8 0 to 255 Unsigned 8-bit
integer

1 uint8

uint16 0 to 65,535 Unsigned 16-bit
integer

2 uint16

uint32 0 to 4,294,967,295 Unsigned 32-bit
integer

4 uint32

uint64 0 to 18,446,744,073,709,551,615 Unsigned 64-bit
integer

8 uint64

double and single values are rounded to the nearest uint* value on
conversion. A value of X that is above or below the range for an integer
class is mapped to one of the endpoints of the range. For example,

uint16(70000)
ans =

65535

If X is already an unsigned integer of the same class, then uint* has
no effect.

2-4175



uint8, uint16, uint32, uint64

You can define or overload your own methods for uint* (as you can for
any object) by placing the appropriately named method in an @uint*
directory within a directory on your path. Type help datatypes for the
names of the methods you can overload.

Remarks Most operations that manipulate arrays without changing their
elements are defined for integer values. Examples are reshape, size,
the logical and relational operators, subscripted assignment, and
subscripted reference.

Some arithmetic operations are defined for integer arrays on interaction
with other integer arrays of the same class (e.g., where both operands
are uint16). Examples of these operations are +, -, .*, ./, .\ and .^.
If at least one operand is scalar, then *, /, \, and ^ are also defined.
Integer arrays may also interact with scalar double variables, including
constants, and the result of the operation is an integer array of the
same class. Integer arrays saturate on overflow in arithmetic.

Note Only the lower order integer data types support math operations.
Math operations are not supported for int64 and uint64.

A particularly efficient way to initialize a large array is by specifying
the data type (i.e., class name) for the array in the zeros, ones, or eye
function. For example, to create a 100-by-100 uint64 array initialized
to zero, type

I = zeros(100, 100, 'uint64');

An easy way to find the range for any MATLAB integer type is to use
the intmin and intmax functions as shown here for uint32:

intmin('uint32') intmax('uint32')
ans = ans =

0 4294967295

See Also double, single, int8, int16, int32, int64, intmax, intmin

2-4176



uiopen

Purpose Open file selection dialog box with appropriate file filters

Syntax uiopen
uiopen('MATLAB')
uiopen('LOAD')
uiopen('FIGURE')
uiopen('SIMULINK')
uiopen('EDITOR')

Description uiopen displays a modal file selection dialog from which a user can
select a file to open. The dialog is the same as the one displayed when
you select Open from the File menu in the MATLAB desktop.

Selecting a file in the dialog and clicking Open does the following:

• Gets the file using uigetfile

• Opens the file in the base workspace using the open command

Note A modal dialog box prevents the user from interacting with
other windows before responding. For more information, see
WindowStyle in the MATLAB Figure Properties.

Note Only the form uiopen('LOAD') can be compiled into a
standalone application. You can create a file selection dialog that
can be compiled using uigetfile.

uiopen or uiopen('MATLAB') displays the dialog with the file filter set
to all MATLAB files.

uiopen('LOAD') displays the dialog with the file filter set to MAT-files
(*.mat).

uiopen('FIGURE') displays the dialog with the file filter set to figure
files (*.fig).

2-4177



uiopen

uiopen('SIMULINK') displays the dialog with the file filter set to model
files (*.mdl).

uiopen('EDITOR') displays the dialog with the file filter set to all
MATLAB files except for MAT-files and FIG-files. All files are opened
in the MATLAB Editor.

Examples Typing uiopen('figure') sets the Files of type field to Figures
(*.fig):

See Also uigetfile, uiputfile, uisave

2-4178



uipanel

Purpose Create panel container object

Syntax h = uipanel(’PropertyName1’,value1,’PropertyName2’,value2,
...)

h = uipanel(parent,’PropertyName1’,value1,’PropertyName2’,
value2,...)

Description A uipanel groups components. It can contain user interface controls
with which the user interacts directly. It can also contain axes, other
uipanels, and uibuttongroups. It cannot contain ActiveX controls.

h =
uipanel(’PropertyName1’,value1,’PropertyName2’,value2,...)
creates a uipanel container object in a figure, uipanel, or
uibuttongroup. Use the Parent property to specify the parent figure,
uipanel, or uibuttongroup. If you do not specify a parent, uipanel adds
the panel to the current figure. If no figure exists, one is created. See
the Uipanel Properties reference page for more information.

h =
uipanel(parent,’PropertyName1’,value1,’PropertyName2’,value2,...)
creates a uipanel in the object specified by the handle, parent. If you
also specify a different value for the Parent property, the value
of the Parent property takes precedence. parent must be a
figure, uipanel, or uibuttongroup.

A uipanel object can have axes, uicontrol, uipanel, and
uibuttongroup objects as children. For the children of a uipanel, the
Position property is interpreted relative to the uipanel. If you move
the panel, the children automatically move with it and maintain their
positions relative to the panel.

After creating a uipanel object, you can set and query its property
values using set and get.

Remarks If you set the Visible property of a uipanel object to 'off', any child
objects it contains (buttons, button groups, axes, etc.) become invisible
along with the panel itself. However, doing this does not affect the

2-4179



uipanel

settings of the Visible property of any of its child objects, even though
all of them remain invisible until the uipanel’s visibility is set to 'on'.
uibuttongroup components also behave in this manner.

Examples This example creates a uipanel in a figure, then creates a subpanel in
the first panel. Finally, it adds a pushbutton to the subpanel. Both
panels use the default Units property value, normalized. Note that
default Units for the uicontrol pushbutton is pixels.

h = figure;
hp = uipanel('Title','Main Panel','FontSize',12,...

'BackgroundColor','white',...
'Position',[.25 .1 .67 .67]);

hsp = uipanel('Parent',hp,'Title','Subpanel','FontSize',12,...
'Position',[.4 .1 .5 .5]);

hbsp = uicontrol('Parent',hsp,'String','Push here',...
'Position',[18 18 72 36]);

2-4180



uipanel

See Also hgtransform, uibuttongroup, uicontrol

2-4181



Uipanel Properties

Purpose Describe panel properties

Modifying
Properties

You can set and query graphics object properties in two ways:

• The Property Inspector is an interactive tool that enables you to
see and change object property values. The Property inspector is
available from GUIDE, or use the inspect function at the command
line.

• The set and get functions enable you to set and query the values of
properties.

You can set default uipanel properties by typing:

set(h,'DefaultUipanelPropertyName',PropertyValue...)

Where h can be the root handle (0), a figure handle, or a uipanel handle.
PropertyName is the name of the uipanel property and PropertyValue
is the value you specify as the default for that property.

Note Default properties you set for uipanels also apply to
uibuttongroups.

For more information about changing the default value of a property see
“Setting Default Property Values”. For an example, see the CreateFcn
property.

Uipanel
Properties

This section lists all properties useful to uipanel objects along with
valid values and a descriptions of their use. Curly braces { } enclose
default values.

Property Name Description

BackgroundColor Color of the uipanel background

BeingDeleted This object is being deleted

2-4182



Uipanel Properties

Property Name Description

BorderType Type of border around the uipanel area.

BorderWidth Width of the panel border.

BusyAction Interruption of other callback routines

ButtonDownFcn Button-press callback routine

Children All children of the uipanel

Clipping Clipping of child axes, uipanels, and
uibuttongroups to the uipanel. Does not
affect child uicontrols.

CreateFcn Callback routine executed during object
creation

DeleteFcn Callback routine executed during object
deletion

FontAngle Title font angle

FontName Title font name

FontSize Title font size

FontUnits Title font units

FontWeight Title font weight

ForegroundColor Title font color and/or color of 2-D border line

HandleVisibility Handle accessibility from commandline and
GUIs

HighlightColor 3-D frame highlight color

HitTest Selectable by mouse click

Interruptible Callback routine interruption mode

Parent Uipanel object’s parent

Position Panel position relative to parent figure or
uipanel

2-4183



Uipanel Properties

Property Name Description

ResizeFcn User-specified resize routine

Selected Whether object is selected

SelectionHighlight Object highlighted when selected

ShadowColor 3-D frame shadow color

Tag User-specified object identifier

Title Title string

TitlePosition Location of title string in relation to the panel

Type Object class

UIContextMenu Associates uicontextmenu with the uipanel

Units Units used to interpret the position vector

UserData User-specified data

Visible Uipanel visibility.

Note Controls the visibility of a uipanel and
of its child axes, uibuttongroups. uipanels,
and child uicontrols. Setting it does not
change their Visible property.

BackgroundColor
ColorSpec

Color of the uipanel background. A three-element RGB vector or
one of the MATLAB predefined names, specifying the background
color. See the ColorSpec reference page for more information
on specifying color.

BeingDeleted
on | {off} Read Only

2-4184



Uipanel Properties

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in
the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions
that act on a number of different objects. These functions might
not need to perform actions on objects if the objects are going to
be deleted, and therefore, can check the object’s BeingDeleted
property before acting.

BorderType
none | {etchedin} | etchedout | beveledin | beveledout
| line

Border of the uipanel area. Used to define the panel area
graphically. Etched and beveled borders provide a 3-D look. Use
the HighlightColor and ShadowColor properties to specify the
border color of etched and beveled borders. A line border is 2-D.
Use the ForegroundColor property to specify its color.

BorderWidth
integer

Width of the panel border. The width of the panel borders in
pixels. The default border width is 1 pixel. 3-D borders wider
than 3 may not appear correctly at the corners.

BusyAction
cancel | {queue}

Callback routine interruption. If a callback is executing and the
user triggers an event (such as a mouse click) on an object for
which a callback is defined, the callback associated with the new
event uses the value of BusyAction to decide whether or not to
attempt to interrupt the executing callback.

2-4185



Uipanel Properties

• If the value is cancel, the event is discarded and the second
callback does not execute.

• If the value is queue, and the Interruptible property of the
first callback is on, the second callback is added to the event
queue and executes in its turn after the first callback finishes
execution.

Note If the interrupting callback is a DeleteFcn or CreateFcn
callback or a figure’s CloseRequest or ResizeFcn callback,
it interrupts an executing callback regardless of the value of
that object’s Interruptible property. See the Interruptible
property for information about controlling a callback’s
interruptibility.

ButtonDownFcn
string or function handle

Button-press callback routine. A callback routine that executes
when you press a mouse button while the pointer is in a 5-pixel
wide border around the uipanel. This is useful for implementing
actions to interactively modify control object properties, such
as size and position, when they are clicked on (using the
selectmoveresize function, for example).

If you define this routine as a string, the string can be a valid
MATLAB expression or the name of a code file. The expression
executes in the MATLAB workspace.

Children
vector of handles

Children of the uipanel. A vector containing the handles of all
children of the uipanel. A uipanel object’s children are axes,
uipanels, uibuttongroups, and uicontrols. You can use this
property to reorder the children.

2-4186



Uipanel Properties

Clipping
{on} | off

Clipping mode. By default, MATLAB clips a uipanel’s child
axes, uipanels, and uibuttongroups to the uipanel rectangle. If
you set Clipping to off, the axis, uipanel, or uibuttongroup is
displayed outside the panel rectangle. This property does not
affect child uicontrols which, by default, can display outside the
panel rectangle.

CreateFcn
string or function handle

Callback routine executed during object creation. The specified
function executes when MATLAB creates a uipanel object.
MATLAB sets all property values for the uipanel before executing
the CreateFcn callback so these values are available to the
callback. Within the function, use gcbo to get the handle of the
uipanel being created.

Setting this property on an existing uipanel object has no effect.

You can define a default CreateFcn callback for all new uipanels.
This default applies unless you override it by specifying a different
CreateFcn callback when you call uipanel. For example, the code

set(0,'DefaultUipanelCreateFcn','set(gcbo,...
''FontName'',''arial'',''FontSize'',12)')

creates a default CreateFcn callback that runs whenever you
create a new panel. It sets the default font name and font size
of the uipanel title.

Note Uibuttongroup takes its default property values from
uipanel. Defining a default property for all uipanels defines the
same default property for all uibuttongroups.

2-4187



Uipanel Properties

To override this default and create a panel whose FontName and
FontSize properties are set to different values, call uipanel with
code similar to

hpt = uipanel(...,'CreateFcn','set(gcbo,...
''FontName'',''times'',''FontSize'',14)')

Note To override a default CreateFcn callback you must provide a
new callback and not just provide different values for the specified
properties. This is because the CreateFcn callback runs after the
property values are set, and can override property values you
have set explicitly in the uipushtool call. In the example above, if
instead of redefining the CreateFcn property for this uipanel, you
had explicitly set Fontsize to 14, the default CreateFcn callback
would have set FontSize back to the system dependent default.

Do not call copyobj or textwrap (which calls copyobj) inside
a CreateFcn. The act of copying the uicontrol object fires the
CreateFcn repeatedly, which raises a series of error messages
after exceeding the root object’s RecursionLimit property.

See “Function Handle Callbacks” for information on how to use
function handles to define a callback function.

DeleteFcn
string or function handle

Callback routine executed during object deletion. A callback
routine that executes when you delete the uipanel object (e.g.,
when you issue a delete command or clear the figure containing
the uipanel). MATLAB executes the routine before destroying the
object’s properties so these values are available to the callback
routine. The handle of the object whose DeleteFcn is being
executed is accessible only through the root CallbackObject
property, which you can query using gcbo.

2-4188

../ref/rootobject_props.html#RecursionLimit


Uipanel Properties

FontAngle
{normal} | italic | oblique

Character slant used in the Title. MATLAB uses this property
to select a font from those available on your particular system.
Setting this property to italic or oblique selects a slanted
version of the font, when it is available on your system.

FontName
string

Font family used in the Title. The name of the font in which
to display the Title. To display and print properly, this must
be a font that your system supports. The default font is system
dependent. To eliminate the need to hard code the name of a
fixed-width font, which may not display text properly on systems
that do not use ASCII character encoding (such as in Japan),
set FontName to the string FixedWidth (this string value is case
insensitive).

set(uicontrol_handle,'FontName','FixedWidth')

This then uses the value of the root FixedWidthFontName
property which can be set to the appropriate value for a locale
from startup.m in the end user’s environment. Setting the root
FixedWidthFontName property causes an immediate update of
the display to use the new font

FontSize
integer

Title font size. A number specifying the size of the font in which to
display the Title, in units determined by the FontUnits property.
The default size is system dependent.

FontUnits
inches | centimeters | normalized | {points} |pixels

2-4189



Uipanel Properties

Title font size units. Normalized units interpret FontSize as a
fraction of the height of the uipanel. When you resize the uipanel,
MATLAB modifies the screen FontSize accordingly. pixels,
inches, centimeters, and points are absolute units (1 point =
1/72 inch).

FontWeight
light | {normal} | demi | bold

Weight of characters in the title. MATLAB uses this property
to select a font from those available on your particular system.
Setting this property to bold causes MATLAB to use a bold version
of the font, when it is available on your system.

ForegroundColor
ColorSpec

Color used for title font and 2-D border line. A three-element RGB
vector or one of the MATLAB predefined names, specifying the
font or line color. See the ColorSpec reference page for more
information on specifying color.

HandleVisibility
{on} | callback | off

Control access to object’s handle. This property determines when
an object’s handle is visible in its parent’s list of children. When
a handle is not visible in its parent’s list of children, it is not
returned by functions that obtain handles by searching the object
hierarchy or querying handle properties. This includes get,
findobj, gca, gcf, gco, newplot, cla, clf, and close. Neither is
the handle visible in the parent figure’s CurrentObject property.
Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties, and pass it to any
function that operates on handles.

• Handles are always visible when HandleVisibility is on.

2-4190



Uipanel Properties

• Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by
callback routines, but not from within functions invoked from
the command line. This provides a means to protect GUIs from
command-line users, while allowing callback routines to have
complete access to object handles.

• Setting HandleVisibility to off makes handles invisible
at all times. This may be necessary when a callback routine
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string), and so temporarily
hides its own handles during the execution of that function.

You can set the root ShowHiddenHandles property to on to
make all handles visible, regardless of their HandleVisibility
settings. This does not affect the values of the HandleVisibility
properties.

HighlightColor
ColorSpec

3-D frame highlight color. A three-element RGB vector or one
of the MATLAB predefined names, specifying the highlight
color. See the ColorSpec reference page for more information
on specifying color.

HitTest
{on} | off

Selectable by mouse click. HitTest determines if the uipanel
can become the current object (as returned by the gco command
and the figure CurrentObject property) as a result of a mouse
click on the panel. If HitTest is off, clicking the panel sets
the CurrentObject to the closest ancestor of the panel that
registers HitTest. The uipanel property HandleVisibility
must be 'on' for it to become the CurrentObject. If the uipanel
HandleVisibility is 'off' or 'callback', or if the panel and all

2-4191



Uipanel Properties

its ancestors have HitTest set to 'off', the figure CurrentObject
is the empty matrix.

Interruptible
{on} | off

Callback routine interruption mode. If a callback is executing and
the user triggers an event (such as a mouse click) on an object for
which a callback is defined, that callback attempts to interrupt
the first callback. MATLAB processes the callbacks according to
these factors:

• The Interruptible property of the object whose callback is
executing

• Whether the executing callback contains drawnow, figure,
getframe, pause, or waitfor statements

• The BusyAction property of the object whose callback is
waiting to execute

If the Interruptible property of the object whose callback is
executing is on (the default), the callback can be interrupted.
Whenever the callback calls one of the drawnow, figure,
getframe, pause, or waitfor functions, the function processes
any events in the event queue, including the waiting callback,
before performing its defined task.

If the Interruptible property of the object whose callback is
executing is off, the callback cannot be interrupted (except by
certain callbacks; see the note below). The BusyAction property
of the object whose callback is waiting to execute determines what
happens to the callback.

2-4192



Uipanel Properties

Note If the interrupting callback is a DeleteFcn or CreateFcn
callback or a figure’s CloseRequest or ResizeFcn callback, it
interrupts an executing callback regardless of the value of that
object’s Interruptible property. The interrupting callback
starts execution at the next drawnow, figure, getframe, pause,
or waitfor statement. A figure’s WindowButtonDownFcn callback
routine, or an object’s ButtonDownFcn or Callback routine are
processed according to the rules described above.

Parent
handle

Uipanel parent. The handle of the uipanel’s parent figure,
uipanel, or uibuttongroup. You can move a uipanel object to
another figure, uipanel, or uibuttongroup by setting this property
to the handle of the new parent.

Position
position rectangle

Size and location of uipanel relative to parent. The rectangle
defined by this property specifies the size and location of the
panel within the parent figure window, uipanel, or uibuttongroup.
Specify Position as

[left bottom width height]

left and bottom are the distance from the lower-left corner of the
parent object to the lower-left corner of the uipanel object. width
and height are the dimensions of the uipanel rectangle, including
the title. All measurements are in units specified by the Units
property.

ResizeFcn
string or function handle

2-4193



Uipanel Properties

Resize callback routine. MATLAB executes this callback routine
whenever a user resizes the uipanel and the figure Resize
property is set to on, or in GUIDE, the Resize behavior option
is set to Other. You can query the uipanel Position property
to determine its new size and position. During execution of
the callback routine, the handle to the figure being resized is
accessible only through the root CallbackObject property, which
you can query using gcbo.

All axes, uipanel, uitable and uicontrol objects that have their
Units set to normalized automatically resize proportionally to
the figure. You can define individual resize functions for any
such object as needed. For example, you can use ResizeFcn
to maintain a GUI layout that is not directly supported by the
MATLAB Position/Units paradigm.

For example, consider a GUI layout that maintains an object
at a constant height in pixels and attached to the top of the
figure, but always matches the width of the figure. The following
ResizeFcn accomplishes this; it keeps the uicontrol whose Tag is
'StatusBar' 20 pixels high, as wide as the figure, and attached to
the top of the figure. Note the use of the Tag property to retrieve
the uicontrol handle, and the gcbo function to retrieve the figure
handle. Also note the defensive programming regarding figure
Units, which the callback requires to be in pixels in order to work
correctly, but which the callback also restores to their previous
value afterwards.

u = findobj('Tag','StatusBar');
fig = gcbo;
old_units = get(fig,'Units');
set(fig,'Units','pixels');
figpos = get(fig,'Position');
upos = [0, figpos(4) - 20, figpos(3), 20];
set(u,'Position',upos);
set(fig,'Units',old_units);

2-4194



Uipanel Properties

You can change the figure Position from within a uipanel
ResizeFcn callback; however, the ResizeFcn is not called again
as a result.

A figure’s uipanels resize before the figure itself does. Nested
uipanels resize from inner to outer, with child ResizeFcns being
called before parent ResizeFcns.

Note that the print command can cause the ResizeFcn to be
called if the PaperPositionMode property is set to manual and
you have defined a resize function. If you do not want your resize
function called by print, set the PaperPositionMode to auto.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

See Resize Behavior for information on creating resize functions
using GUIDE.

Selected
on | off (read only)

Is object selected? This property indicates whether the panel is
selected. When this property is on, MATLAB displays selection
handles if the SelectionHighlight property is also on. You
can, for example, define the ButtonDownFcn to set this property,
allowing users to select the object with the mouse.

SelectionHighlight
{on} | off

Object highlighted when selected. When the Selected property
is on, MATLAB indicates the selected state by drawing four edge
handles and four corner handles. When SelectionHighlight is
off, MATLAB does not draw the handles.

ShadowColor
ColorSpec

2-4195



Uipanel Properties

3-D frame shadow color. A three-element RGB vector or one of the
MATLAB predefined names, specifying the shadow color. See
the ColorSpec reference page for more information on specifying
color.

Tag
string

User-specified object identifier. The Tag property provides a
means to identify graphics objects with a user-specified label. You
can define Tag as any string.

With the findobj function, you can locate an object with a given
Tag property value. This saves you from defining object handles
as global variables. For example, this function call returns the
handles of all children (of the specified figures) that have the Tag
value 'FormatTb'.

h = findobj(figurehandles,'Tag','FormatTb')

Title
string

Title string. The text displayed in the panel title. You can position
the title using the TitlePosition property.

If the string value is specified as a cell array of strings or padded
string matrix, only the first string of a cell array or of a padded
string matrix is displayed; the rest are ignored. Vertical slash (’|’)
characters are not interpreted as line breaks and instead show up
in the text displayed in the uipanel title.

Setting a property value to default, remove, or factory produces
the effect described in “Defining Default Values”. To set Title to
one of these words, you must precede the word with the backslash
character. For example,

hp = uipanel(...,'Title','\Default');

2-4196



Uipanel Properties

TitlePosition
{lefttop} | centertop | righttop | leftbottom |
centerbottom | rightbottom

Location of the title. This property determines the location of the
title string, in relation to the uipanel.

Type
string (read-only)

Object class. This property identifies the kind of graphics object.
For uipanel objects, Type is always the string 'uipanel'.

UIContextMenu
handle

Associate a context menu with a uipanel. Assign this property
the handle of a Uicontextmenu object. MATLAB displays the
context menu whenever you right-click the uipanel. Use the
uicontextmenu function to create the context menu.

Units
inches | centimeters | {normalized} | points | pixels
| characters

Units of measurement. MATLAB uses these units to interpret the
Position property. For the panel itself, units are measured from
the lower-left corner of the figure window. For children of the
panel, they are measured from the lower-left corner of the panel.

• Normalized units map the lower-left corner of the panel or
figure window to (0,0) and the upper-right corner to (1.0,1.0).

• pixels, inches, centimeters, and points are absolute units
(1 point = 1/72 inch).

• Character units are characters using the default system font;
the width of one character is the width of the letter x, the
height of one character is the distance between the baselines of
two lines of text.

2-4197



Uipanel Properties

If you change the value of Units, it is good practice to return it
to its default value after completing your computation so as not
to affect other functions that assume Units is set to the default
value.

UserData
matrix

User-specified data. Any data you want to associate with the
uipanel object. MATLAB does not use this data, but you can
access it using set and get.

Visible
{on} | off

Uipanel visibility. By default, a uipanel object is visible. When
set to 'off', the uipanel is not visible, as are all child objects of
the panel. When a panel is hidden in this manner, you can still
query and set its properties.

Note The value of a uipanel’s Visible property determines
whether its child components, such as axes, buttons,
uibuttongroups, and other uipanels, are visible. However,
changing the Visible property of a panel does not change the
settings of the Visible property of its child components even
though hiding the panel causes them to be hidden.

2-4198



uipushtool

Purpose Create push button on toolbar

Syntax hpt = uipushtool
hpt = uipushtool(’PropertyName1’,value1,’PropertyName2’,

value2,...)
hpt = uipushtool(ht,...)

Description hpt = uipushtool creates a push button on the uitoolbar at the top of
the current figure window, sets all its properties to default values, and
returns a handle to the tool. If no uitoolbar exists, one is created. The
uitoolbar is the parent of the uipushtool. Use the returned handle hpt
to set properties of the tool. The ClickedCallback passes the handle
as its first argument. The button has no icon, but its border highlights
when you hover over it with the mouse cursor. Add an icon by setting
CData for the tool.

hpt =
uipushtool(’PropertyName1’,value1,’PropertyName2’,value2,...)
, creates a uipushtool and returns a handle to it. uipushtool assigns
the specified property values, and assigns default values to the
remaining properties. You can change the property values at a later
time using the set function. You can specify properties as parameter
name/value pairs, cell arrays containing parameter names and values,
or structures with fields containing parameter names and values as
input arguments. For a complete list, see Uipushtool Properties. Type
get(hpt) to see a list of uipushtool object properties and their current
values. Type set(hpt) to see a list of uipushtool object properties that
you can set and their legal property values.

hpt = uipushtool(ht,...) creates a button with ht as a parent. ht
must be a uitoolbar handle.

Uipushtools appear in figures whose Window Style is 'normal'
or 'docked'. Push tools do not appear in figures with 'modal'
WindowStyle. If you change the WindowStyle of a figure containing
a uitoolbar and its uipushtool children to 'modal', the uipushtools
continue to exist as Children of the uitoolbar. However, they do

2-4199

../ref/figure_props.html#WindowStyle


uipushtool

not display until you change the figure WindowStyle to 'normal' or
'docked'.

Unlike push buttons, uipushtools have no way to indicate that you have
double-clicked them. That is, a double click does not set the figure
SelectionType property to 'open'. Double-clicking a uipushtool simply
executes its ClickedCallback twice in succession. Also, uipushtools
cannot have context menus.

Examples Create a uitoolbar object and places a uipushtool object on it. Generate
an icon for the tool by reading a GIF file containing a MATLAB icon.
Convert the indexed image to a truecolor image before specifying it as
CData.

h = figure('ToolBar','none');
ht = uitoolbar(h);
% Use a MATLAB icon for the tool
[X map] = imread(fullfile(...

matlabroot,'toolbox','matlab','icons','matlabicon.gif'));
% Convert indexed image and colormap to truecolor
icon = ind2rgb(X,map);
% Create a uipushtool in the toolbar
hpt = uipushtool(ht,'CData',icon,...

'TooltipString','uipushtool',...
'ClickedCallback','disp(''Hello World!'')')

2-4200



uipushtool

Alternatives You can also create toolbars with push tools using GUIDE.

See Also get | set | uicontrol | uitoggletool | uitoolbar | Uipushtool
Properties

Tutorials • “GUI with Axes, Menu, and Toolbar”

How To • “Creating Toolbars”

2-4201



Uipushtool Properties

Purpose Describe push tool properties

Modifying
Properties

You can set and query graphics object properties in two ways:

• The Property Inspector is an interactive tool that enables you to
see and change object property values. The Property inspector is
available from GUIDE, or use the inspect function at the command
line.

• The set and get functions enable you to set and query the values of
properties.

You can set default Uipushtool properties by typing:

set(h,'DefaultUipushtoolPropertyName',PropertyValue...)

Where h can be the root handle (0), a figure handle, a uitoolbar handle,
or a uipushtool handle. PropertyName is the name of the Uipushtool
property and PropertyValue is the value you specify as the default
for that property.

For more information about changing the default value of a property
see Setting Default Property Values.

Uipushtool
Properties

This section lists all properties useful to uipushtool objects along with
valid values and a descriptions of their use. Curly braces { } enclose
default values.

Property Purpose

BeingDeleted This object is being deleted.

BusyAction Callback routine interruption.

CData Truecolor image displayed on the control.

ClickedCallback Control action.

CreateFcn Callback routine executed during object creation.

DeleteFcn Delete uipushtool callback routine.

2-4202



Uipushtool Properties

Property Purpose

Enable Enable or disable the uipushtool.

HandleVisibilityControl access to object’s handle.

HitTest Whether selectable by mouse click

Interruptible Callback routine interruption mode.

Parent Handle of uipushtool’s parent.

Separator Separator line mode

Tag User-specified object label.

TooltipString Content of object’s tooltip.

Type Object class.

UIContextMenu Uicontextmenu object associated with the
uipushtool

UserData User specified data.

Visible Uipushtool visibility.

BeingDeleted
on | {off} (read only)

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are
in the process of being deleted. MATLAB software sets the
BeingDeleted property to on when the object’s delete function
callback is called (see the DeleteFcn property). It remains set to
on while the delete function executes, after which the object no
longer exists.

For example, some functions may not need to perform actions
on objects that are being deleted, and therefore, can check the
object’s BeingDeleted property before acting.

2-4203



Uipushtool Properties

BusyAction
cancel | {queue}

Callback routine interruption. If a callback is executing and the
user triggers an event (such as a mouse click) on an object for
which a callback is defined, the callback associated with the new
event uses the value of BusyAction to decide whether or not to
attempt to interrupt the executing callback.

• If the value is cancel, the event is discarded and the second
callback does not execute.

• If the value is queue, and the Interruptible property of the
first callback is on, the second callback is added to the event
queue and executes in its turn after the first callback finishes
execution.

Note If the interrupting callback is a DeleteFcn or CreateFcn
callback or a figure’s CloseRequest or ResizeFcn callback,
it interrupts an executing callback regardless of the value of
that object’s Interruptible property. See the Interruptible
property for information about controlling a callback’s
interruptibility.

CData
3-dimensional array

Truecolor image displayed on control. An n-by-m-by-3 array of
RGB values that defines a truecolor image displayed on either
a push button or toggle button. Each value must be between
0.0 and 1.0. If your CData array is larger than 16 in the first or
second dimension, it may be clipped or cause other undesirable
effects. If the array is clipped, only the center 16-by-16 part of
the array is used.

2-4204



Uipushtool Properties

ClickedCallback
string or function handle

Control action. A routine that executes when the uipushtool’s
Enable property is set to on, and you press a mouse button while
the pointer is on the push tool itself or in a 5-pixel wide border
around it.

CreateFcn
string or function handle

Callback routine executed during object creation. The specified
function executes when MATLAB creates a uipushtool object.
MATLAB sets all property values for the uipushtool before
executing the CreateFcn callback so these values are available
to the callback. Within the function, use gcbo to get the handle
of the push tool being created.

Setting this property on an existing uipushtool object has no effect.

You can define a default CreateFcn callback for all new
uipushtools. This default applies unless you override it by
specifying a different CreateFcn callback when you call
uipushtool. For example, the code

imga(:,:,1) = rand(20);
imga(:,:,2) = rand(20);
imga(:,:,3) = rand(20);
set(0,'DefaultUipushtoolCreateFcn','set(gcbo,''Cdata'',imga)')

creates a default CreateFcn callback that runs whenever you
create a new push tool. It sets the default image imga on the
push tool.

To override this default and create a push tool whose Cdata
property is set to a different image, call uipushtool with code
similar to

2-4205



Uipushtool Properties

a = [.05:.05:0.95];
imgb(:,:,1) = repmat(a,19,1)';
imgb(:,:,2) = repmat(a,19,1);
imgb(:,:,3) = repmat(flipdim(a,2),19,1);
hpt = uipushtool(...,'CreateFcn','set(gcbo,''CData'',imgb)',...)

Note To override a default CreateFcn callback you must provide
a new callback and not just provide different values for the
specified properties. This is because the CreateFcn callback
runs after the property values are set, and can override property
values you have set explicitly in the uipushtool call. In the
example above, if instead of redefining the CreateFcn property
for this push tool, you had explicitly set CData to imgb, the default
CreateFcn callback would have set CData back to imga.

Do not call copyobj or textwrap (which calls copyobj) inside
a CreateFcn. The act of copying the uicontrol object fires the
CreateFcn repeatedly, which raises a series of error messages
after exceeding the root object’s RecursionLimit property.

See “Function Handle Callbacks” for information on how to use
function handles to define a callback function.

DeleteFcn
string or function handle

Callback routine executed during object deletion. A callback
routine that executes when you delete the uipushtool object (e.g.,
when you call the delete function or cause the figure containing
the uipushtool to reset). MATLAB executes the routine before
destroying the object’s properties so these values are available
to the callback routine.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

2-4206

../ref/rootobject_props.html#RecursionLimit


Uipushtool Properties

See “Function Handle Callbacks” for information on how to use
function handles to define a callback function.

Enable
{on} | off

Enable or disable the uipushtool. This property controls how
uipushtools respond to mouse button clicks, including which
callback routines execute.

• on – The uipushtool is operational (the default).

• off – The uipushtool is not operational and its image (set by
the Cdata property) is grayed out.

When you left-click a uipushtool whose Enable property is on,
MATLAB performs these actions in this order:

1 Executes the push tool’s ClickedCallback routine.

2 Does not set the figure CurrentPoint property and does not
execute the figure’s WindowButtonDownFcn callback.

3 Does not set the figure SelectionType property.

When you left-click a uipushtool whose Enable property is off, or
when you right-click a uipushtool whose Enable property has any
value, no action is reported, no callback executes, and neither the
SelectionType nor CurrentPoint figure properties are modified.

HandleVisibility
{on} | callback | off

Control access to object’s handle. This property determines when
an object’s handle is visible in its parent’s list of children. When
a handle is not visible in its parent’s list of children, it is not
returned by functions that obtain handles by searching the object
hierarchy or querying handle properties. This includes get,
findobj, gca, gcf, gco, newplot, cla, clf, and close. Neither is
the handle visible in the parent figure’s CurrentObject property.

2-4207



Uipushtool Properties

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties, and pass it to any
function that operates on handles.

• Handles are always visible when HandleVisibility is on.

• Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by
callback routines, but not from within functions invoked from
the command line. This provides a means to protect GUIs from
command-line users, while allowing callback routines to have
complete access to object handles.

• Setting HandleVisibility to off makes handles invisible
at all times. This may be necessary when a callback routine
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string), and so temporarily
hides its own handles during the execution of that function.

You can set the root ShowHiddenHandles property to on to
make all handles visible, regardless of their HandleVisibility
settings. This does not affect the values of the HandleVisibility
properties.

HitTest
{on} | off

Selectable by mouse click. This property has no effect on
uipushtool objects.

Interruptible
{on} | off

Callback routine interruption mode. If a callback is executing and
the user triggers an event (such as a mouse click) on an object for
which a callback is defined, that callback attempts to interrupt
the first callback. MATLAB processes the callbacks according to
these factors:

2-4208

../ref/rootobject_props.html#ShowHiddenHandles


Uipushtool Properties

• The Interruptible property of the object whose callback is
executing

• Whether the executing callback contains drawnow, figure,
getframe, pause, or waitfor statements

• The BusyAction property of the object whose callback is
waiting to execute

If the Interruptible property of the object whose callback is
executing is on (the default), the callback can be interrupted.
Whenever the callback calls one of the drawnow, figure,
getframe, pause, or waitfor functions, the function processes
any events in the event queue, including the waiting callback,
before performing its defined task.

If the Interruptible property of the object whose callback is
executing is off, the callback cannot be interrupted (except by
certain callbacks; see the note below). The BusyAction property
of the object whose callback is waiting to execute determines what
happens to the callback.

Note If the interrupting callback is a DeleteFcn or CreateFcn
callback or a figure’s CloseRequest or ResizeFcn callback, it
interrupts an executing callback regardless of the value of that
object’s Interruptible property. The interrupting callback
starts execution at the next drawnow, figure, getframe, pause,
or waitfor statement. A figure’s WindowButtonDownFcn callback
routine, or an object’s ButtonDownFcn or Callback routine are
processed according to the rules described above.

Parent
handle

2-4209



Uipushtool Properties

Uipushtool parent. The handle of the uipushtool’s parent toolbar.
You can move a uipushtool object to another toolbar by setting
this property to the handle of the new parent.

Separator
on | {off}

Separator line mode. Setting this property to on draws a dividing
line to the left of the uipushtool.

Tag
string

User-specified object identifier. The Tag property provides a
means to identify graphics objects with a user-specified label. You
can define Tag as any string.

With the findobj function, you can locate an object with a given
Tag property value. This saves you from defining object handles
as global variables. For example, this function call returns the
handles of all children (of the specified toolbars) that have the
Tag value 'Copy'.

h = findobj(uitoolbarhandles,'Tag','Copy')

TooltipString
string

Content of tooltip for object. The TooltipString property specifies
the text of the tooltip associated with the uipushtool. When the
user moves the mouse pointer over the control and leaves it there,
the tooltip is displayed.

To create a tooltip that has more than one line of text, use sprintf
to generate a string containing newline (\n) characters and then
set the TooltipString to that value. For example:

h = uipushtool;
s = sprintf('Pushtool tooltip line 1\nPushtool tooltip line 2');

2-4210



Uipushtool Properties

set(h,'TooltipString',s)

Type
string (read-only)

Object class. This property identifies the kind of graphics object.
For uipushtool objects, Type is always the string 'uipushtool'.

UIContextMenu
handle

Associate a context menu with uicontrol. This property has no
effect on uipushtool objects.

UserData
array

User specified data. You can specify UserData as any array you
want to associate with the uipushtool object. The object does
not use this data, but you can access it using the set and get
functions.

Visible
{on} | off

Uipushtool visibility. By default, all uipushtools are visible. When
set to off, the uipushtool is not visible, but still exists and you
can query and set its properties.

2-4211



uiputfile

Purpose Open standard dialog box for saving files

Syntax FileName = uiputfile
[FileName,PathName] = uiputfile
[FileName,PathName,FilterIndex] = uiputfile(FilterSpec)
[FileName,PathName,FilterIndex] = uiputfile(FilterSpec,

DialogTitle)
[FileName,PathName,FilterIndex] = uiputfile(FilterSpec,

DialogTitle,DefaultName)

Description FileName = uiputfile displays a modal dialog box for selecting or
specifying a file you want to create or save. The dialog box lists the files
and folders in the current folder. If the selected or specified filename is
valid, uiputfile returns it in FileName.

[FileName,PathName] = uiputfile works the same as the first
syntax, but also returns the path to FileName in PathName, or if you
cancel the dialog, returns 0 for both arguments. If you do not provide
any output arguments, the filename alone is returned in ans.

[FileName,PathName,FilterIndex] = uiputfile(FilterSpec)
displays only those files with extensions that match FilterSpec. On
some platforms uiputfile also displays the files that do not match
FilterSpec in grey. The uiputfile function appends 'All Files'
to the list of file types. FilterSpec can be a string or a cell array of
strings, and can include the * and ? wildcard characters. For example,
'*.m' lists all MATLAB program files in a folder.

FilterSpec can be a string that contains a filename. uiputfile
displays the filename selected in the File name field and uses the file
extension as the default filter. The FilterSpec string can include
a path, or consist of a path only. To specify a folder only, make the
last character in DefaultName '\' or '/'. A path can contain special
path characters, such as '.', '..', '/', '\', or '~'. For example,
'../*.m' lists all program files in the folder above the current folder. If
FilterSpec is a cell array of strings, the first column contains a list of
file extensions. The optional second column contains a corresponding
list of descriptions. These descriptions replace the default descriptions

2-4212



uiputfile

in the Save as type pop-up menu. A description cannot be an empty
string. See the “Examples” on page 2-4215 for illustration of using cell
arrays as FilterSpec. If you do not specify FilterSpec, uiputfile
uses the default list of file types (all MATLAB files). FilterIndex is the
index of the filter selected in the dialog box. Indexing starts at 1. If you
click the Cancel button, close the dialog window, or if the file does not
exist, uiputfile returns FilterIndex as 0.

[FileName,PathName,FilterIndex] =
uiputfile(FilterSpec,DialogTitle) displays a dialog box that has
the title DialogTitle. To use the default file types and to specify a
dialog title, enter uiputfile('','DialogTitle')

[FileName,PathName,FilterIndex] =
uiputfile(FilterSpec,DialogTitle,DefaultName) displays a dialog
box in which the filename specified by DefaultName appears in the
File name field. DefaultName can also be a path or a path+filename.
To specify a folder only, make the last character in DefaultName '\' or
'/'. In this case, uiputfile opens the dialog box in the folder specified
by the path. If you specify a path in DefaultName that does not exist,
uiputfile opens the dialog box in the current folder. You can use
'.','..', '\', '/', or ~ in the DefaultName argument.

When typing into the dialog box, if you include either of the wildcard
characters '*' or '?' in a file name, uiputfile does not respond to
clicking Save. The dialog box remains open until you cancel it or remove
the wildcard characters. This restriction applies to all platforms, even
to file systems that permit these characters in file names.

If you select or specify an existing filename, the following warning
dialog box opens.

2-4213



uiputfile

Select Yes to replace the existing file or No to return to the dialog to
select another filename. Selecting Yes returns the name of the file.
Selecting No returns 0.

Successful execution of uiputfile does not create a file; it only returns
the name of a new or existing file that you designate.

For Microsoft Windows platforms, the dialog box is the Windows dialog
box native to your platform, and thus can differ from what you see in
the examples that follow.

For UNIX platforms, the dialog box is like the one shown in the
following figure.

For Mac platforms, the dialog box is like the one shown in the following
figure.

2-4214



uiputfile

Note A modal dialog box prevents you from interacting with other
MATLAB windows before responding. To block MATLAB program
execution as well, use the uiwait function. For more information about
modal dialog boxes, see WindowStyle in the MATLAB Figure Properties.

Examples The following statement displays a dialog box titled 'Save file name',
setting the Filename field to animinit.m and the filter to program
files (*.m). Because FilterSpec is a string, the filter also includes
All Files (*.*)

[file,path] = uiputfile('animinit.m','Save file name');

2-4215



uiputfile

The following statement displays a dialog box titled 'Save Workspace
As' with the filter specifier set to MAT-files.

[file,path] = uiputfile('*.mat','Save Workspace As');

2-4216



uiputfile

To display several file types in the Save as type list box, separate each
file extension with a semicolon, as in the following code. uiputfile
displays a default description for each known file type, such as "Model
files" for Simulink .mdl files.

[filename, pathname] = uiputfile(...
{'*.m';'*.mdl';'*.mat';'*.*'},...
'Save as');

2-4217



uiputfile

If you want to create a list of file types and give them descriptions that
are different from the defaults, use a cell array. This example also
associates multiple file types with the 'MATLAB Files' description.

[filename, pathname, filterindex] = uiputfile( ...
{'*.m;*.fig;*.mat;*.mdl','MATLAB Files (*.m,*.fig,*.mat,*.mdl)';
'*.m', 'program files (*.m)';...
'*.fig','Figures (*.fig)';...
'*.mat','MAT-files (*.mat)';...
'*.mdl','Models (*.mdl)';...
'*.*', 'All Files (*.*)'},...
'Save as');

2-4218



uiputfile

The first column of the cell array contains the file extensions, while the
second contains the descriptions you want to provide for the file types.
The first entry of column one contains several extensions separated by
semicolons. These file types all associate with the description 'MATLAB
Files (*.m,*.fig,*.mat,*.mdl)'. The code produces the dialog box
shown in the following figure.

The following code checks for the existence of the file and displays a
message about the result of the file selection operation.

[filename, pathname] = uiputfile('*.m','Pick a MATLAB program file'
if isequal(filename,0) || isequal(pathname,0)

disp('User selected Cancel')

2-4219



uiputfile

else
disp(['User selected',fullfile(pathname,filename)])

end

Select or enter a file name for saving a figure as an image in one of four
formats, described in a cell array.

uiputfile({'*.jpg;*.tif;*.png;*.gif','All Image Files';...
'*.*','All Files' },'Save Image',...
'C:\Work\newfile.jpg')

See Also save, uigetdir, uigetfile, uisave

“Files and Filenames”

2-4220



uiresume

Purpose Resume execution of blocked M-file

Syntax uiresume(h)

Description uiresume(h) resumes the M-file execution that uiwait suspended.

Remarks The uiwait and uiresume functions block and resume MATLAB
program execution. When creating a dialog, you should have a uicontrol
component with a callback that calls uiresume or a callback that
destroys the dialog box. These are the only methods that resume
program execution after the uiwait function blocks execution.

When used in conjunction with a modal dialog, uiresume can resume
the execution of the M-file that uiwait suspended while presenting a
dialog box.

Example This example creates a GUI with a Continue push button. The
example calls uiwait to block MATLAB execution until uiresume is
called. This happens when the user clicks the Continue push button
because the push button’s Callback callback, which responds to the
click, calls uiresume.

f = figure;
h = uicontrol('Position',[20 20 200 40],'String','Continue',...

'Callback','uiresume(gcbf)');
disp('This will print immediately');
uiwait(gcf);
disp('This will print after you click Continue');
close(f);

gcbf is the handle of the figure that contains the object whose callback
is executing.

“Using a Modal Dialog Box to Confirm an Operation” is a more complex
example for a GUIDE GUI. See “Icon Editor” for an example for a
programmatically created GUI.

2-4221



uiresume

See Also dialog, figure, uicontrol, uimenu, uiwait, waitfor

2-4222



uisave

Purpose Open standard dialog box for saving workspace variables

Syntax uisave
uisave(variables)
uisave(variables,filename)
uisave(variables)
uisave(variables,filename)

Description uisave displays the Save Workspace Variables dialog box for saving
workspace variables to a MAT-file, as shown in the following figure.
The dialog box opens in your current folder. Navigate to the folder in
which you want to save the MAT-file.

If you type a name in the File name field, such as my_vars, and click
Save, the dialog saves all workspace variables to the file my_vars.mat.
The default filename is matlab.mat. If the filename you specify exists
in that folder, uisave prompts you and gives you a chance to cancel
the operation.

uisave(variables) saves only the variables listed in variables. For a
single variable, variables can be a string. For more than one variable,
variables must be a cell array of strings.

2-4223



uisave

uisave(variables,filename) uses the specified filename as the
default File name in the Save Workspace Variables dialog box.

If you type a name in the File name field, such as my_vars, and click
Save, the dialog saves all workspace variables in the file my_vars.mat.
The default filename is matlab.mat.

uisave(variables) saves only the variables listed in variables. For a
single variable, variables can be a string. For more than one variable,
variables must be a cell array of strings.

uisave(variables,filename) uses the specified filename as the
default File name in the Save Workspace Variables dialog box.

The following GUI options also save workspace variables:

• Use File > Save to save workspace variables.

• Click the Save icon in the Workspace Browser.

• Select one or more variables in the Workspace Browser, right-click,
and choose Save as from the context menu.

Note The uisave dialog box is modal. A modal dialog box prevents the
user from interacting with other windows before responding. For more
information, see WindowStyle in the MATLAB Figure Properties.

Example This example creates workspace variables h and g, and then displays
the Save Workspace Variables dialog box in the current folder with
the default File name set to var1.

h = 365;
g = 52;
uisave({'h','g'},'var1');

2-4224



uisave

Clicking Save stores the workspace variables h and g in the file
var1.mat in the displayed folder.

See Also save, uigetfile, uiputfile, uiopen

“Saving the Current Workspace”

2-4225



uisetcolor

Purpose Open standard dialog box for setting object’s ColorSpec

Syntax c = uisetcolor
c = uisetcolor([r g b])
c = uisetcolor(h)
c = uisetcolor(...,'dialogTitle')

Description c = uisetcolor displays a modal color selection dialog appropriate to
the platform, and returns the color selected by the user. The dialog
box is initialized to white.

c = uisetcolor([r g b]) displays a dialog box initialized to the
specified color, and returns the color selected by the user. r, g, and b
must be values between 0 and 1.

c = uisetcolor(h) displays a dialog box initialized to the color of the
object specified by handle h, returns the color selected by the user, and
applies it to the object. h must be the handle to an object containing a
color property.

c = uisetcolor(...,'dialogTitle') displays a dialog box with the
specified title.

If the user presses Cancel from the dialog box, or if any error occurs,
the output value is set to the input RGB triple, if provided; otherwise, it
is set to 0.

Note A modal dialog box prevents the user from interacting with other
windows before responding. For more information, see WindowStyle in
the MATLAB Figure Properties.

See Also ColorSpec

2-4226



uisetfont

Purpose Open standard dialog box for setting object’s font characteristics

Syntax uisetfont
uisetfont(h)
uisetfont(S)
uisetfont(...,'DialogTitle')
S = uisetfont(...)

Description uisetfont enables you to change font properties (FontName, FontUnits,
FontSize, FontWeight, and FontAngle) for a text, axes, or uicontrol
object. The function returns a structure consisting of font properties
and values. You can specify an alternate title for the dialog box.

uisetfont displays a modal dialog box and returns the selected font
properties.

Note A modal dialog box prevents the user from interacting with other
windows before responding. For more information, see WindowStyle in
the MATLAB Figure Properties.

uisetfont(h) displays a modal dialog box, initializing the font
property values with the values of those properties for the object whose
handle is h. Selected font property values are applied to the current
object. If a second argument is supplied, it specifies a name for the
dialog box.

uisetfont(S) displays a modal dialog box, initializing the font
property values with the values defined for the specified structure (S). S
must define legal values for one or more of these properties: FontName,
FontUnits, FontSize, FontWeight, and FontAngle and the field names
must match the property names exactly. If other properties are defined,
they are ignored. If a second argument is supplied, it specifies a name
for the dialog box.

2-4227



uisetfont

uisetfont(...,'DialogTitle') displays a modal dialog box with the
title DialogTitle and returns the values of the font properties selected
in the dialog box.

S = uisetfont(...) returns the properties FontName, FontUnits,
FontSize, FontWeight, and FontAngle as fields in a structure. If the
user presses Cancel from the dialog box or if an error occurs, the
output value is set to 0.

Example These statements create a text object, then display a dialog box (labeled
Update Font) that enables you to change the font characteristics:

h = text(.5,.5,'Figure Annotation');
uisetfont(h,'Update Font')

These statements create two push buttons, then set the font properties
of one based on the values set for the other:

% Create push button with string ABC
c1 = uicontrol('Style', 'pushbutton', ...

'Position', [10 10 100 20], 'String', 'ABC');
% Create push button with string XYZ
c2 = uicontrol('Style', 'pushbutton', ...

'Position', [10 50 100 20], 'String', 'XYZ');
% Display set font dialog box for c1, make selections,
& and save to d
d = uisetfont(c1);
% Apply those settings to c2
set(c2, d)

See Also axes, text, uicontrol

2-4228



uisetpref

Purpose Manage preferences used in uigetpref

Syntax uisetpref('clearall')

Description uisetpref('clearall') resets the value of all preferences registered
through uigetpref to 'ask'. This causes the dialog box to display
when you call uigetpref.

Note Use setpref to set the value of a particular preference to 'ask'.

See Also setpref, uigetpref

2-4229



uistack

Purpose Reorder visual stacking order of objects

Syntax uistack(h)
uistack(h,stackopt)
uistack(h,stackopt,step)

Description uistack(h) raises the visual stacking order of the objects specified by
the handles in h by one level (step of 1). All handles in h must have
the same parent.

uistack(h,stackopt) moves the objects specified by h in the stacking
order, where stackopt is one of the following:

• 'up' – moves h up one position in the stacking order

• 'down' – moves h down one position in the stacking order

• 'top' – moves h to the top of the current stack

• 'bottom' – moves h to the bottom of the current stack

uistack(h,stackopt,step) moves the objects specified by h up or down
the number of levels specified by step.

Note In a GUI, axes objects are always at a lower level than uicontrol
objects. You cannot stack an axes object on top of a uicontrol object.

See “Setting Tab Order” in the MATLAB documentation for information
about changing the tab order.

Example The following code moves the child that is third in the stacking order of
the figure handle hObject down two positions.

v = allchild(hObject)
uistack(v(3),'down',2)

2-4230



uitable

Purpose Create 2-D graphic table GUI component

Syntax uitable
uitable(’PropertyName1’, value1,’PropertyName2’,value2,...)
uitable(parent,...)
handle = uitable(...)

Description uitable creates an empty uitable object in the current figure window,
using default property values. If no figure exists, a new figure window
opens.

uitable(’PropertyName1’, value1,’PropertyName2’,value2,...)
creates a uitable object with specified property values. Properties that
you do not specify assume the default property values. See the Uitable
Properties reference page for information about the available properties.

uitable(parent,...) creates a uitable object as a child of the
specified parent handle parent. The parent can be a figure or uipanel
handle. If you also specify a different value for the Parent property, the
value of the Parent property takes precedence.

handle = uitable(...) creates a uitable object and returns its
handle.

Tips After creating a uitable object, you can set and query its property
values using the set and get functions.

If the ColumnEditable property is true for columns you edit, you can
change values in a displayed table. By default, this property is false
for all columns. If a noneditable column contains pop-up choices, only
the current choice is visible (and not the pop-up menu control).

2-4231



uitable

If you attempt to create a uitable object when running MATLAB on
a UNIX18 system without a Java virtual machine (matlab -nojvm) or
without a display (matlab nodisplay), no table generates and you
receive an error.

The CellEditCallback executes after you edit a value and do any of
the following:

• Type Enter.

• Click another table cell.

• Click anywhere else within the table.

• Click another control or area within the same figure window.

• Click another window, click again on the GUI containing the table
(or use Alt+Tab to switch windows), and then perform any of the
above four actions.

When the CellEditCallback callback executes, uitable updates the
underlying data matrix (the table Data property) to contain the value
that the cell now displays.

The CellSelectionCallback executes when you select a table cell or
remove one from the current selection by Ctrl+clicking it. Clicking
a cell without pressing any key selects it and deselects all currently
selected cells. You can define a range of table cells by Shift+clicking an
unselected cell after selecting one or more cells. The callback provides
event data that identifies the rows and columns of all cells in the
current selection.

You cannot select table cells programmatically. Directly clicking cells is
the only method of selection.

Examples Create a table, provide magic-square data, set column widths uniformly,
and specify the uitable ColumnWidth property as a cell array:

18. UNIX is a registered trademark of The Open Group in the United States and
other countries.

2-4232



uitable

1 Create a table in the current figure. If no figure exists, one opens:

t = uitable;

2 As the table has no content (its Data property is empty), it initially
displays no rows or columns. Provide data (a magic square)

set(t,'Data',magic(10))

2-4233



uitable

3 Make the entire table contents visible. Set column widths to 25
pixels uniformly. Specify the ColumnWidth property of the table as a
cell array.

set(t,'ColumnWidth',{25})

2-4234



uitable

Cell arrays that specify ColumnWidth can contain:

• One number (a width measured in pixels, as shown here) or the
string 'auto'.

• A cell array containing a list of pixel sizes having up to as many
entries as the table has columns .

If a list of column widths has n entries, where n is smaller than the
number of columns, it sets the first n column widths only. You can
substitute 'auto' for any value in the cell array to have the width of
that column calculated automatically.

2-4235



uitable

Create a figure and add a table to contain a 3-by-3 data matrix. The
code specifies the column names, row names, parent, and position of
the table:

f = figure('Position',[200 200 400 150]);
dat = rand(3);
cnames = {'X-Data','Y-Data','Z-Data'};
rnames = {'First','Second','Third'};
t = uitable('Parent',f,'Data',dat,'ColumnName',cnames,...

'RowName',rnames,'Position',[20 20 360 100]);

Create a table to contain a 3-by-4 array that contains numeric, logical,
and string data, as follows:

• First column (Rate): Numeric, with three decimals (not editable)

• Second column (Amount): Currency (not editable)

• Third column (Available): Check box (editable)

• Fourth column (Fixed/Adj): Pop-up menu with two choices: Fixed
and Adjustable (editable)

2-4236



uitable

• Specify the RowName property as empty to remove row names from
the table.

f = figure('Position',[100 100 400 150]);
dat = {6.125, 456.3457, true, 'Fixed';...

6.75, 510.2342, false, 'Adjustable';...
7, 658.2, false, 'Fixed';};

columnname = {'Rate', 'Amount', 'Available', 'Fixed/Adj'};
columnformat = {'numeric', 'bank', 'logical', {'Fixed' 'Adjustable'
columneditable = [false false true true];
t = uitable('Units','normalized','Position',...

[0.1 0.1 0.9 0.9], 'Data', dat,...
'ColumnName', columnname,...
'ColumnFormat', columnformat,...
'ColumnEditable', columneditable,...
'RowName',[]);

Alternatives You can add tables to GUIs you create with “Defining Tables”.

See Also figure | format | get | set | uipanel | Uitable Properties

Tutorials • “GUI to Interactively Explore Data in a Table”

2-4237



uitable

• “GUI that Displays and Graphs Tabular Data”

How To • “Defining Tables”

2-4238



Uitable Properties

Purpose Describe table properties

Modifying
Properties

You can set and query graphics object properties in two ways:

• The Property Inspector is an interactive tool that enables you to
see and change object property values. The Property inspector is
available from GUIDE, or use the inspect function at the command
line.

• The set and get functions enable you to set and query the values of
properties.

You can set default uitable properties by typing:

set(h,'DefaultUitablePropertyName',PropertyValue...)

Where h can be the root handle (0), a figure handle, or a uitable handle.
PropertyName is the name of the uitable property and PropertyValue
is the value you specify as the default for that property.

For more information about changing the default value of a property see
“Setting Default Property Values”. For an example, see the CreateFcn
property.

Uitable
Properties

This section lists all properties useful to uitable objects along with
valid values and descriptions of their use. In the property descriptions,
curly braces { } enclose default values.

Property Name Description

BackgroundColor Background color of cells.

BeingDeleted This object is being deleted.

BusyAction Callback routine interruption

ButtonDownFcn Button-press callback routine

2-4239



Uitable Properties

Property Name Description

CellEditCallback Callback when data in a cell is changed.

CellSelectionCallbackCallback when cell is selected

Children uitable objects have no children

Clipping Does not apply to uitable objects

ColumnEditable Determines data in a column as editable

ColumnFormat Determines display and editablility of
columns

ColumnName Column header label

ColumnWidth Width of each column in pixels

CreateFcn Callback routine during object creation

Data Table data

DeleteFcn Callback routine during object deletion

Enable Enable or disable the uitable

Extent Size of uitable rectangle

FontAngle Character slant of cell content

FontName Font family for cell content

FontSize Font size of cell content

FontUnits Font size units for cell content

FontWeight Weight of cell text characters

ForegroundColor Color of text in cells

HandleVisibility Control access to object’s handle

HitTest Selectable by mouse click

Interruptible Callback routine interruption mode

KeyPressFcn Key press callback function

2-4240



Uitable Properties

Property Name Description

Parent uitable parent

Position Size and location of uitable

RearrangeableColumn Location of the column

RowName Row header label names

RowStriping Color striping of label rows

Selected Is object selected?

SelectionHighlight Object highlight when selected

Tag Use-specified object label

TooltipString Content of tooltip for object

Type Class of graphics object

UIContextMenu Associate context menu with uitable

Units Units of measurement

UserData User-specified data

Visible uitable visibility

BackgroundColor
1-by-3 or 2-by-3 matrix of RGB triples

Cell background color. Color used to fill the uitable cells.
Specify as an 1-by-3 or 2-by-3 matrix of RGB triples, such as [.8
.9. .8] or [1 1 .9; .9 1 1]. Each row is an RGB triplet
of real numbers between 0.0 and 1.0 that defines one color.
(Color names are not allowed.) The default is a 1-by-3 matrix of
platform-dependent colors. See ColorSpec for information about
RGB colors.

2-4241



Uitable Properties

Row 2 of the matrix is used only if the RowStriping property is
on. The table background is not striped unless both RowStriping
is on and the BackgroundColor color matrix has two rows.

BeingDeleted
on | {off} (read-only)

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are
in the process of being deleted. MATLAB software sets the
BeingDeleted property to on when the object’s delete function
callback is called (see the DeleteFcn property) It remains set to
on while the delete function executes, after which the object no
longer exists.

For example, some functions may not need to perform actions
on objects that are being deleted, and therefore, can check the
object’s BeingDeleted property before acting.

BusyAction
cancel | {queue}

Callback routine interruption. If a callback is executing and the
user triggers an event (such as a mouse click) on an object for
which a callback is defined, the callback associated with the new
event uses the value of BusyAction to decide whether or not to
attempt to interrupt the executing callback.

• If the value is cancel, the new event is discarded and the
second callback does not execute.

• If the value is queue, and the Interruptible property of the
first callback is on, the second callback is added to the event
queue and executes in its turn after the first callback finishes
execution.

2-4242

./uitableproperties.html#RowStriping
./uitableproperties.html#DeleteFcn


Uitable Properties

Note If the interrupting callback is DeleteFcn or CreateFcn or
a figure’s CloseRequest or ResizeFcn callback, it interrupts
an executing callback regardless of the value of that object’s
Interruptible property. See the Interruptible property for
information about controlling a callback’s interruptibility.

ButtonDownFcn
string or function handle (GUIDE sets this property)

Button-press callback routine. A callback routine that can execute
when you press a mouse button while the pointer is on or near
a uitable. Specifically:

• If the uitable Enable property is set to on, the ButtonDownFcn
callback executes when you click the right or left mouse button
in a 5-pixel border around the uitable or when you click the
right mouse button on the control itself.

• If the uitable Enable property is set to inactive or off, the
ButtonDownFcn executes when you click the right or left mouse
button in the 5-pixel border or on the control itself.

This is useful for implementing actions to interactively modify
control object properties, such as size and position, when they are
clicked on (using the selectmoveresize function, for example).

Define this routine as a string that is a valid MATLAB expression
or the name of an M-file. The expression executes in the MATLAB
workspace.

To add a ButtonDownFcn callback in GUIDE, select View
Callbacks from the Layout Editor View menu, then select
ButtonDownFcn. GUIDE sets this property to the appropriate
string and adds the callback to the M-file the next time you save
the GUI. Alternatively, you can set this property to the string
%automatic. The next time you save the GUI, GUIDE sets this

2-4243



Uitable Properties

property to the appropriate string and adds the callback to the
M-file.

CellEditCallback
function handle, cell array containing function handle and
additional arguments, or string (not recommended)

Callback to edit user-entered data

Callback function executed when the user modifies a table cell.
It can perform evaluations, validations, or other customizations.
If this function is called as a function handle, uitable passes
it two arguments. The first argument, source, is the handle of
the uitable. The second argument, eventdata, is an event data
structure that contains the fields shown in the following table. All
fields in the event data structure are read only.

Event
Data
Structure
Field Type Description

Indices 1-by-2
matrix

Row index and column index of the cell the
user edited.

PreviousData1-by-1
matrix
or cell
array

Previous data for the changed cell. The
default is an empty matrix, [].

EditData String User-entered string.

2-4244



Uitable Properties

Event
Data
Structure
Field Type Description

NewData 1-by-1
matrix
or cell
array

Value that uitable wrote to Data. It is
either the same as EditData or a converted
value, for example, 2 where EditData is '2'
and the cell is numeric.

Empty if uitable detected an error in the
user-entered data and did not write it to
Data.

Error String Error that occurred when uitable tried
to convert the EditData string into a
value appropriate for Data. For example,
uitable could not convert the EditData
string consistent with the Column Format
property, if any, or the data type for the
changed cell.

Empty if uitable wrote the value to Data.

If Error is not empty, the
CellEditCallback can pass the error string
to the user or can attempt to manipulate
the data. For example, the string 'pi'
would raise an error in a numeric cell but
the CellEditCallback could convert it to
its numerical equivalent and store it in
Data without passing the error to the user.

When a user edits a cell, uitable first attempts to store the
user-entered value in Data, converting the value if necessary. It
then calls the CellEditCallback and passes it the event data
structure. If there is no CellEditCallback and the user-entered
data results it an error, the contents of the cell reverts to its
previous value and no error is displayed.

2-4245



Uitable Properties

Note In order for the CellEditCallback to be issued, after
modifying a table cell the user must hit Enter or click somewhere
else within the figure containing the table. Editing a cell’s
value and then clicking another figure or other window does
not save the new value to the data table, and does not fire the
CellEditCallback.

CellSelectionCallback
function handle, cell array containing function handle and
additional arguments, or string (not recommended)

Callback that executes when cell is selected. Callback function
that executes when the user highlights a cell by navigating to it
or clicking it. For multiple selection, this callback executes when
new cells are added to the selection. The callback includes event
data, a structure with one member

Event
Data
Structure
Field Type Description

Indices n-by-2
matrix

Row index and column index of the cells the
user currently has selected

Once a cell selection has been made, cells within it can be removed
one at a time by Ctrl-clicking them.

Children
matrix

The empty matrix; uitable objects have no children.

Clipping
{on} | off

This property has no effect on uitable objects.

2-4246



Uitable Properties

ColumnEditable
logical 1–by-n matrix | scalar logical value |{ empty matrix ([])}

Determines if column is user-editable.

Determines if the data can be edited by the end user. Each value
in the cell array corresponds to a column. False is default because
the developer needs to have control over changes users potentially
might make to data.

Specify elements of a logical matrix as true if the data in a
column is editable by the user or false if it is not. An empty
matrix indicates that no columns are editable.

Columns that contain check boxes or pop-up menus must be
editable for the user to manipulate these controls. If a column
that contains pop-up menus is not editable, the currently selected
choice appears without displaying the pop-up control. The
Elements of the ColumnEditable matrix must be in the same
order as columns in the Data property. If you do not specify
ColumnEditable, the default is an empty matrix ([]).

ColumnFormat
cell array of strings

Cell display formatting. Determines how the data in each column
displays and is edited. Elements of the cell array must be in the
same order as table columns in the Data property. If you do not
want to specify a display format for a particular column, enter
[] as a placeholder. If no format is specified for a column, the
default display is determined by the data type of the data in the
cell. Default ColumnFormat is an empty cell array ({}). In most
cases, the default is similar to the command window.

Elements of the cell array must be one of the strings described in
the following table.

2-4247



Uitable Properties

Cell Format Description

'char' Displays a left-aligned string.

To edit, the user types a string that
replaces the existing string.

'logical' Displays a check box.

To edit, the user checks or unchecks the
check box. uitable sets the corresponding
Data value to true or false accordingly.

Initially, the check box is checked if the
corresponding Data value would produce
true if passed to the logical function, and
unchecked otherwise.

'numeric' Displays a right-aligned string equivalent
to the command window, for numeric data.
If the cell Data value is boolean, then 1
or 0 is displayed. If the cell Data value is
not numeric and not boolean, then NaN is
displayed.

To edit, the user can enter any string. This
enables a user to enter a value such as
'pi' that can be converted to its numeric
equivalent by a CellEditCallback.
The uitable function first attempts
to convert the user-entered string to a
numeric value and store it in Data. It
then calls the CellEditCallback. See
CellEditCallback for more information.

2-4248



Uitable Properties

Cell Format Description

1–by-n cell array
of strings that
define a pop-up
menu, e.g., {'one'
'two' 'three'}

Displays a pop-up menu.

To edit, the user makes a selection from
the pop-up menu. uitable sets the
corresponding Data value to the selected
menu item.

The initial values for the pop-up menus in
the column are the corresponding strings
in Data. These initial values do not have to
be items in the pop-up menu. See Example
3 on the uitable reference page.

Valid string
accepted by the
format function,
e.g.,'short' or
'bank'

Displays the Data value using
the specified format. For
example, for a two-column table,
set(htable,'ColumnFormat',{'short','bank'}).

In some cases, you may need to insert an appropriate column in
Data. If Data is a numerical or logical matrix, you must first
convert it to a cell array using the mat2cell function.

Data and ColumnFormat

When you create a table, you must specify value of Data. The
Data property dictates what type of data can exist in any given
cell. By default, the value of the Data also dictates the display
of the cell to the end user, unless you specify a different format
using the ColumnFormat property.

2-4249



Uitable Properties

ColumnFormat controls the presentation of the Data to the end
user. Therefore, if you specify a ColumnFormat of char (or pick
Text from the Table Property Editor), you are asking the table
to display the Data associated with that column as a string. For
example, if the Data for a particular column is numeric, and you
specify the ColumnFormat as char, then the display of the numeric
data will be left-aligned

2-4250



Uitable Properties

If your column is editable and the user enters a number, the
number will be left-aligned. However, if the user enters a text
string, the table displays a NaN.

Another possible scenario is that the value Data is char and you
set the ColumnFormat to be a pop-up menu. Here, if the value of
the Data in the cell matches one of the pop-up menu choices you
define in ColumnFormat, then the Data is shown in the cell. If it
does not match, then the cell defaults to display the first option
from the choices you specify in ColumnFormat. Similarly, if Data
is numeric or logical with the ColumnFormat as pop-up menu,
if the Data value in the cell does not match any of the choices
you specify in ColumnFormat, the cell defaults to display the first
option in the pop-menu choice.

This table describes how Data values correspond with your
ColumnFormat when the columns are editable.

ColumnFormat Selections

numeric char logical

2-4251



Uitable Properties

numeric Values match.
MATLAB displays
numbers as is.

MATLAB converts
the text string
entered to a double.
See str2double for
more information.
If string cannot be
converted, NaN is
displayed.

Does not work:
warning is thrown.

Note If you
have defined
CellEditCallback,
this warning will
not be thrown

char MATLAB converts
the entered number
to a text string.

Values match.
MATLAB displays
the string as is.

Does not work:
warning is thrown.

Note If you
have defined
CellEditCallback,
this warning will
not be thrown

Data
Type

logical Does not work:
warning is thrown.

Note If you
have defined
CellEditCallback,
this warning will
not be thrown

If text string
entered is true
or false, MATLAB
converts string to
the corresponding
logical value and
displays it. For all
others, it Does not
work: warning is
thrown.

Values match.
MATLAB displays
logical value as a
check box as is.

2-4252



Uitable Properties

Note If you
have defined
CellEditCallback,
this warning will
not be thrown

If you get a mismatch error, you have the following options:

• Change the ColumnFormat or value of Data to match.

• Implement the CellEditCallback to handle custom data
conversion.

ColumnName
1–by-n cell array of strings| {'numbered'} | empty matrix ([])

Column heading names. Each element of the cell array is the
name of a column. Multiline column names can be expressed
as a string vector separated by vertical slash (|) characters,
e.g.,'Standard|Deviation'

For sequentially numbered column headings starting with 1,
specify ColumnName as 'numbered'. This is the default.

To remove the column headings, specify ColumnName as the empty
matrix ([]).

The number of columns in the table is the larger of ColumnName
and the number of columns in the Data property matrix or cell
array.

ColumnWidth
1–by-n cell array or 'auto'

2-4253



Uitable Properties

Column widths. The width of each column in units of pixels.
Column widths are always specified in pixels; they do not obey the
Units property. Each column in the cell array corresponds to a
column in the uitable. By default, the width of the column name,
as specified in ColumnName, along with some other factors, is used
to determine the width of a column. If ColumnWidth is a cell array
and the width of a column is set to 'auto'or if auto is selected
for that column in the Property Inspector GUI for columns, the
column width defaults to a size determined by the table. The table
decides the default size using a number of factors, including the
ColumnName and the minimum column size.

To default all column widths in an existing table, use

set(uitable_handle,'ColumnWidth','auto')

To default some column widths but not others, use a cell array
containing a mixture of pixel values and 'auto'. For example,

set(uitable_handle,'ColumnWidth',{64 'auto' 40 40 'auto' 72})

CreateFcn
string or function handle

Callback routine executed during object creation. The specified
function executes when MATLAB creates a uitable object.
MATLAB sets all property values for the uitable before executing
the CreateFcn callback so these values are available to the
callback. Within the function, use gcbo to get the handle of the
uitable being created.

Setting this property on an existing uitable object has no effect.

You can define a default CreateFcn callback for all new uitables.
This default applies unless you override it by specifying a different
CreateFcn callback when you call uitable. For example, the code

set(0,'DefaultUitableCreateFcn','set(gcbo,...

2-4254



Uitable Properties

''BackGroundColor'',''blue'')')

creates a default CreateFcn callback that runs whenever you
create a new uitable. It sets the default background color of all
new uitables.

To override this default and create a uitable whose
BackgroundColor is set to a different value, call uitable with
code similar to

hpt = uitable(...,'CreateFcn','set(gcbo,...
''BackgroundColor'',''white'')')

Note To override a default CreateFcn callback you must provide
a new callback and not just provide different values for the
specified properties. This is because the CreateFcn callback runs
after the property values are set, and can override property values
you have set explicitly in the uitable call. In the example above,
if instead of redefining the CreateFcn property for this uitable,
you had explicitly set BackgroundColor to white, the default
CreateFcn callback would have set BackgroundColor back to the
default, i.e., blue.

Do not call copyobj or textwrap (which calls copyobj) inside
a CreateFcn. The act of copying the uicontrol object fires the
CreateFcn repeatedly, which raises a series of error messages
after exceeding the root object’s RecursionLimit property.

See “Function Handle Callbacks” for information on how to use
function handles to define a callback function.

Data
matrix or cell array of numeric, logical, or character data

Data content of uitable. The matrix or cell array must be
2–dimensional. A cell array can mix data types.

2-4255

../ref/rootobject_props.html#RecursionLimit


Uitable Properties

Use get and set to modify Data. For example,

data = get(tablehandle,'Data')
data(event.indices(1),event.indices(2)) = pi();
set(tablehandle,'Data',data);

See CellEditCallback for information about the event data
structure. See ColumnFormat for information about specifying
the data display format.

The number of rows in the table is the larger of RowName and the
number of rows in Data. The number of columns in the table is
the larger of ColumnName and the number of columns in Data.

DeleteFcn
string or function handle

Delete uitable callback routine. A callback routine that executes
when you delete the uitable object (e.g., when you issue a delete
command or clear the figure containing the uitable). MATLAB
executes the routine before destroying the object’s properties so
these values are available to the callback routine.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define a callback function.

Enable
{on} | inactive | off

Enable or disable the uitable. This property determines how
uitables respond to mouse button clicks, including which callback
routines execute.

• on – The uitable is operational (the default).

2-4256



Uitable Properties

• inactive – The uitable is not operational, but looks the same
as when Enable is on.

• off – The uitable is not operational and its image is grayed out.

When you left-click on a uitable whose Enable property is on,
MATLAB performs these actions in this order:

1 Sets the figure’s SelectionType property.

2 Executes the uitable’s CellSelectionCallback routine (but
only for table cells, not header cells). Row and column indices
of the cells the user selects continuously update the Indices
field in the eventdata passed to the callback.

3 Does not set the figure’s CurrentPoint property and does
not execute either the table’s ButtonDownFcn or the figure’s
WindowButtonDownFcn callback.

When you left-click on a uitable whose Enable property is off, or
when you right-click a uitable whose Enable property has any
value, MATLAB performs these actions in this order:

1 Sets the figure’s SelectionType property.

2 Sets the figure’s CurrentPoint property.

3 Executes the figure’s WindowButtonDownFcn callback.

Extent
position rectangle (read only)

Size of uitable rectangle. A four-element vector of the form
[0,0,width,height] that contains the calculated values of the
largest extent of the table based on the current Data, RowNames
and ColumnNames property values. Calculation depends on column
and row widths, when they are available. The calculated extent
can be larger than the figure.

2-4257



Uitable Properties

The first two elements are always zero. width and height are
the dimensions of the rectangle. All measurements are in units
specified by the Units property.

When the uitable’s Units property is set to 'Normalized', its
Extent is measured relative to the figure, regardless of whether
the table is contained in (parented to) a uipanel or not.

You can use this property to determine proper sizing for the
uitable with respect to its content. Do this by setting the width
and height of the uitable Position property to the width and
height of the Extent property. However, doing this can cause the
table to extend beyond the right or top edge of the figure and/or
its uipanel parent, if any, for tables with large extents.

FontAngle
{normal} | italic | oblique

Character slant of cell content. MATLAB uses this property to
select a font from those available on your particular system.
Setting this property to italic or oblique selects a slanted
version of the font, when it is available on your system.

FontName
string

Font family for cell content. The name of the font in which to
display cell content. To display and print properly, this must
be a font that your system supports. The default font is system
dependent.

To use a fixed-width font that looks good in any locale (and
displays properly in Japan, where multibyte character sets are
used), set FontName to the string FixedWidth (this string value
is case sensitive):

set(uitable_handle,'FontName','FixedWidth')

2-4258



Uitable Properties

This parameter value eliminates the need to hard code the name
of a fixed-width font, which may not display text properly on
systems that do not use ASCII character encoding (such as in
Japan). A properly written MATLAB application that needs to
use a fixed-width font should set FontName to FixedWidth and
rely on the root FixedWidthFontName property to be set correctly
in the end user’s environment.

End users can adapt a MATLAB application to different locales or
personal environments by setting the root FixedWidthFontName
property to the appropriate value for that locale from startup.m.
Setting the root FixedWidthFontName property causes an
immediate update of the display to use the new font.

FontSize
size in FontUnits

Font size for cell contents. A number specifying the size of the
font in which to display cell contents, in units determined by the
FontUnits property. The default point size is system dependent.
If FontUnits is set to normalized, FontSize is a number between
0 and 1.

FontUnits
{points} | normalized | inches |
centimeters | pixels

Font size units for cell contents. This property determines the
units used by the FontSize property. Normalized units interpret
FontSize as a fraction of the height of the uitable. When you
resize the uitable, MATLAB modifies the screen FontSize
accordingly. pixels, inches, centimeters, and points are
absolute units (1 point = 1/72 inch).

FontWeight
light | {normal} | demi | bold

2-4259



Uitable Properties

Weight of cell text characters. MATLAB uses this property to
select a font from those available on your particular system.
Setting this property to bold causes MATLAB to use a bold
version of the font, when it is available on your system.

ForegroundColor
1-by-3 matrix of RGB triples or a color name

Color of text in cells. Determines the color of the text defined for
cell contents. Text in all cells share the current color. Specify as a
1-by-3 matrix of RGB triples, such as [0 0 .8] or as a color name.
The default is a 1-by-3 matrix of platform-dependent colors. See
ColorSpec for information about specifying RGB colors.

HandleVisibility
{on} | callback | off

Control access to object’s handle. This property determines when
an object’s handle is visible in its parent’s list of children. When
a handle is not visible in its parent’s list of children, it is not
returned by functions that obtain handles by searching the object
hierarchy or querying handle properties. This includes get,
findobj, gca, gcf, gco, newplot, cla, clf, and close. Neither is
the handle visible in the parent figure’s CurrentObject property.
Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties, and pass it to any
function that operates on handles.

• Handles are always visible when HandleVisibility is on.

• Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by
callback routines, but not from within functions invoked from
the command line. This provides a means to protect GUIs from
command-line users, while allowing callback routines to have
complete access to object handles.

• Setting HandleVisibility to off makes handles invisible
at all times. This may be necessary when a callback routine

2-4260



Uitable Properties

invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string), and so temporarily
hides its own handles during the execution of that function.

You can set the root ShowHiddenHandles property to on to
make all handles visible, regardless of their HandleVisibility
settings. This does not affect the values of the HandleVisibility
properties.

HitTest
{on} | off

Selectable by mouse click. When HitTest is off, the
ButtonDownFcn callback does not execute.

Interruptible
{on} | off

Callback routine interruption mode. If a callback is executing and
the user triggers an event (such as a mouse click) on an object for
which a callback is defined, that callback attempts to interrupt
the first callback. The MATLAB processes the callbacks according
to these factors:

• The Interruptible property of the object whose callback is
executing

• Whether the executing callback contains drawnow, figure,
getframe, pause, or waitfor statements

• The BusyAction property of the object whose callback is
waiting to execute

If the Interruptible property of the object whose callback is
executing is on (the default), the callback can be interrupted.
Whenever the callback calls one of the drawnow, figure,
getframe, pause, or waitfor functions, the function processes
any events in the event queue, including the waiting callback,
before performing its defined task.

2-4261

../ref/rootobject_props.html#ShowHiddenHandles


Uitable Properties

If the Interruptible property of the object whose callback is
executing is off, the callback cannot be interrupted (except by
certain callbacks; see the note below). The BusyAction property
of the object whose callback is waiting to execute determines what
happens to the callback.

Note If the interrupting callback is a DeleteFcn or CreateFcn
callback or a figure’s CloseRequest or ResizeFcn callback, it
interrupts an executing callback regardless of the value of that
object’s Interruptible property. The interrupting callback
starts execution at the next drawnow, figure, getframe, pause,
or waitfor statement. A figure’s WindowButtonDownFcn callback
routine, or an object’s ButtonDownFcn or Callback routine are
processed according to the rules described above.

KeyPressFcn
string or function handle

Key press callback function. A callback routine invoked by a
key press when the callback’s uitable object has focus. Focus is
denoted by a border or a dotted border, respectively, in UNIX
and Microsoft Windows. If no uitable has focus, the figure’s key
press callback function, if any, is invoked. KeyPressFcn can be
a function handle, the name of an M-file, or any legal MATLAB
expression.

If the specified value is the name of an M-file, the callback routine
can query the figure’s CurrentCharacter property to determine
what particular key was pressed and thereby limit the callback
execution to specific keys.

If the specified value is a function handle, the callback routine
can retrieve information about the key that was pressed from its
event data structure argument.

2-4262

../ref/figure_props.html#CurrentCharacter


Uitable Properties

Examples:Event Data
Structure
Field Description a = Shift Shift/a

Character Character interpretation of
the key that was pressed.

'a' '=' '' 'A'

Modifier Current modifier, such as
'control', or an empty cell
array if there is no modifier

{1x0
cell}

{1x0
cell}

{'shift'}{'shift'}

Key Name of the key that was
pressed.

'a' 'equal' 'shift' 'a'

The uitable KeyPressFcn callback executes for all keystrokes,
including arrow keys or when a user edits cell content.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

Parent
handle

Uitable parent. The handle of the uitable’s parent object. You can
move a uitable object to another figure, uipanel, or uibuttongroup
by setting this property to the handle of the new parent.

Position
position rectangle

Size and location of uitable. The rectangle defined by this
property specifies the size and location of the table within the
parent figure window, ui, or uibuttongroup. Specify Position
as a 4–element vector:

[left bottom width height]

left and bottom are the distance from the lower-left corner of
the parent object to the lower-left corner of the uitable object.

2-4263



Uitable Properties

width and height are the dimensions of the uitable rectangle. All
measurements are in units specified by the Units property.

Note If you are specifying both Units and Position in the same
call to uitable, specify Units first if you want Position to be
interpreted using those units.

RearrangeableColumn
on | {off}

This object can be rearranged. The RearrangeableColumn
property provides a mechanism that you can use to reorder
the columns in the table. All columns are rearrangable
when this property is turned on. MATLAB software sets the
RearrangeableColumn property to off by default.

When this property is on, the user of a table can move any column
of data (but not the row labels) at a time left or right to reorder it
by clicking and dragging its header. Rearranging columns does
not affect the ordering of columns in the table’s Data, only the
user’s view of it.

RowName
1–by-n cell array of strings| {'numbered'} | empty matrix ([])

Row heading names. Each element of the cell array is the name of
a row. Row names are restricted to one line of text.

For sequentially numbered row headings starting with 1, specify
RowName as 'numbered'. This is the default.

To remove the row headings, specify RowName as the empty matrix
([]).

2-4264



Uitable Properties

The number of rows in the table is the larger of RowName and the
number of rows in the Data property matrix or cell array.

RowStriping
{on} | off

Color striping of table rows. When RowStriping is on, the
background of consecutive rows of the table display in the pair of
colors that the BackgroundColor color matrix specifies. The first
color matrix row applies to odd-numbered rows, and the second
to even-numbered rows. If the BackgroundColor matrix has only
one row, it is applied to all rows (that is, no striping occurs).

When RowStriping is off, the first color specified for
BackgroundColor is applied to all rows.

Selected
on | {off}

Is object selected. When this property is on, MATLAB displays
selection handles if the SelectionHighlight property is also
on. You can, for example, define the ButtonDownFcn to set this
property, allowing users to select the object with the mouse.

SelectionHighlight
{on} | off

Object highlight when selected. When the Selected property is
on, MATLAB indicates the selected state by drawing four edge
handles and four corner handles. When SelectionHighlight is
off, MATLAB does not draw the handles.

Tag
string (GUIDE sets this property)

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This
is particularly useful when constructing interactive graphics
programs that would otherwise need to define object handles as

2-4265



Uitable Properties

global variables or pass them as arguments between callback
routines. You can define Tag as any string.

TooltipString
string

Content of tooltip for object. The TooltipString property specifies
the text of the tooltip associated with the uitable. When the user
moves the mouse pointer over the table and leaves it there, the
tooltip is displayed.

To create a tooltip that has more than one line of text, use sprintf
to generate a string containing newline (\n) characters and then
set the TooltipString to that value. For example:

h = uitable;
s = sprintf('UITable tooltip line 1\nUITable tooltip line 2');
set(h,'TooltipString',s)

Type
string (read only)

Class of graphics object. For uitable objects, Type is always the
string 'uitable'.

UIContextMenu
handle

Associate a context menu with uitable. Assign this property
the handle of a uicontextmenu object. MATLAB displays the
context menu whenever you right-click over the uitable. Use the
uicontextmenu function to create the context menu.

Units
{pixels} | normalized | inches | centimeters | points |
characters (GUIDE default: normalized)

2-4266



Uitable Properties

Units of measurement. MATLAB uses these units to interpret the
Extent and Position properties. All units are measured from the
lower-left corner of the parent object.

• Normalized units map the lower-left corner of the parent object
to (0,0) and the upper-right corner to (1.0,1.0).

• pixels, inches, centimeters, and points are absolute units
(1 point = 1/72 inch).

• Character units are characters using the default system font;
the width of one character is the width of the letter x, the
height of one character is the distance between the baselines of
two lines of text.

If you change the value of Units, it is good practice to return it
to its default value after completing your computation so as not
to affect other functions that assume Units is set to the default
value.

UserData
matrix

User-specified data. Any data you want to associate with the
uitable object. MATLAB does not use this data, but you can access
it using set and get.

Visible
{on} | off

Uitable visibility. By default, all uitables are visible. When set to
off, the uitable is not visible, but still exists and you can query
and set its properties.

Note Setting Visible to off for uitables that are not displayed
initially in the GUI, can result in faster startup time for the GUI.

2-4267



uitoggletool

Purpose Create toggle button on toolbar

Syntax htt = uitoggletool
htt = uitoggletool(’PropertyName1’,value1,’PropertyName2’,

value2,...)
htt = uitoggletool(ht,...)

Description htt = uitoggletool creates a toggle button on the uitoolbar at the top
of the current figure window, sets all its properties to default values,
and returns a handle to the tool. If no uitoolbar exists, one is created.
The uitoolbar is the parent of the uitoggletool. Use the returned handle
htt to set properties of the uitoggletool. The OnCallback, OffCallback
and ClickedCallback use the handle as their first argument. The
button has no icon, but its border highlights when you hover over it
with the mouse cursor. Add an icon by setting CData for the tool. Type
get(htt) to see a list of uitoggletool object properties and their current
values. Type set(htt) to see a list of uitoggletool object properties you
can set and legal property values.

htt =
uitoggletool(’PropertyName1’,value1,’PropertyName2’,value2,...)
assigns the specified property values, and assigns default values to the
remaining properties. You can change the property values at a later
time using the set function. You can specify properties as parameter
name/value pairs, cell arrays containing parameter names and values,
or structures with fields containing parameter names and values as
input arguments. For a complete list, see Uitoggletool Properties. Type
get(htt) to see a list of uipushtool object properties and their current
values. Type set(htt) to see a list of uipushtool object properties that
you can set and their legal property values.

htt = uitoggletool(ht,...) creates a button with ht as a parent.
ht must be a uitoolbar handle.

Toggle tools appear in figures whose Window Style is normal or
docked. They do not appear in figures with a 'modal' WindowStyle.
If the WindowStyle property of a figure containing a tool bar and its
toggle tool children changes to modal, the toggle tools continue to exist

2-4268

../ref/figure_props.html#WindowStyle


uitoggletool

as Children of the tool bar. The toggle tools do not display until you
change the WindowStyle to normal or docked.

Examples Create a uitoolbar object and places a uitoggletool object on it by
specifying the toolbar handle as the toggle tool parent. Generate a
random set of colors for the tool icon and specify a tool tip.

h = figure('ToolBar','none');
ht = uitoolbar(h);
a = rand(16,16,3);
htt = uitoggletool(ht,'CData',a,'TooltipString','Hello');

Alternatives You can create toolbars with toggle tools using GUIDE.

See Also get | set | uicontrol | uipushtool | uitoolbar

Tutorials • “Color Palette”

• “Icon Editor”

How To • “Creating Toolbars”

2-4269



uitoggletool

• “Programming Toolbar Tools”

2-4270



Uitoggletool Properties

Purpose Describe toggle tool properties

Modifying
Properties

You can set and query graphics object properties in two ways:

• The Property Inspector is an interactive tool that enables you to
see and change object property values. The Property inspector is
available from GUIDE, or use the inspect function at the command
line.

• The set and get functions enable you to set and query the values of
properties.

You can set default Uitoggletool properties by typing:

set(h,'DefaultUitoggletoolPropertyName',PropertyValue...)

Where h can be the root handle (0), a figure handle, a uitoolbar handle,
or a uitoggletool handle. PropertyName is the name of the Uitoggletool
property and PropertyValue is the value you specify as the default
for that property.

For more information about changing the default value of a property
see “Setting Default Property Values”.

Properties This section lists all properties useful to uitoggletool objects along
with valid values and a descriptions of their use. Curly braces { }
enclose default values.

Property Purpose

BeingDeleted This object is being deleted.

BusyAction Callback routine interruption.

CData Truecolor image displayed on the toggle
tool.

ClickedCallback Control action independent of the toggle
tool position.

2-4271



Uitoggletool Properties

Property Purpose

CreateFcn Callback routine executed during object
creation.

DeleteFcn Callback routine executed during object
deletion.

Enable Enable or disable the uitoggletool.

HandleVisibility Control access to object’s handle.

HitTest Whether selectable by mouse click

Interruptible Callback routine interruption mode.

OffCallback Control action when toggle tool is set to
the off position.

OnCallback Control action when toggle tool is set to
the on position.

Parent Handle of uitoggletool’s parent toolbar.

Separator Separator line mode.

State Uitoggletool state.

Tag User-specified object label.

TooltipString Content of object’s tooltip.

Type Object class.

UIContextMenu Uicontextmenu object associated with the
uitoggletool

UserData User specified data.

Visible Uitoggletool visibility.

BeingDeleted
on | {off} (read only)

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are

2-4272



Uitoggletool Properties

in the process of being deleted. MATLAB software sets the
BeingDeleted property to on when the object’s delete function
callback is called (see the DeleteFcn property) It remains set to
on while the delete function executes, after which the object no
longer exists.

For example, some functions may not need to perform actions
on objects that are being deleted, and therefore, can check the
object’s BeingDeleted property before acting.

BusyAction
cancel | {queue}

Callback routine interruption. If a callback is executing and the
user triggers an event (such as a mouse click) on an object for
which a callback is defined, the callback associated with the new
event uses the value of BusyAction to decide whether or not to
attempt to interrupt the executing callback.

• If the value is cancel, the event is discarded and the second
callback does not execute.

• If the value is queue, and the Interruptible property of the
first callback is on, the second callback is added to the event
queue and executes in its turn after the first callback finishes
execution.

Note If the interrupting callback is a DeleteFcn or CreateFcn
callback or a figure’s CloseRequest or ResizeFcn callback,
it interrupts an executing callback regardless of the value of
that object’s Interruptible property. See theInterruptible
property for information about controlling a callback’s
interruptibility.

CData
3-dimensional array

2-4273

./uitoggletool_props.html#DeleteFcn
./uitoggletool_props.html#Interruptible


Uitoggletool Properties

Truecolor image displayed on control as its icon. An n-by-m-by-3
array of RGB values that defines a truecolor image displayed
on either a push button or toggle button. Each value must be
between 0.0 and 1.0. If your CData array is larger than 16 in
the first or second dimension, it can be clipped or result in
other undesirable effects. If the array is clipped, only the center
16-by-16 part of the array is used.

ClickedCallback
string or function handle

Control action independent of the toggle tool position. A routine
that executes after either the OnCallback routine or OffCallback
routine runs to completion. The uitoggletool Enable property
must be set to on.

CreateFcn
string or function handle

Callback routine executed during object creation. The specified
function executes when MATLAB creates a uitoggletool object.
MATLAB sets all property values for the uitoggletool before
executing the CreateFcn callback so these values are available to
the callback. Within the function, use gcbo to get the handle of
the toggle tool being created.

Setting this property on an existing uitoggletool object has no
effect.

You can define a default CreateFcn callback for all new
uitoggletools. This default applies unless you override it
by specifying a different CreateFcn callback when you call
uitoggletool. For example, the statement,

set(0,'DefaultUitoggletoolCreateFcn',...
'set(gcbo,''Enable'',''off'')'

2-4274



Uitoggletool Properties

creates a default CreateFcn callback that runs whenever you
create a new toggle tool. It sets the toggle tool Enable property
to off.

To override this default and create a toggle tool whose Enable
property is set to on, you could call uitoggletool with code
similar to

htt = uitoggletool(...,'CreateFcn',...
'set(gcbo,''Enable'',''on'')',...)

Note To override a default CreateFcn callback you must provide
a new callback and not just provide different values for the
specified properties. This is because the CreateFcn callback
runs after the property values are set, and can override property
values you have set explicitly in the uitoggletool call. In the
example above, if instead of redefining the CreateFcn property
for this toggle tool, you had explicitly set Enable to on, the default
CreateFcn callback would have set CData back to off.

Do not call copyobj or textwrap (which calls copyobj) inside
a CreateFcn. The act of copying the uicontrol object fires the
CreateFcn repeatedly, which raises a series of error messages
after exceeding the root object’s RecursionLimit property.

See Function Handle Callbacks for information on how to use
function handles to define a callback function.

DeleteFcn
string or function handle

Callback routine executed during object deletion. A callback
routine that executes when you delete the uitoggletool object (e.g.,
when you call the delete function or cause the figure containing
the uitoggletool to reset). MATLAB executes the routine before

2-4275

../ref/rootobject_props.html#RecursionLimit


Uitoggletool Properties

destroying the object’s properties so these values are available
to the callback routine.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

See Function Handle Callbacks for information on how to use
function handles to define a callback function.

Enable
{on} | off

Enable or disable the uitoggletool. This property controls how
uitoggletools respond to mouse button clicks, including which
callback routines execute.

• on – The uitoggletool is operational (the default).

• off – The uitoggletool is not operational and its icon (set by the
Cdata property) is grayed out.

When you left-click on a uitoggletool whose Enable property is on,
MATLAB performs these actions in this order:

1 Executes the toggle tool OnCallback or OffCallback routine,
depending on its current state, and its ClickedCallback
routine.

2 Does not set the figure CurrentPoint property and does not
execute the figure’s WindowButtonDownFcn callback.

3 Does not set the figure SelectionType property.

When you left-click a uitoggletool whose Enable property is off, or
when you right-click a uitoggletool whose Enable property has any
value, no action is reported, no callback executes, and neither the
SelectionType nor CurrentPoint figure properties are modified.

2-4276



Uitoggletool Properties

HandleVisibility
{on} | callback | off

Control access to object’s handle. This property determines when
an object’s handle is visible in its parent’s list of children. When
a handle is not visible in its parent’s list of children, it is not
returned by functions that obtain handles by searching the object
hierarchy or querying handle properties. This includes get,
findobj, gca, gcf, gco, newplot, cla, clf, and close. Neither is
the handle visible in the parent figure’s CurrentObject property.
Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties, and pass it to any
function that operates on handles.

• Handles are always visible when HandleVisibility is on.

• Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by
callback routines, but not from within functions invoked from
the command line. This provides a means to protect GUIs from
command-line users, while allowing callback routines to have
complete access to object handles.

• Setting HandleVisibility to off makes handles invisible
at all times. This may be necessary when a callback routine
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string), and so temporarily
hides its own handles during the execution of that function.

You can set the root ShowHiddenHandles property to on to
make all handles visible, regardless of their HandleVisibility
settings. This does not affect the values of the HandleVisibility
properties.

HitTest
{on} | off

Selectable by mouse click. This property has no effect on
uitoggletool objects.

2-4277

./rootobject_props.html#ShowHiddenHandles


Uitoggletool Properties

Interruptible
{on} | off

Callback routine interruption mode. If a callback is executing and
the user triggers an event (such as a mouse click) on an object for
which a callback is defined, that callback attempts to interrupt
the first callback. MATLAB processes the callbacks according to
these factors:

• The Interruptible property of the object whose callback is
executing

• Whether the executing callback contains drawnow, figure,
getframe, pause, or waitfor statements

• The BusyAction property of the object whose callback is waiting
to execute

If the Interruptible property of the object whose callback is
executing is on (the default), the callback can be interrupted.
Whenever the callback calls one of the drawnow, figure,
getframe, pause, or waitfor functions, the function processes
any events in the event queue, including the waiting callback,
before performing its defined task.

If the Interruptible property of the object whose callback is
executing is off, the callback cannot be interrupted (except by
certain callbacks; see the note below).

Note If the interrupting callback is a DeleteFcn or CreateFcn
callback or a figure’s CloseRequest or ResizeFcn callback, it
interrupts an executing callback regardless of the value of that
object’s Interruptible property. The interrupting callback
starts execution at the next drawnow, figure, getframe, pause,
or waitfor statement.

2-4278



Uitoggletool Properties

OffCallback
string or function handle

Control action. A routine that executes if the uitoggletool’s Enable
property is set to on, and either

• The toggle tool State is set to off.

• The toggle tool is set to the off position by pressing a mouse
button while the pointer is on the toggle tool itself or in a
5-pixel wide border around it.

The ClickedCallback routine, if there is one, runs after the
OffCallback routine runs to completion.

OnCallback
string or function handle

Control action. A routine that executes if the uitoggletool’s Enable
property is set to on, and either

• The toggle tool State is set to on.

• The toggle tool is set to the on position by pressing a mouse
button while the pointer is on the toggle tool itself or in a
5-pixel wide border around it.

The ClickedCallback routine, if there is one, runs after the
OffCallback routine runs to completion.

Parent
handle

Uitoggletool parent. The handle of the uitoggletool’s parent
toolbar. You can move a uitoggletool object to another toolbar by
setting this property to the handle of the new parent.

Separator
on | {off}

2-4279



Uitoggletool Properties

Separator line mode. Setting this property to on draws a dividing
line to left of the uitoggletool.

State
on | {off}

Uitoggletool state. When the state is on, the toggle tool appears in
the down, or pressed, position. When the state is off, it appears
in the up position. Changing the state causes the appropriate
OnCallback or OffCallback routine to run.

Tag
string

User-specified object identifier. The Tag property provides a
means to identify graphics objects with a user-specified label. You
can define Tag as any string.

With the findobj function, you can locate an object with a given
Tag property value. This saves you from defining object handles
as global variables. For example, this function call returns the
handles of all children (of the specified toolbars) that have the
Tag value 'Bold'.

h = findobj(uitoolbarhandles, 'Tag', 'Bold')

TooltipString
string

Content of tooltip for object. The TooltipString property specifies
the text of the tooltip associated with the uitoggletool. When the
user moves the mouse pointer over the control and leaves it there,
the tooltip is displayed.

To create a tooltip that has more than one line of text, use sprintf
to generate a string containing newline (\n) characters and then
set the TooltipString to that value. For example:

h = uitoggletool;

2-4280



Uitoggletool Properties

s = sprintf('Toggletool tooltip line 1\nToggletool tooltip lin
set(h,'TooltipString',s)

Type
string (read-only)

Object class. This property identifies the kind of graphics
object. For uitoggletool objects, Type is always the string
'uitoggletool'.

UIContextMenu
handle

Associate a context menu with uicontrol. This property has no
effect on uitoggletool objects.

UserData
array

User specified data. You can specify UserData as any array you
want to associate with the uitoggletool object. The object does
not use this data, but you can access it using the set and get
functions.

Visible
{on} | off

Uitoggletool visibility. By default, all uitoggletools are visible.
When set to off, the uitoggletool is not visible, but still exists and
you can query and set its properties.

2-4281



uitoolbar

Purpose Create toolbar on figure

Syntax ht =
uitoolbar(’PropertyName1’,value1,’PropertyName2’,value2,

...)
ht = uitoolbar(h,...)

Description ht =
uitoolbar(’PropertyName1’,value1,’PropertyName2’,value2,...)
creates an empty toolbar at the top of the current figure window, and
returns a handle to it. uitoolbar assigns the specified property values,
and assigns default values to the remaining properties. You can change
the property values at a later time using the set function.

Type get(ht) to see a list of uitoolbar object properties and their
current values. Type set(ht) to see a list of uitoolbar object properties
that you can set and legal property values. See the Uitoolbar Properties
reference page for more information.

ht = uitoolbar(h,...) creates a toolbar with h as a parent. h must
be a figure handle.

Remarks uitoolbar accepts property name/property value pairs, as well as
structures and cell arrays of properties as input arguments.

Uitoolbars appear in figures whose Window Style is normal or docked.
They do not appear in figures whose WindowStyle is modal. If the
WindowStyle property of a figure containing a uitoolbar is changed to
modal, the uitoolbar still exists and is contained in the Children list
of the figure, but is not displayed until the WindowStyle is changed
to normal or docked.

Example This example creates a figure with no toolbar, then adds a toolbar to it.

h = figure('ToolBar','none')
ht = uitoolbar(h)

2-4282

../ref/figure_props.html#WindowStyle


uitoolbar

For more information on using the menus and toolbar in a MATLAB
figure window, see the online MATLAB Graphics documentation.

See Also set, get, uicontrol, uipushtool, uitoggletool

2-4283



Uitoolbar Properties

Purpose Describe toolbar properties

Modifying
Properties

You can set and query graphics object properties in two ways:

• The Property Inspector is an interactive tool that enables you to
see and change object property values. The Property inspector is
available from GUIDE, or use the inspect function at the command
line.

• The set and get functions enable you to set and query the values of
properties.

You can set default Uitoolbar properties by typing:

set(h,'DefaultUitoolbarPropertyName',PropertyValue...)

Where h can be the root handle (0), a figure handle, or a uitoolbar
handle. PropertyName is the name of the Uitoolbar property and
PropertyValue is the value you specify as the default for that property.

For more information about changing the default value of a property
see Setting Default Property Values.

Uitoolbar
Properties

This section lists all properties useful to uitoolbar objects along with
valid values and a descriptions of their use. Curly braces { } enclose
default values.

Property Purpose

BeingDeleted This object is being deleted.

BusyAction Callback routine interruption.

Children Handles of uitoolbar’s children.

CreateFcn Callback routine executed during object
creation.

DeleteFcn Callback routine executed during object
deletion.

2-4284



Uitoolbar Properties

Property Purpose

HandleVisibility Control access to object’s handle.

HitTest Whether selectable by mouse click

Interruptible Callback routine interruption mode.

Parent Handle of uitoolbar’s parent.

Tag User-specified object identifier.

Type Object class.

UIContextMenu Uicontextmenu object associated with the
uitoolbar

UserData User specified data.

Visible Uitoolbar visibility.

BeingDeleted
on | {off} (read-only)

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are
in the process of being deleted. MATLAB software sets the
BeingDeleted property to on when the object’s delete function
callback is called (see the DeleteFcn property) It remains set to
on while the delete function executes, after which the object no
longer exists.

For example, some functions may not need to perform actions
on objects that are being deleted, and therefore, can check the
object’s BeingDeleted property before acting.

BusyAction
cancel | {queue}

Callback routine interruption. If a callback is executing and the
user triggers an event (such as a mouse click) on an object for
which a callback is defined, the callback associated with the new

2-4285

./uitoolbarproperties.html#DeleteFcn


Uitoolbar Properties

event uses the value of BusyAction to decide whether or not to
attempt to interrupt the executing callback.

• If the value is cancel, the event is discarded and the second
callback does not execute.

• If the value is queue, and the Interruptible property of the
first callback is on, the second callback is added to the event
queue and executes in its turn after the first callback finishes
execution.

Note If the interrupting callback is a DeleteFcn or CreateFcn
callback or a figure’s CloseRequest or ResizeFcn callback,
it interrupts an executing callback regardless of the value of
that object’s Interruptible property. See the Interruptible
property for information about controlling a callback’s
interruptibility.

Children
vector of handles

Handles of tools on the toolbar. A vector containing the handles
of all children of the uitoolbar object, in the order in which they
appear on the toolbar. The children objects of uitoolbars are
uipushtools and uitoggletools. You can use this property to
reorder the children.

CreateFcn
string or function handle

Callback routine executed during object creation. The specified
function executes when MATLAB creates a uitoolbar object.
MATLAB sets all property values for the uitoolbar before
executing the CreateFcn callback so these values are available to
the callback. Within the function, use gcbo to get the handle of
the toolbar being created.

2-4286

./uitoolbarproperties.html#Interruptible


Uitoolbar Properties

Setting this property on an existing uitoolbar object has no effect.

You can define a default CreateFcn callback for all new uitoolbars.
This default applies unless you override it by specifying a different
CreateFcn callback when you call uitoolbar. For example, the
statement,

set(0,'DefaultUitoolbarCreateFcn',...
'set(gcbo,''Visibility'',''off'')')

creates a default CreateFcn callback that runs whenever you
create a new toolbar. It sets the toolbar visibility to off.

To override this default and create a toolbar whose Visibility
property is set to on, you could call uitoolbar with a call similar
to

ht = uitoolbar(...,'CreateFcn',...
'set(gcbo,''Visibility'',''on'')',...)

Note To override a default CreateFcn callback you must provide
a new callback and not just provide different values for the
specified properties. This is because the CreateFcn callback runs
after the property values are set, and can override property values
you have set explicitly in the uitoolbar call. In the example
above, if instead of redefining the CreateFcn property for this
toolbar, you had explicitly set Visibility to on, the default
CreateFcn callback would have set Visibility back to off.

Do not call copyobj or textwrap (which calls copyobj) inside
a CreateFcn. The act of copying the uicontrol object fires the
CreateFcn repeatedly, which raises a series of error messages
after exceeding the root object’s RecursionLimit property.

2-4287

../ref/rootobject_props.html#RecursionLimit


Uitoolbar Properties

See Function Handle Callbacks for information on how to use
function handles to define a callback function.

DeleteFcn
string or function handle

Callback routine executed during object deletion. A callback
function that executes when the uitoolbar object is deleted (e.g.,
when you call the delete function or cause the figure containing
the uitoolbar to reset). MATLAB executes the routine before
destroying the object’s properties so these values are available
to the callback routine.

Within the function, use gcbo to get the handle of the toolbar
being deleted.

HandleVisibility
{on} | callback | off

Control access to object’s handle. This property determines when
an object’s handle is visible in its parent’s list of children. When
a handle is not visible in its parent’s list of children, it is not
returned by functions that obtain handles by searching the object
hierarchy or querying handle properties. This includes get,
findobj, gca, gcf, gco, newplot, cla, clf, and close. Neither is
the handle visible in the parent figure’s CurrentObject property.
Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties, and pass it to any
function that operates on handles.

• Handles are always visible when HandleVisibility is on.

• Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by
callback routines, but not from within functions invoked from
the command line. This provides a means to protect GUIs from
command-line users, while allowing callback routines to have
complete access to object handles.

2-4288



Uitoolbar Properties

• Setting HandleVisibility to off makes handles invisible
at all times. This may be necessary when a callback routine
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string), and so temporarily
hides its own handles during the execution of that function.

You can set the root ShowHiddenHandles property to on to
make all handles visible, regardless of their HandleVisibility
settings. This does not affect the values of the HandleVisibility
properties.

HitTest
{on} | off

Selectable by mouse click. This property has no effect on uitoolbar
objects.

Interruptible
{on} | off

Callback routine interruption mode. If a callback is executing and
the user triggers an event (such as a mouse click) on an object for
which a callback is defined, that callback attempts to interrupt
the first callback. MATLAB processes the callbacks according to
these factors:

• The Interruptible property of the object whose callback is
executing

• Whether the executing callback contains drawnow, figure,
getframe, pause, or waitfor statements

• The BusyAction property of the object whose callback is waiting
to execute

If the Interruptible property of the object whose callback is
executing is on (the default), the callback can be interrupted.
Whenever the callback calls one of the drawnow, figure,
getframe, pause, or waitfor functions, the function processes

2-4289

./rootobject_props.html#ShowHiddenHandles


Uitoolbar Properties

any events in the event queue, including the waiting callback,
before performing its defined task.

If the Interruptible property of the object whose callback is
executing is off, the callback cannot be interrupted (except by
certain callbacks; see the note below). The BusyAction property
of the object whose callback is waiting to execute determines what
happens to the callback.

Note If the interrupting callback is a DeleteFcn or CreateFcn
callback or a figure’s CloseRequest or ResizeFcn callback, it
interrupts an executing callback regardless of the value of that
object’s Interruptible property. The interrupting callback
starts execution at the next drawnow, figure, getframe, pause,
or waitfor statement. A figure’s WindowButtonDownFcn callback
routine, or an object’s ButtonDownFcn or Callback routine are
processed according to the rules described above.

Parent
handle

Uitoolbar parent. The handle of the uitoolbar’s parent figure.
You can move a uitoolbar object to another figure by setting this
property to the handle of the new parent.

Tag
string

User-specified object identifier. The Tag property provides a
means to identify graphics objects with a user-specified label. You
can define Tag as any string.

With the findobj function, you can locate an object with a given
Tag property value. This saves you from defining object handles
as global variables. For example, this function call returns the

2-4290



Uitoolbar Properties

handles of all children (of the specified figures) that have the Tag
value 'FormatTb'.

h = findobj(figurehandles,'Tag','FormatTb')

Type
string (read-only)

Object class. This property identifies the kind of graphics object.
For uitoolbar objects, Type is always the string 'uitoolbar'.

UIContextMenu
handle

Associate a context menu with uicontrol. This property has no
effect on uitoolbar objects.

UserData
array

User specified data. You can specify UserData as any array you
want to associate with the uitoolbar object. The object does not use
this data, but you can access it using the set and get functions.

Visible
{on} | off

Uitoolbar visibility. By default, all uitoolbars are visible. When
set to off, the uitoolbar is not visible, but still exists and you can
query and set its properties.

2-4291



uiwait

Purpose Block execution and wait for resume

Syntax uiwait
uiwait(h)
uiwait(h,timeout)

Description uiwait blocks execution until uiresume is called or the current figure
is deleted. This syntax is the same as uiwait(gcf).

uiwait(h) blocks execution until uiresume is called or the figure h is
deleted.

uiwait(h,timeout) blocks execution until uiresume is called, the
figure h is deleted, or timeout seconds elapse. The minimum value of
timeout is 1. If uiwait receives a smaller value, it issues a warning
and uses a 1 second timeout.

Remarks The uiwait and uiresume functions block and resume MATLAB and
Simulink program execution. uiwait also blocks the execution of
Simulink models. The functions pause (with no argument) and waitfor
also block execution in this manner.uiwait is a convenient way to use
the waitfor command. You typically use it in conjunction with a dialog
box. It provides a way to block the execution of the M-file that created
the dialog, until the user responds to the dialog box. When used in
conjunction with a modal dialog, uiwait can block the execution of the
M-file and restrict user interaction to the dialog only.

Example This example creates a GUI with a Continue push button. The
example calls uiwait to block MATLAB execution until uiresume is
called. This happens when the user clicks the Continue push button
because the push button’s Callback callback, which responds to the
click, calls uiresume.

f = figure;
h = uicontrol('Position',[20 20 200 40],'String','Continue',...

'Callback','uiresume(gcbf)');
disp('This will print immediately');

2-4292



uiwait

uiwait(gcf);
disp('This will print after you click Continue');
close(f);

gcbf is the handle of the figure that contains the object whose callback
is executing.

“Using a Modal Dialog Box to Confirm an Operation” is a more complex
example for a GUIDE GUI. See “Icon Editor” for an example for a
programmatically created GUI.

See Also dialog, figure, uicontrol, uimenu, uiresume, waitfor

2-4293



undocheckout

Purpose Undo previous checkout from source control system (UNIX platforms)

GUI
Alternatives

As an alternative to the undocheckout function, select Source
Control > Undo Checkout in the File menu of the Editor, Simulink
software, or Stateflow software, or in the context menu of the Current
Folder browser.

Syntax undocheckout('filename')
undocheckout({'filename1','filename2', ...,'filenamen'})

Description undocheckout('filename') makes the file filename available for
checkout, where filename does not reflect any of the changes you made
after you last checked it out. Use the full path for filename and include
the file extension.

undocheckout({'filename1','filename2', ...,'filenamen'})
makes filename1 through filenamen available for checkout, where the
files do not reflect any of the changes you made after you last checked
them out. Use the full paths for the file names and include the file
extensions.

Examples Undo the checkouts of /myserver/myfiles/clock.m and
/myserver/myfiles/calendar.m from the source control system:

undocheckout({'/myserver/myfiles/clock.m', ...
'/myserver/myfiles/calendar.m'})

See Also checkin, checkout

• For Microsoft Windows platforms, use verctrl.

• For more information, see “Undoing the Checkout on UNIX
Platforms”.

2-4294



unicode2native

Purpose Convert Unicode characters to numeric bytes

Syntax bytes = unicode2native(unicodestr)
bytes = unicode2native(unicodestr, encoding)

Description bytes = unicode2native(unicodestr) takes a char vector of
Unicode characters, unicodestr, converts it to the MATLAB default
character encoding scheme, and returns the bytes as a uint8 vector,
bytes. Output vector bytes has the same general array shape as the
unicodestr input. You can save the output of unicode2native to a file
using the fwrite function.

bytes = unicode2native(unicodestr, encoding) converts the
Unicode characters to the character encoding scheme specified by the
string encoding. encoding must be the empty string ('') or a name or
alias for an encoding scheme. Some examples are 'UTF-8', 'latin1',
'US-ASCII', and 'Shift_JIS'. For common names and aliases, see
the Web site http://www.iana.org/assignments/character-sets.
If encoding is unspecified or is the empty string (''), the MATLAB
default encoding scheme is used.

Examples This example begins with two strings containing Unicode characters.
It assumes that string str1 contains text in a Western European
language and string str2 contains Japanese text. The example writes
both strings into the same file, using the ISO-8859-1 character encoding
scheme for the first string and the Shift-JIS encoding scheme for the
second string. The example uses unicode2native to convert the two
strings to the appropriate encoding schemes.

fid = fopen('mixed.txt', 'w');
bytes1 = unicode2native(str1, 'ISO-8859-1');
fwrite(fid, bytes1, 'uint8');
bytes2 = unicode2native(str2, 'Shift_JIS');
fwrite(fid, bytes2, 'uint8');
fclose(fid);

See Also native2unicode

2-4295

http://www.iana.org/assignments/character-sets


union

Purpose Find set union of two vectors

Syntax c = union(A, B)
c = union(A, B, 'rows')
[c, ia, ib] = union(...)

Description c = union(A, B) returns the combined values from A and B but with
no repetitions. In set theoretic terms, c = A ∪ B. Inputs A and B can be
numeric or character vectors or cell arrays of strings. The resulting
vector is sorted in ascending order.

c = union(A, B, 'rows') when A and B are matrices with the same
number of columns returns the combined rows from A and B with no
repetitions. MATLAB ignores the rows flag for all cell arrays.

[c, ia, ib] = union(...) also returns index vectors ia and ib
such that c = a(ia) ∪ b(ib), or for row combinations, c = a(ia,:)
∪ b(ib,:). If a value appears in both a and b, union indexes its
occurrence in b. If a value appears more than once in b or in a (but not
in b), union indexes the last occurrence of the value.

Remarks Because NaN is considered to be not equal to itself, every occurrence of
NaN in A or B is also included in the result c.

Examples a = [-1 0 2 4 6];
b = [-1 0 1 3];
[c, ia, ib] = union(a, b);
c =

-1 0 1 2 3 4 6

ia =

3 4 5

ib =

2-4296



union

1 2 3 4

See Also intersect, setdiff, setxor, unique, ismember, issorted

2-4297



unique

Purpose Find unique elements of vector

Syntax b = unique(A)
b = unique(A, 'rows')
[b, m, n] = unique(...)
[b, m, n] = unique(..., occurrence)

Description b = unique(A) returns the same values as in A but with no repetitions.
A can be a numeric or character array or a cell array of strings. If A
is a vector or an array, b is a vector of unique values from A. If A is a
cell array of strings, b is a cell vector of unique strings from A. The
resulting vector b is sorted in ascending order and its elements are of
the same class as A.

b = unique(A, 'rows') returns the unique rows of A.

[b, m, n] = unique(...) also returns index vectors m and n such
that b = A(m) and A = b(n). Each element of m is the greatest
subscript such that b = A(m). For row combinations, b = A(m,:) and
A = b(n,:).

[b, m, n] = unique(..., occurrence), where occurrence can be

• 'first', which returns the vector m to index the first occurrence of
each unique value in A, or

• 'last', which returns the vector m to index the last occurrence.

If you do not specify occurrence, it defaults to 'last'.

You can specify 'rows' in the same command as 'first' or 'last'.
The order of appearance in the argument list is not important.

Examples A = [1 1 5 6 2 3 3 9 8 6 2 4]
A =

1 1 5 6 2 3 3 9 8 6 2 4

2-4298



unique

Get a sorted vector of unique elements of A. Also get indices of the first
elements in A that make up vector b, and the first elements in b that
make up vector A:

[b1, m1, n1] = unique(A, 'first')
b1 =

1 2 3 4 5 6 8 9
m1 =

1 5 6 12 3 4 9 8
n1 =

1 1 5 6 2 3 3 8 7 6 2 4

Verify that b1 = A(m1) and A = b1(n1):

all(b1 == A(m1)) && all(A == b1(n1))
ans =

1

Get a sorted vector of unique elements of A. Also get indices of the last
elements in A that make up vector b, and the last elements in b that
make up vector A:

[b2, m2, n2] = unique(A, 'last')
b2 =

1 2 3 4 5 6 8 9
m2 =

2 11 7 12 3 10 9 8
n2 =

1 1 5 6 2 3 3 8 7 6 2 4

Verify that b2 = A(m2) and A = b2(n2):

all(b2 == A(m2)) && all(A == b2(n2))
ans =

1

Because NaNs are not equal to each other, unique treats them as unique
elements.

2-4299



unique

unique([1 1 NaN NaN])
ans =

1 NaN NaN

See Also intersect, ismember, sort, issorted, setdiff, setxor, union

2-4300



unix

Purpose Execute UNIX command and return result

Syntax unix command
status = unix('command')
[status, result] = unix('command')
[status,result] = unix('command','-echo')

2-4301



unix

Description unix command calls upon the UNIX19 operating system to execute the
given command. The command executes in a UNIX shell, not in the
shell that you used to launch MATLAB.

status = unix('command') returns completion status to the status
variable.

[status, result] = unix('command') returns the standard output
to the result variable, in addition to completion status.

[status,result] = unix('command','-echo') displays the results in
the Command Window as it executes, and assigns the results to result.

This function is interchangeable with the system and dos functions.
They all have the same effect.

Examples List all users that are currently logged in.

[s,w] = unix('who');

MATLAB returns 0 (success) in s and a string containing the list of
users in w.

Try to execute a string that isn’t a UNIX command.

[s,w] = unix('why')
s =

1
w =
why: Command not found.

MATLAB returns a nonzero value in s to indicate failure, and returns
an error message in w because why is not a UNIX command.

Algorithm The MATLAB software uses a shell program to execute the given
command. It determines which shell program to use by checking

19. UNIX is a registered trademark of The Open Group in the United States and
other countries.

2-4302



unix

environment variables on your system. MATLAB first checks the
MATLAB_SHELL variable, and if either empty or not defined, then checks
SHELL. If SHELL is also empty or not defined, MATLAB uses /bin/sh.

See Also dos | ! (exclamation point) | perl | system

Tutorials • “Running External Programs”

2-4303



unloadlibrary

Purpose Unload shared library from memory

Syntax unloadlibrary('libname')
unloadlibrary libname

Description unloadlibrary('libname') unloads the shared library libname from
memory. If you need to use functions in this library, you must reload
the library using the loadlibrary function.

unloadlibrary libname is the command format for this function.

If you used an alias when initially loading the library, then you must
use that alias for the libname argument.

Examples Load the MATLAB sample shared library, shrlibsample. Call one of
its functions, and then unload the library:

addpath([matlabroot '\extern\examples\shrlib'])
loadlibrary shrlibsample shrlibsample.h

s.p1 = 476; s.p2 = -299; s.p3 = 1000;
calllib('shrlibsample', 'addStructFields', s)
ans =

1177

unloadlibrary shrlibsample

See Also loadlibrary, libisloaded

2-4304



unmesh

Purpose Convert edge matrix to coordinate and Laplacian matrices

Syntax [L,XY] = unmesh(E)

Description [L,XY] = unmesh(E) returns the Laplacian matrix L and mesh vertex
coordinate matrix XY for the M-by-4 edge matrix E. Each row of the
edge matrix must contain the coordinates [x1 y1 x2 y2] of the edge
endpoints.

Input
Arguments

E M-by-4 edge matrix E.

Output
Arguments

L Laplacian matrix representation of the graph.

XY Mesh vertex coordinate matrix.

Examples Take a simple example of a square with vertices at (1,1), (1,–1),(–1,–1),
and (–1,1), where the connections between vertices are the four
perpendicular edges of the square plus one diagonal connection between
(–1, –1) and (1,1).

2-4305



unmesh

The edge matrix E for this graph is:

E=[1 1 1 -1; % edge from 1 to 2
1 -1 -1 -1; % edge from 2 to 3
-1 -1 -1 1; % edge from 3 to 4
-1 -1 1 1; % edge from 4 to 1
-1 1 1 1] % edge from 3 to 1

Use unmesh to create the output matrices,

[A,XY]=unmesh(E);
4 vertices:
4/4

The Laplacian matrix is defined as

2-4306



unmesh

L

v i j

i j vij

i

i=
=

− ≠
deg( )     if 

             if  and  is adja1 ccent to 

               otherwise

vj

0

⎧

⎨
⎪

⎩
⎪

unmesh returns the Laplacian matrix L in sparse notation.

L

L =

(1,1) 3
(2,1) -1
(3,1) -1
(4,1) -1
(1,2) -1
(2,2) 2
(4,2) -1
(1,3) -1
(3,3) 2
(4,3) -1
(1,4) -1
(2,4) -1
(3,4) -1

To see L in regular matrix notation, use the full command.

full(L)

ans =

3 -1 -1 -1
-1 2 0 -1
-1 0 2 -1
-1 -1 -1 3

The mesh coordinate matrix XY returns the coordinates of the corners of
the square.

2-4307



unmesh

XY

XY =

-1 -1
-1 1
1 -1
1 1

See Also gplot
treeplot

2-4308



unmkpp

Purpose Piecewise polynomial details

Syntax [breaks,coefs,l,k,d] = unmkpp(pp)

Description [breaks,coefs,l,k,d] = unmkpp(pp) extracts, from the piecewise
polynomial pp, its breaks breaks, coefficients coefs, number of pieces
l, order k, and dimension d of its target. Create pp using spline or the
spline utility mkpp.

Examples This example creates a description of the quadratic polynomial

as a piecewise polynomial pp, then extracts the details of that
description.

pp = mkpp([-8 -4],[-1/4 1 0]);
[breaks,coefs,l,k,d] = unmkpp(pp)

breaks =
-8 -4

coefs =
-0.2500 1.0000 0

l =
1

k =
3

d =
1

See Also mkpp, ppval, spline

2-4309



unregisterallevents

Purpose Unregister all event handlers associated with COM object events at
run time

Syntax h.unregisterallevents
unregisterallevents(h)

Description h.unregisterallevents unregisters all events previously registered
with COM object h. After calling unregisterallevents, the object no
longer responds to any events until you register them again using the
registerevent function.

unregisterallevents(h) is an alternate syntax.

COM functions are available on Microsoft Windows systems only.

Examples Register and unregister events for an instance of the mwsamp control,
using the eventlisteners function to see the event handler associated
with each event:

1 Register three events and their respective handler routines.

f = figure ('position', [100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2', ...

[0 0 200 200], f, ...
{'Click' 'myclick'; 'DblClick' 'my2click'; ...
'MouseDown' 'mymoused'});

h.eventlisteners

MATLAB displays:

ans =
'click' 'myclick'
'dblclick' 'my2click'
'mousedown' 'mymoused'

2 Unregister all events simultaneously with unregisterallevents.
eventlisteners returns an empty cell array, indicating that there
are no longer any events registered with the control:

2-4310



unregisterallevents

h.unregisterallevents;
h.eventlisteners

MATLAB displays:

ans =
{}

See Also events (COM) | eventlisteners | registerevent | unregisterevent
| isevent

2-4311



unregisterevent

Purpose Unregister event handler associated with COM object event at run time

Syntax h.unregisterevent(eventhandler)
unregisterevent(h, eventhandler)

Description h.unregisterevent(eventhandler) unregisters specific event handler
routines from their corresponding events. Once you unregister an event,
the object no longer responds to the event.

unregisterevent(h, eventhandler) is an alternate syntax.

You can unregister events at any time after creating a control. The
eventhandler argument, which is a cell array, specifies both events
and event handlers.

h.unregisterevent({'event_name',@event_handler});

Specify events in the eventhandler argument using the names of the
events. Strings used in the eventhandler argument are not case
sensitive. unregisterevent does not accept numeric event identifiers.

COM functions are available on Microsoft Windows systems only.

Examples Unregister events for a control:

1 Create an mwsamp control and register all events with the same
handler routine, sampev. Use eventlisteners to see the event
handler used by each event. In this case, each event, when fired,
calls sampev.m:

f = figure ('position', [100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2', ...

[0 0 200 200], f, ...
'sampev');

h.eventlisteners

MATLAB displays:

2-4312



unregisterevent

ans =
'Click' 'sampev'
'DblClick' 'sampev'
'MouseDown' 'sampev'
'Event_Args' 'sampev'

2 Unregister just the dblclick event. Now, when you list the
registered events using eventlisteners, dblclick is no longer
registered and the control does not respond when you double-click
the mouse over it:

h.unregisterevent({'dblclick' 'sampev'});
h.eventlisteners

MATLAB displays:

ans =
'Click' 'sampev'
'MouseDown' 'sampev'
'Event_Args' 'sampev'

3 Now, register the click and dblclick events with a different event
handler for myclick and my2click, respectively:

h.unregisterallevents;
h.registerevent({'click' 'myclick'; ...

'dblclick' 'my2click'});
h.eventlisteners

MATLAB displays:

ans =
'click' 'myclick'
'dblclick' 'my2click'

4 Unregister these same events by specifying event names and their
handler routines in a cell array. eventlisteners now returns an

2-4313



unregisterevent

empty cell array, meaning that no events are registered for the
mwsamp control:

h.unregisterevent({'click' 'myclick'; ...
'dblclick' 'my2click'});

h.eventlisteners

MATLAB displays:

ans =
{}

Unregister Microsoft Excel workbook events:

1 Create a Workbook object and register two events with the event
handler routines, EvtActivateHndlr and EvtDeactivateHndlr:

myApp = actxserver('Excel.Application');
wbs = myApp.Workbooks;
wb = wbs.Add;wb.registerevent({'Activate' 'EvtActivateHndlr'; ...

'Deactivate' 'EvtDeactivateHndlr'})
wb.eventlisteners

MATLAB shows the events with the corresponding event handlers.

ans =
'Activate' 'EvtActivateHndlr'
'Deactivate' 'EvtDeactivateHndlr'

2 Next, unregister the Deactivate event handler:

wb.unregisterevent({'Deactivate' 'EvtDeactivateHndlr'})
wb.eventlisteners

MATLAB shows the remaining registered event (Activate) with
its corresponding event handler.

2-4314



unregisterevent

ans =
'Activate' 'EvtActivateHndlr'

See Also events (COM) | eventlisteners | registerevent |
unregisterallevents | isevent

How To • “Writing Event Handlers”

2-4315



untar

Purpose Extract contents of tar file

Syntax untar(tarfilename)
untar(tarfilename,outputdir)
untar(url, ...)
filenames = untar(...)

Description untar(tarfilename) extracts the archived contents of tarfilename
into the current directory and sets the files’ attributes. It overwrites
any existing files with the same names as those in the archive if the
existing files’ attributes and ownerships permit it. For example, if you
rerun untar on the same tarfilename, MATLAB software does not
overwrite files with a read-only attribute; instead, untar displays a
warning for such files. On Microsoft Windows platforms, the hidden,
system, and archive attributes are not set.

tarfilename is a string specifying the name of the tar file. tarfilename
is gunzipped to a temporary directory and deleted if its extension
ends in .tgz or .gz. If an extension is omitted, untar searches for
tarfilename appended with .tgz, .tar.gz, or .tar. tarfilename can
include the directory name; otherwise, the file must be in the current
directory or in a directory on the MATLAB path.

untar(tarfilename,outputdir) uncompresses the archive
tarfilename into the directory outputdir. If outputdir does not exist,
MATLAB creates it.

untar(url, ...) extracts the tar archive from an Internet URL.
The URL must include the protocol type (for example, 'http://' or
'ftp://'). MATLAB downloads the URL is to a temporary directory,
and then deletes it.

filenames = untar(...) extracts the tar archive and returns the
names of the extracted files in the string cell array filenames. If
outputdir specifies a relative path, filenames contains the relative
path. If outputdir specifies an absolute path, filenames contains the
absolute path.

2-4316



untar

Examples Using tar and untar to Copy Files

Copy all .m files in the current directory to the directory backup.

tar('mymfiles.tar.gz','*.m');
untar('mymfiles','backup');

Using untar with URL

Run untar to list Cleve Moler’s "Numerical Computing with MATLAB"
examples to the output directory ncm.

url ='http://www.mathworks.com/moler/ncm.tar.gz';
ncmFiles = untar(url,'ncm')

See Also gzip, gunzip, tar, unzip, zip

2-4317



unwrap

Purpose Correct phase angles to produce smoother phase plots

Syntax Q = unwrap(P)
Q = unwrap(P,tol)
Q = unwrap(P,[],dim)
Q = unwrap(P,tol,dim)

Description Q = unwrap(P) corrects the radian phase angles in a vector P by adding
multiples of when absolute jumps between consecutive elements of
P are greater than or equal to the default jump tolerance of radians. If
P is a matrix, unwrap operates columnwise. If P is a multidimensional
array, unwrap operates on the first nonsingleton dimension.

Q = unwrap(P,tol) uses a jump tolerance tol instead of the default
value, .

Q = unwrap(P,[],dim) unwraps along dim using the default tolerance.

Q = unwrap(P,tol,dim) uses a jump tolerance of tol.

Note A jump tolerance less than π has the same effect as a tolerance of
π. For a tolerance less than π, if a jump is greater than the tolerance but
less than π, adding ±2π would result in a jump larger than the existing
one, so unwrap chooses the current point. If you want to eliminate
jumps that are less than π, try using a finer grid in the domain.

Examples Example 1

The following phase data comes from the frequency response of a
third-order transfer function. The phase curve jumps 3.5873 radians
between w = 3.0 and w = 3.5, from -1.8621 to 1.7252.

w = [0:.2:3,3.5:1:10];
p = [ 0

-1.5728
-1.5747
-1.5772

2-4318



unwrap

-1.5790
-1.5816
-1.5852
-1.5877
-1.5922
-1.5976
-1.6044
-1.6129
-1.6269
-1.6512
-1.6998
-1.8621
1.7252
1.6124
1.5930
1.5916
1.5708
1.5708
1.5708 ];

semilogx(w,p,'b*-'), hold

2-4319



unwrap

Using unwrap to correct the phase angle, the resulting jump is 2.6959,
which is less than the default jump tolerance . This figure plots the
new curve over the original curve.

semilogx(w,unwrap(p),'r*-')

2-4320



unwrap

Example 2

Array P features smoothly increasing phase angles except for
discontinuities at elements (3,1) and (1,2).

P = [ 0 7.0686 1.5708 2.3562
0.1963 0.9817 1.7671 2.5525
6.6759 1.1781 1.9635 2.7489
0.5890 1.3744 2.1598 2.9452 ]

The function Q = unwrap(P) eliminates these discontinuities.

Q =
0 7.0686 1.5708 2.3562

0.1963 7.2649 1.7671 2.5525
0.3927 7.4613 1.9635 2.7489
0.5890 7.6576 2.1598 2.9452

2-4321



unwrap

See Also abs, angle

2-4322



unzip

Purpose Extract contents of zip file

Syntax unzip(zipfilename)
unzip(zipfilename, outputdir)
unzip(url, ...)
filenames = unzip(...)

Description unzip(zipfilename) extracts the archived contents of zipfilename
into the current folder, preserving the files’ attributes and timestamps.
If zipfilename does not include the full path, unzip searches for the
file in the current folder and along the MATLAB path. If you do not
specify the file extension, unzip appends .zip.

unzip(zipfilename, outputdir) extracts the contents of zipfilename
into the folder outputdir.

unzip(url, ...) extracts the zipped contents from an Internet URL.
The URL must include the protocol type (for example, http://). The
unzip function downloads the URL to the temporary folder on your
system, and deletes the URL on cleanup.

filenames = unzip(...)returns the names of the extracted files in
the string cell array filenames. If outputdir specifies a relative
path, filenames contains the relative path. If outputdir specifies an
absolute path, filenames contains the absolute path.

Tips • unzip does not support password-protected or encrypted zip archives.

• If any files in the target folder have the same name as files in the zip
file, and you have write permission to the files, unzip overwrites the
existing files with the archived versions. If you do not have write
permission, unzip issues a warning.

• Extract files that contain non-7-bit ASCII characters on a machine
that has the appropriate language/encoding settings.

Examples Copy the demo MAT-files to the folder archive:

% Zip the demo MAT-files to demos.zip

2-4323



unzip

zip('demos.zip','*.mat',...
fullfile(matlabroot,'toolbox','matlab','demos'))

% Unzip demos.zip to the folder 'archive'
unzip('demos','archive')

Download Cleve Moler’s "Numerical Computing with MATLAB"
examples to the output folder ncm:

url ='http://www.mathworks.com/moler/ncm.zip';
ncmFiles = unzip(url,'ncm')

See Also fileattrib | gzip | gunzip | tar | untar | zip

2-4324



upper

Purpose Convert string to uppercase

Syntax t = upper('str')
B = upper(A)

Description t = upper('str') converts any lowercase characters in the string
str to the corresponding uppercase characters and leaves all other
characters unchanged.

B = upper(A) when A is a cell array of strings, returns a cell array the
same size as A containing the result of applying upper to each string
within A.

Examples upper('attention!') is ATTENTION!.

Remarks Character sets supported:

• PC: Windows Latin-1

• Other: ISO Latin-1 (ISO 8859-1)

See Also lower

2-4325



urlread

Purpose Download content at URL into MATLAB string

Syntax str = urlread(URL)
str = urlread(URL, method, params)
[str, status] = urlread(...)

Description str = urlread(URL) reads Web content at the specified URL into the
string str. If the server returns binary data, str is unreadable.

str = urlread(URL, method, params) uses a method of 'get' or
'post', and passes information in params to the server. params is a cell
array of parameter name/value pairs.

[str, status] = urlread(...) returns a status of 1 when the
operation is successful. Otherwise, status is 0.

To save Web content to a file instead of a string, use urlwrite.

Examples Download the page on the MATLAB Central File Exchange
that lists submissions related to urlread, found at
http://www.mathworks.com/matlabcentral/fileexchange/?term=urlread.

samples = urlread(...
'http://www.mathworks.com/matlabcentral/fileexchange',...
'get', ...
{'term','urlread'});

Alternatives urlread and urlwrite can download content from FTP sites.
Alternatively, use the ftp function to connect to an FTP server and the
mget function to download a file.

See Also urlwrite | ftp | web

How To • “Specifying Proxy Server Settings”

2-4326



urlwrite

Purpose Download content at URL and save to file

Syntax urlwrite(URL, filename)
urlwrite(URL, filename, method, params)
f = urlwrite(...)
[f, status] = urlwrite(...)

Description urlwrite(URL, filename) reads Web content at the specified URL
and saves it to filename. If you do not specify the path for filename,
urlwrite saves the file in the MATLAB current folder.

urlwrite(URL, filename, method, params) uses a method of 'get'
or 'post', and passes information in params to the server. params is a
cell array of parameter name/value pairs.

f = urlwrite(...) assigns filename to f.

[f, status] = urlwrite(...) returns a status of 1 when the
operation is successful. Otherwise, status is 0.

Examples Download the page on the MATLAB Central File Exchange
that lists submissions related to urlwrite, found at
http://www.mathworks.com/matlabcentral/fileexchange/?term=urlwrite.
Save the results to samples.html in the current directory.

urlwrite(...
'http://www.mathworks.com/matlabcentral/fileexchange',...
'samples.html', ...
'get', ...
{'term','urlwrite'});

View the file in the Help browser:

open('samples.html')

Alternatives urlread and urlwrite can download content from FTP sites.
Alternatively, use the ftp function to connect to an FTP server and the
mget function to download a file.

2-4327



urlwrite

See Also urlread | ftp | web

How To • “Specifying Proxy Server Settings”

2-4328



usejava

Purpose Determine whether Sun Java feature is supported in MATLAB software

Syntax usejava(feature)

Description usejava(feature) returns 1 if the specified feature is supported and
0 otherwise.

The following table shows the valid feature arguments.

Feature Description

'awt' Java GUI components in
the Abstract Window Toolkit
components are available.

'desktop' The MATLAB interactive desktop
is running.

'jvm' The Java Virtual Machine
software(JVM) is running.

'swing' Swing components (Java
lightweight GUI components in
the Java Foundation Classes) are
available.

Examples The following conditional code ensures that the AWT GUI components
are available before the script attempts to display a Java Frame.

if usejava('awt')
myFrame = java.awt.Frame;

else
disp('Unable to open a Java Frame');

end

2-4329



usejava

The next example is part of a script that includes Java code. It fails
gracefully when run in a MATLAB session that does not have access to
JVM software.

if ~usejava('jvm')
error([mfilename ' requires Java to run.']);

end

See Also javachk

2-4330



userpath

Purpose View or change user portion of search path

Syntax userpath
userpath('newpath')
userpath('reset')
userpath('clear')

Description userpath returns a string specifying the user portion of the search
path. The user portion of the search path is the first folder on the
search path, above the folders supplied by The MathWorks. The default
folder is My Documents/MATLAB on Microsoft Windows platforms,
and Documents/MATLAB on Microsoft Windows Vista™ platforms.

2-4331



userpath

On Apple Macintosh and UNIX20 platforms, the default value is
userhome/Documents/MATLAB. You can define the userpath folder to
also be the MATLAB startup folder. On Windows platforms, userpath
is the startup folder, unless the startup folder is otherwise specified,
such as by the MATLAB shortcut properties Start in field. On UNIX
and Macintosh platforms, the startup folder is userpath if the value
of the environment variable MATLAB_USE_USERPATH is set to 1 prior
to startup and if the startup folder is not otherwise specified, such
as via a startup.m file. On Macintosh and UNIX platforms, you
can automatically add additional subfolders to the top of the search
path upon startup by specifying the path for the subfolders via the
MATLABPATH environment variable.

userpath('newpath') sets the userpath value to newpath. The
newpath folder appears at the top of the search path immediately and
at startup in future sessions. MATLAB removes the folder previously
specified by userpath from the search path. newpath must be an
absolute path. userpath('newpath') does not work when the -nojvm
startup option is used. Upon the next startup, newpath, can become
the current folder, as described in the syntax for userpath with no
arguments.

userpath('reset') sets the userpath value to the default for that
platform, creating the Documents/MATLAB (or My Documents/MATLAB)
folder, if it does not exist. MATLAB immediately adds the default
folder to the top of the search path, and also adds it to the search
path at startup in future sessions. It can become the startup folder
as described for the userpath syntax with no arguments. MATLAB
removes the folder previously specified by userpath from the search
path. userpath('reset') does not work when the -nojvm startup
option is used.

userpath('clear') clears the value for userpath. MATLAB removes
the folder previously specified by userpath from the search path.
This does not work when the -nojvm startup option is used. You

20. UNIX is a registered trademark of The Open Group in the United States and
other countries.

2-4332



userpath

can otherwise specify the startup folder—see “Startup Folder for the
MATLAB Program”.

Examples • “Viewing userpath” on page 2-4333

• “Setting a New Value for userpath” on page 2-4334

• “Clearing the Value for userpath, and Specifying a New Startup
Folder on Windows Platforms” on page 2-4335

• “Removing userpath from the Search Path; Resets the Startup
Folder” on page 2-4336

• “Assigning userpath as the Startup Folder on a UNIX or Macintosh
Platform” on page 2-4338

• “Adding Folders to the Search Path Upon Startup on a UNIX or
Macintosh Platform” on page 2-4339

Viewing userpath

This example assumes userpath is set to the default value on the
Windows XP platform, My Documents\MATLAB. Start MATLAB and
display the current folder:

cd

MATLAB returns:

H:\My Documents\MATLAB

where H is the drive at which My Documents is located for this example.
Confirm the current folder is the userpath:

userpath

MATLAB returns:

H:\My Documents\MATLAB;

Display the search path:

2-4333



userpath

path

MATLAB returns the search path. The userpath portion is at the top:

MATLABPATH

H:\My Documents\MATLAB
C:\Program Files\MATLAB\R2009a\toolbox\matlab\general
C:\Program Files\MATLAB\R2009a\toolbox\matlab\ops

Setting a New Value for userpath

This example assumes userpath is set to the default value on the
Windows XP platform, My Documents\MATLAB. Change the value from
the default for userpath to C:\Research_Project:

userpath('C:\Research_Project')

View the effect of the change on the search path:

path

MATLAB displays the search path, with the new value for userpath
portion at the top:

MATLABPATH

C:\Research_Project
C:\Program Files\MATLAB\R2009a\toolbox\matlab\general
C:\Program Files\MATLAB\R2009a\toolbox\matlab\ops

...

Note that MATLAB automatically removed the previous value of
userpath, H:\My Documents\MATLAB, from the search path when you
assigned a new value to userpath. The next time you start MATLAB,
the current folder will be C:\Research_Project on Windows platforms.

2-4334



userpath

Clearing the Value for userpath, and Specifying a New
Startup Folder on Windows Platforms

userpath is set to the default value and you do not want any folders
to be added to the search path upon startup. Confirm the default is
currently set:

userpath

MATLAB returns:

H:\My Documents\MATLAB

Verify that the userpath folder is at the top of the search path:

path

MATLAB returns:

MATLABPATH

H:\My Documents\MATLAB
C:\Program Files\MATLAB\R2009a\toolbox\matlab\general
C:\Program Files\MATLAB\R2009a\toolbox\matlab\ops
...

Clear the value:

userpath('clear')

Verify the result:

userpath

MATLAB returns:

ans =
''

Confirm the userpath folder was removed from the search path:

2-4335



userpath

path

MATLAB returns

MATLABPATH

C:\Program Files\MATLAB\R2009a\toolbox\matlab\general
C:\Program Files\MATLAB\R2009a\toolbox\matlab\ops
...

After clearing the userpath value, unless you otherwise specify the
startup folder, the startup folder will be the desktop on Windows
platforms. There are a number of ways to specify the startup folder.
For example, right-click the Windows shortcut icon for MATLAB
and select Properties from the context menu. In the Properties
dialog box Shortcut tab, enter the full path to the new startup folder
in the Start in field, for example, I\:my_matlab_files\my_files.
The next time you start MATLAB, the current folder will be
I\:my_matlab_files\my_files, but that folder will not be on the
search path. Note that you do not have to clear userpath to specify a
different startup folder; when you otherwise specify a startup folder,
the userpath folder is added to the search path upon startup, but is
not the startup folder.

Removing userpath from the Search Path; Resets the Startup
Folder

In this example, userpath is set to the default value and you remove
the userpath folder from the search path, then save the changes. This
has the same effect as clearing the value for userpath. Confirm the
default is currently set:

userpath

MATLAB returns:

H:\My Documents\MATLAB

See the userpath folder at the top of the search path:

2-4336



userpath

path

MATLAB returns:

MATLABPATH

H:\My Documents\MATLAB
C:\Program Files\MATLAB\R2009a\toolbox\matlab\general
C:\Program Files\MATLAB\R2009a\toolbox\matlab\ops
...

Remove H:\My Documents\MATLAB from the search path and confirm
the result:

rmpath('H:\My Documents\MATLAB')
path

MATLAB returns:

MATLABPATH

C:\Program Files\MATLAB\R2009a\toolbox\matlab\general
C:\Program Files\MATLAB\R2009a\toolbox\matlab\ops

...

Verify the value:

userpath

MATLAB returns:

H:\My Documents\MATLAB

Save changes to the search path:

savepath

View the value:

userpath

2-4337



userpath

MATLAB returns:

ans =
''

The value is now cleared. Removing the folder from the search path
and saving the changes to the path has the same effect as clearing the
value for userpath. At the next startup, the startup folder will not be
H:\My Documents\MATLAB, and H:\My Documents\MATLAB will not be
on the search path.

Assigning userpath as the Startup Folder on a UNIX or
Macintosh Platform

userpath is set to the default value on a Macintosh platform and you
start MATLAB using a bash X11 shell, where smith is the home folder.
Set the MATLAB_USE_USERPATH environment variable so that userpath
will be used as the startup folder:

export MATLAB_USE_USERPATH=1

From that shell, start MATLAB. After MATLAB starts, verify the
current folder in MATLAB:

pwd

MATLAB returns:

/Users/smith/Documents/MATLAB

That is the value defined for userpath, which you can confirm:

userpath

MATLAB returns:

/Users/smith/Documents/MATLAB

The userpath is at the top of the search path, which you can confirm:

path

2-4338



userpath

MATLAB returns:

/Users/smith/Documents/MATLAB

/Users/smith/Applications/MATLAB/R2009a/toolbox/matlab/general

/Users/smith/Applications/MATLAB/R2009a/toolbox/matlab/ops

...

Adding Folders to the Search Path Upon Startup on a UNIX
or Macintosh Platform

userpath is set to the default value on a UNIX platform with a csh
shell, where j is the user’s home folder.

To add additional folders to the search path upon startup,
for example, /home/j/Documents/MATLAB/mine and
/home/j/Documents/MATLAB/mine/research, run the following in an
X11 terminal:

setenv MATLABPATH '/home/j/Documents/MATLAB/mine':'/home/j/Documents/MATLAB/mine/research'

Separate multiple folders using a : (colon).

MATLAB displays

MATLABPATH

home/j/Documents/MATLAB
home/j/Documents/MATLAB/mine
home/j/Documents/MATLAB/mine/research
home/j/Applications/MATLAB/R2009a/toolbox/matlab/general
home/j/Applications/MATLAB/R2009a/toolbox/matlab/ops
...

See Also addpath, path, pathtool, rmpath, savepath, startup,

Topics in the User Guide:

• “Using the MATLAB Search Path”

• “Startup and Shutdown”

2-4339



validateattributes

Purpose Check validity of array

Syntax validateattributes(A, classes, attributes)
validateattributes(A, classes, attributes, position)
validateattributes(A, classes, attributes, funcname)
validateattributes(A, classes, attributes,
funcname, varname)
validateattributes(A, classes, attributes,
funcname, varname,

position)

Description validateattributes(A, classes, attributes) validates that array
A belongs to at least one of the classes specified by the classes input
and has all of the attributes specified by the attributes input. If
the validation succeeds, the command completes without displaying
any output and without throwing an error. If the validation does not
succeed, MATLAB issues a formatted error message.

The classes input is a cell array containing one or more strings from
the Class Values on page 2-4341 table shown below.

The attributes input is a cell array containing one or more strings
from the Attribute Values on page 2-4342 table shown below. Size
validation requires two inputs: the 'size' keyword and the length of
each dimension (e.g., {'size', [4,3,7]}). Value range validation
requires two inputs for each aspect of the range being validated (e.g.,
{'>', 10, '<=', 65}).

validateattributes(A, classes, attributes, position)
validates array A and, if the validation fails, displays an error message
that includes the position of the failing variable in the function
argument list. The position input must be a positive integer.

validateattributes(A, classes, attributes, funcname)
validates array A and, if the validation fails, displays an error message
that includes the name of the function performing the validation
(funcname). The funcname input must be a string.

2-4340



validateattributes

validateattributes(A, classes, attributes, funcname,
varname) validates array A and, if the validation fails, displays an
error message that includes the name of the function performing the
validation (funcname), and the name of the variable being validated
(varname). The funcname and varname inputs must be strings enclosed
in single quotation marks.

validateattributes(A, classes, attributes, funcname,
varname, position) validates array A and, if the validation fails,
displays an error message that includes the name of the function
performing the validation (funcname), the name of the variable being
validated (varname), and the position of this variable in the function
argument list (position). The funcname and varname inputs must be
strings enclosed in single quotation marks. The position input must
be a positive integer.

Class Values

classes Argument Contents of Array A

'numeric' Any numeric value

'single' Single-precision number

'double' Double-precision number

'int8' Signed 8-bit integer

'int16' Signed 16-bit integer

'int32' Signed 32-bit integer

'int64' Signed 64-bit integer

'uint8' Unsigned 8-bit integer

'uint16' Unsigned 16-bit integer

'uint32' Unsigned 32-bit integer

'uint64' Unsigned 64-bit integer

'logical' Logical true or false

2-4341



validateattributes

Class Values (Continued)

classes Argument Contents of Array A

’'char' Character or string

'struct' MATLAB structure

'cell' Cell array

'function_handle' Scalar function handle

class name Object of any MATLAB class

Attribute Values

attributes
Argument

Description of array A

'>', N Array in which all values are greater than N.

'>=', N Array in which all values are greater than or equal
to N.

'<', N Array in which all values are less than N.

'<=', N Array in which all values are lass than or equal to N.

'2d' Array having dimensions M-by-N (includes scalars,
vectors, 2-D matrices, and empty arrays)

'binary' Array of ones and zeros

'column' Array having dimensions N-by-1

'even' Numeric or logical array in which all elements are
even (includes zero)

'finite' Numeric array in which all elements are finite

'integer' Numeric array in which all elements are
integer-valued

'nonempty' Array having no dimension equal to zero

2-4342



validateattributes

Attribute Values (Continued)

attributes
Argument

Description of array A

'nonnan' Numeric array in which there are no elements equal
to NaN (Not a Number)

'nonnegative' Numeric array in which all elements are zero or
greater than zero

'nonsparse' Array that is not sparse

'nonzero' Numeric or logical array in which all elements are
less than or greater than zero

'odd' Numeric or logical array in which all elements are
odd integers

'positive' Numeric or logical array in which all elements are
greater than zero

'real' Numeric array in which all elements are real

'row' Array having dimensions 1-by-N

'scalar' Array having dimensions 1-by-1

'size',
[M,N,...]

Array having dimensions M-by-N-by- ....

'vector' Array having dimensions N-by-1 or 1-by-N (includes
scalar arrays)

Numeric properties, such as positive and nonnan, do not apply to
strings. If you attempt to validate numeric properties on a string,
validateattributes generates an error.

Examples Example 1

In this example, the empl_profile1 function compares the values
passed in each argument to the specified classes and attributes and
throws an error if they are not correct:

2-4343



validateattributes

function empl_profile1(empl_id, empl_info, healthplan, ...
vacation)

validateattributes(empl_id, {'numeric'}, ...
{'integer', 'nonempty'});

validateattributes(empl_info, {'struct'}, {'vector'});
validateattributes(healthplan, {'cell', 'char'}, ...

{'vector'});
validateattributes(vacation, {'numeric'}, ...

{'nonnegative', 'scalar'});

Call the empl_profile1 function, passing the expected argument types,
and the example completes without error:

empl_id = 51723;
empl_info.name = 'John Miller';
empl_info.address = '128 Forsythe St.';
empl_info.town = 'Duluth'; empl_info.state='MN';

empl_profile1(empl_id, empl_info, 'HCP Medical Plus', 14.3)

If you accidentally pass the argument values out of their correct
sequence, MATLAB throws an error in response to the first argument
that is not a match:

empl_profile1(empl_id, empl_info, 14.3, 'HCP Medical Plus')

??? Error using ==> empl_profile1 at 6
Expected input to be one of these types:

cell, char

Instead its type was double.

Example 2

Write a new function empl_profile2 that displays the function name,
variable name, and position of the argument:

2-4344



validateattributes

function empl_profile2(empl_id, empl_info, healthplan, ...
vacation)

validateattributes(empl_id, ...
{'numeric'}, {'integer', 'nonempty'}, ...
mfilename, 'Employee Identification', 1);

validateattributes(empl_info, ...
{'struct'}, {'vector'}, ...
mfilename, 'Employee Info', 2);

validateattributes(healthplan, ...
{'cell', 'char'}, {'vector'}, ...
mfilename, 'Health Plan', 3);

validateattributes(vacation, ...
{'numeric'}, {'nonnegative', 'scalar'}, ...
mfilename, 'Vacation Accrued', 4);

Call empl_profile2 with the argument values out of sequence.
MATLAB throws an error that includes the name of the function
validating the attributes, the name of the variable that was in error,
and its position in the input argument list:

??? Error using ==> empl_profile2
Expected input number 3, Health Plan, to be one of
these types:

cell, char

Instead its type was double.

Error in ==> empl_profile2 at 12
validateattributes(healthplan, ...

2-4345



validateattributes

Example 3

Write a new function empl_profile3 that checks the input parameters
with inputParser. Use validateattributes as the validating function
for the inputParser methods:

function empl_profile3(empl_id, varargin)
p = inputParser;

% Validate the input arguments.
addRequired(p, 'empl_id', ...

@(x)validateattributes(x, {'numeric'}, {'integer'}));
addOptional(p, 'empl_info', '', ...

@(x)validateattributes(x, {'struct'}, {'nonempty'}));
addParamValue(p, 'health', 'HCP Medical Plus', ...

@(x)validateattributes(x, {'cell', 'char'}, ...
{'vector'}));

addParamValue(p, 'vacation', [], ...
@(x)validateattributes(x, {'numeric'}, ...
{'nonnegative', 'scalar'}));

parse(p, empl_id, varargin{:});
p.Results

Call empl_profile3 using appropriate input arguments:

empl_info.name = 'John Miller';
empl_info.address = '128 Forsythe St.';
empl_info.town = 'Duluth'; empl_info.state='MN';

empl_profile3(51723, empl_info, 'vacation', 14.3)

ans =
empl_id: 51723

empl_info: [1x1 struct]
health: 'HCP Medical Plus'

vacation: 14.3000

2-4346



validateattributes

Call empl_profile3 using a character string where a structure is
expected:

empl_profile3(51723, empl_info.name, 'vacation', 14.3)

??? Error using ==> empl_profile3 at 12
Argument 'empl_info' failed validation with error:
Expected input to be one of these types:

struct

Instead its type was char.

Example 4

Create a 4-by-2-by-6 array and then validate its size:

x = rand(4,2,6);

validateattributes(x, {'numeric'}, {'size', [4,2,6]});

Create an array of integers between 50 and 200 and then validate that
these values are within the intended range:

y = uint8(50:10:200);

validateattributes(y, {'uint8'}, {'>=', 50, '<=', 200})

This next statement fails for y(end):

validateattributes(y, {'uint8'}, {'>=', 50, '<', 200})
??? Expected input to be an array with all of the

values < 200.

Example 5

Generate a new array z and validate that it is a 4-by-2-by-6 nonsparse
array of class double, with all elements being between 0.005 and 50,
inclusive:

2-4347



validateattributes

z = rand(4,2,6) * 50;

validateattributes(z, {'numeric', 'double'}, ...
{'<', 50, 'size', [4 2 6], 'nonsparse', '>=', .005});

There are several things to note in the above statement:

• All class arguments are enclosed in just one set of curly braces {}.
All attribute arguments the same way.

• The placement of the <, <=, >, and >= arguments in the argument list
is unimportant. However, you must immediately follow any of these
arguments with the numeric argument it relates to.

• The placement of the 'size' argument in the argument list is
unimportant. However, you must immediately follow this argument
with the numeric vector argument it relates to.

If you add to this a requirement that z be two-dimensional,
validateattributes throws an error because z has three dimensions:

validateattributes(z, {'double'}, ...
{z, '<', 50, 'size', [4 2 6], '2d', 'positive', '>', 0});

Warning: Failed to find attribute in list.
??? Expected input to be two-dimensional.

See Also validatestring, is*, isa, inputParser

2-4348



validatestring

Purpose Check validity of text string

Syntax validstr = validatestring(str, strarray)
validstr = validatestring(str, strarray, position)
validstr = validatestring(str, strarray, funname)
validstr = validatestring(str, strarray, funname, varname)
validstr = validatestring(str, strarray, funname, varname,

position)

Description validstr = validatestring(str, strarray) checks the validity of
text string str. If str matches one or more of the text strings in the cell
array strarray, MATLAB returns the matching string in validstr.
If str does not match any of the strings in strarray, MATLAB issues
a formatted error message. MATLAB compares the strings without
respect to letter case.

This table shows how validatestring determines what value to return.

Type of Match Example — Match ’ball’ with . . . Return Value

Exact match ball, barn, bell ball

Partial match (leading
characters)

balloon, barn balloon

Multiple partial matches
where each string is a subset
of another

ballo, balloo, balloon ballo (shortest
match)

Multiple partial matches
where strings are unique

balloon, ballet Error

No match barn, bell Error

validstr = validatestring(str, strarray, position) checks the
validity of text string str and, if the validation fails, displays an error
message that includes the position of the failing variable in the function
argument list. The position input must be a positive integer.

2-4349



validatestring

validstr = validatestring(str, strarray, funname) checks
the validity of text string str and, if the validation fails, displays an
error message that includes the name of the function performing the
validation (funname). The funname input must be a string enclosed
in single quotation marks.

validstr = validatestring(str, strarray, funname, varname)
checks the validity of text string str and, if the validation fails, displays
an error message that includes the name of the function performing
the validation (funname) and the name of the variable being validated
(varname). The funname and varname inputs must be strings enclosed
in single quotation marks.

validstr = validatestring(str, strarray, funname, varname,
position) checks the validity of text string str and, if the validation
fails, displays an error message that includes the name of the function
performing the validation (funname), the name of the variable being
validated (varname), and the position of this variable in the function
argument list (position). The funname and varname inputs must be
strings enclosed in single quotation marks. The position input must
be a positive integer.

Examples Example 1

Use validatestring to find the word won in the cell array of strings:

validatestring('won', {'wind', 'won', 'when'})
ans =

won

Replace the word won with wonder in the string array. Because the
leading characters of the input string and wonder are the same,
validatestring finds a partial match between the two words and
returns the full word wonder:

validatestring('won', {'wind', 'wonder', 'when'})
ans =

wonder

2-4350



validatestring

If there is more than one partial match, and each string in the array is
a subset or superset of the others, validatestring returns the shortest
matching string:

validatestring('wond', {'won', 'wonder', 'wonderful'})
ans =

wonder

However, if each string in the array is not subset or superset of each
other, MATLAB throws an error because there is no exact match and it
is not clear which of the two partial matches should be returned:

validatestring('wond', {'won', 'wonder', 'wondrous'})
??? Error using ==> validatestring at 89
Function VALIDATESTRING expected its input argument to

match one of these strings:

won, wonder, wondrous

The input, 'wond', matched more than one valid string.

Example 2

In this example, the get_flight_numbers function returns the flight
numbers for routes between two cities: a point of origin and point of
destination. The function uses validatestring to see if the origin and
destination are among those covered by the airline. If not, an error
message is displayed:

function get_flight_numbers(origin, destination)
% Only part of the airline's flight data is shown here.

flights.chi2rio = [503, 196, 331, 373, 1475];
flights.chi2par = [718, 9276, 172, 903, 7724 992, 1158];
flights.chi2hon = [9193, 880, 471, 391];

routes = {'Athens', 'Paris', 'Chicago', 'Sydney', ...
'Cancun', 'London', 'Rio de Janeiro', 'Honolulu', ...
'Rome', 'New York City'};

orig = ''; dest = '';

2-4351



validatestring

% Does the airline cover these cities?
try

orig = validatestring(origin, routes);
dest = validatestring(destination, routes);

catch
% If not covered, then display error message.
if isempty(orig)

fprintf(...
'We have no flights with origin: %s.\n', ...
origin)

elseif isempty(dest)
fprintf('%s%s%s.\n', 'We have no flights ', ...

'with destination: ', destination)
end

return
end

% If covered, display the flights from 'orig' to 'dest'.
fprintf(...

'Flights available from %s to %s are:\n', orig, dest)
reply = flights.([lower(orig(1:3)) '2' lower(dest(1:3))]);
fprintf(' Flight %d\n', reply)

Enter a point of origin that is not covered by this airline:

get_flight_numbers('San Diego', 'Rio de Janeiro')
ans =
We have no flights with origin: San Diego.

Enter a destination that is misspelled:

get_flight_numbers('Chicago', 'Reo de Janeiro')
ans =
We have no flights with destination: Reo de Janeiro.

Enter a route that is covered:

2-4352



validatestring

get_flight_numbers('Chicago', 'Rio de Janeiro')
ans =
Flights available from Chicago to Rio de Janeiro are:

Flight 503
Flight 196
Flight 331
Flight 373
Flight 1475

Example 3

Rewrite the try-catch block of Example 2 by adding funname, varname,
and position arguments to the call to validatestring and replacing
the return statement with rethrow:

% See if the cities entered are covered by this airline.
try

orig = validatestring(...
origin, routes, mfilename, 'Flight Origin', 1);

dest = validatestring(...
destination, routes, mfilename, ...

'Flight Destination', 2);
catch e

% If not covered, then display error message.
if isempty(orig)

fprintf(...
'We have no flights with origin: %s.\n', ...
origin)

elseif isempty(dest)
fprintf('%s%s%s.\n', 'We have no flights ', ...

'with destination: ', destination)
end
rethrow(e);

end

In response to the rethrow command, MATLAB displays an error
message that includes the function name get_flight_numbers, the

2-4353



validatestring

failing variable name Flight Destination, and its position in the
argument list, 2:

get_flight_numbers('Chicago', 'Reo de Janeiro')
We have no flights with destination: Reo de Janeiro.

??? Error using ==> validatestring at 89
Function GET_FLIGHT_NUMBERS expected its input argument

number 2, Flight Destination, to match one of these
strings:

Athens, Paris, Chicago, Sydney, Cancun, London, Rio de
Janeiro, Honolulu, Rome

The input, 'Reo de Janeiro', did not match any of the valid
strings.

Error in ==> get_flight_numbers at 17
dest = validatestring(destination, routes, mfilename,
'destination', 2);

See Also validateattributes, is*, isa, inputParser

2-4354



values (Map)

Purpose Return values of containers.Map object

Syntax v = values(M)
v = values(M, keys)

Description v = values(M) returns in cell array v the values that correspond to all
keys in Map object M.

v = values(M, keys) returns in cell array v, those values in Map object
M that correspond to the keys specified by the keys argument.

Read more about Map Containers in the MATLAB Programming
Fundamentals documentation.

Examples Create a Map object of four US states and their capital cities:

US_Capitals = containers.Map( ...
{'Georgia', 'Alaska', 'Vermont', 'Oregon'}, ...
{'Atlanta', 'Juneau', 'Montpelier', 'Salem'})

Find the capital cities of all states contained in the map:

v = values(US_Capitals)
v =

'Juneau' 'Atlanta' 'Salem' 'Montpelier'

Find the capital cities of selected states:

= values(US_Capitals, {'Oregon', 'Alaska'})
v =

'Salem' 'Juneau'

See Also containers.Map, keys(Map), size(Map), length(Map), isKey(Map),
remove(Map), handle

2-4355



vander

Purpose Vandermonde matrix

Syntax A = vander(v)

Description A = vander(v) returns the Vandermonde matrix whose columns are
powers of the vector v, that is, A(i,j) = v(i)^(n-j), where n =
length(v).

Examples vander(1:.5:3)

ans =

1.0000 1.0000 1.0000 1.0000 1.0000
5.0625 3.3750 2.2500 1.5000 1.0000

16.0000 8.0000 4.0000 2.0000 1.0000
39.0625 15.6250 6.2500 2.5000 1.0000
81.0000 27.0000 9.0000 3.0000 1.0000

See Also gallery

2-4356



var

Purpose Variance

Syntax V = var(X)
V = var(X,1)
V = var(X,w)
V = var(X,w,dim)

Description V = var(X) returns the variance of X for vectors. For matrices,
var(X)is a row vector containing the variance of each column of X.
For N-dimensional arrays, var operates along the first nonsingleton
dimension of X. The result V is an unbiased estimator of the variance
of the population from which X is drawn, as long as X consists of
independent, identically distributed samples.

var normalizes V by N-1 if N>1, where N is the sample size. This is an
unbiased estimator of the variance of the population from which X is
drawn, as long as X consists of independent, identically distributed
samples. For N=1, V is normalized by N.

V = var(X,1) normalizes by N and produces the second moment of the
sample about its mean.var(X,0) is equivalent to var(X).

V = var(X,w) computes the variance using the weight vector w. The
length of w must equal the length of the dimension over which var
operates, and its elements must be nonnegative. The elements of w
must be positive. var normalizes w to sum of 1.

V = var(X,w,dim) takes the variance along the dimension dim of X.
Pass in 0 for w to use the default normalization by N-1, or 1 to use N.

The variance is the square of the standard deviation (STD).

See Also corrcoef, cov, mean, median, std

2-4357



var (timeseries)

Purpose Variance of timeseries data

Syntax ts_var = var(ts)
ts_var = var(ts,'PropertyName1',PropertyValue1,...)

Description ts_var = var(ts) returns the variance of ts.data. When ts.Data is
a vector, ts_var is the variance of ts.Data values. When ts.Data is a
matrix, ts_var is a row vector containing the variance of each column of
ts.Data (when IsTimeFirst is true and the first dimension of ts is
aligned with time). For the N-dimensional ts.Data array, var always
operates along the first nonsingleton dimension of ts.Data.

ts_var = var(ts,'PropertyName1',PropertyValue1,...)
specifies the following optional input arguments:

• 'MissingData' property has two possible values, 'remove' (default)
or 'interpolate', indicating how to treat missing data during the
calculation.

• 'Quality' values are specified by an integer vector, indicating which
quality codes represent missing samples (for vector data) or missing
observations (for data arrays with two or more dimensions).

• 'Weighting' property has two possible values, 'none' (default) or
'time'.
When you specify 'time', larger time values correspond to larger
weights.

Examples The following example shows how to calculate the variance values of a
multi-variate timeseries object.

1 Load a 24-by-3 data array.

load count.dat

2 Create a timeseries object with 24 time values.

count_ts = timeseries(count,[1:24],'Name','CountPerSecond')

2-4358



var (timeseries)

3 Calculate the variance of each data column for this timeseries
object.

var(count_ts)
ans =

1.0e+003 *

0.6437 1.7144 4.6278

The variance is calculated independently for each data column in the
timeseries object.

See Also iqr (timeseries), mean (timeseries), median (timeseries), std
(timeseries), timeseries

2-4359



varargin

Purpose Variable length input argument list

Syntax function y = bar(varargin)

Description function y = bar(varargin) accepts a variable number of arguments
into function bar.m.

The varargin statement is used only inside a function to contain
optional input arguments passed to the function. The varargin
argument must be declared as the last input argument to a function,
collecting all the inputs from that point onwards. In the declaration,
varargin must be lowercase.

Examples Example 1

Write a function that displays the expected and optional arguments
you pass to it

function vartest(argA, argB, varargin)

optargin = size(varargin,2);
stdargin = nargin - optargin;

fprintf('Number of inputs = %d\n', nargin)

fprintf(' Inputs from individual arguments(%d):\n', ...
stdargin)

if stdargin >= 1
fprintf(' %d\n', argA)

end
if stdargin == 2

fprintf(' %d\n', argB)
end

fprintf(' Inputs packaged in varargin(%d):\n', optargin)
for k= 1 : size(varargin,2)

fprintf(' %d\n', varargin{k})
end

2-4360



varargin

Call this function and observe that the MATLAB software extracts
those arguments that are not individually-specified from the varargin
cell array:

vartest(10,20,30,40,50,60,70)
Number of inputs = 7

Inputs from individual arguments(2):
10
20

Inputs packaged in varargin(5):
30
40
50
60
70

Example 2

The function

function myplot(x,varargin)
plot(x,varargin{:})

collects all the inputs starting with the second input into the variable
varargin. myplot uses the comma-separated list syntax varargin{:}
to pass the optional parameters to plot. The call

myplot(sin(0:.1:1),'color',[.5 .7 .3],'linestyle',':')

results in varargin being a 1-by-4 cell array containing the values
'color', [.5 .7 .3], 'linestyle', and ':'.

See Also varargout, nargin, nargout, nargchk, nargoutchk, inputname

2-4361



varargout

Purpose Variable length output argument list

Syntax function varargout = foo(n)

Description function varargout = foo(n) returns a variable number of
arguments from function foo.m.

The varargout statement is used only inside a function to contain the
optional output arguments returned by the function. The varargout
argument must be declared as the last output argument to a function,
collecting all the outputs from that point onwards. In the declaration,
varargout must be lowercase.

Examples The function

function [s,varargout] = mysize(x)
nout = max(nargout,1)-1;
s = size(x);
for k=1:nout, varargout(k) = {s(k)}; end

returns the size vector and, optionally, individual sizes. So

[s,rows,cols] = mysize(rand(4,5));

returns s = [4 5], rows = 4, cols = 5.

See Also varargin, nargin, nargout, nargchk, nargoutchk, inputname

2-4362



vectorize

Purpose Vectorize expression

Syntax vectorize(s)
vectorize(fun)

Description vectorize(s) where s is a string expression, inserts a . before any ^, *
or / in s. The result is a character string.

vectorize(fun) when fun is an inline function object, vectorizes
the formula for fun. The result is the vectorized version of the inline
function.

See Also inline, cd, dbtype, delete, dir, path, what, who

2-4363



ver

Purpose Version information for MathWorks products

GUI
Alternatives

As an alternative to the ver function, select Help > About in any tool
that has a Help menu.

Syntax ver
ver product
v = ver('product')

Description ver displays a header containing the current MathWorks product
family version number, license number, operating system, and version
of Sun Microsystems JVM software for the MATLAB product. This is
followed by the version numbers for MATLAB, Simulink, if installed,
and all other installed MathWorks products.

ver product displays the MathWorks product family header
information followed by the current version number for product.
The name product corresponds to the folder name that holds the
Contents.m file for that product. For example, Contents.m for the
Control System Toolbox product resides in the control folder. You
therefore use ver control to obtain the version of this toolbox.

v = ver('product') returns the version information to structure
array, v, having fields Name, Version, Release, and Date.

Remarks To use ver with your own collection of files, see “Creating a Help
Summary for Your Program Files”.

Examples Using R2009b, return version information for MathWorks products, and
specifically the Control System Toolbox product:

ver control

MATLAB returns:

-------------------------------------------------------------------------------------

MATLAB Version 7.9.0.3512 (R2009b)

MATLAB License Number: [not shown]

2-4364



ver

Operating System: Microsoft Windows XP Version 5.1 (Build 2600: Service Pack 3)

Java VM Version: Java 1.6.0_12-b04 with Sun Microsystems Inc. Java HotSpot(TM) Client VM mixed mo

-------------------------------------------------------------------------------------

Control System Toolbox Version 8.3 (R2009b)

Return version information for the Control System Toolbox product in a
structure array, v.

v = ver('control')
v =

Name: 'Control System Toolbox'
Version: '8.4'
Release: '(R2009b)'

Date: '24-Sep-2009'

Display version information for MathWorks ’Real-Time’ products:

v = ver;
for k=1:length(v)

if strfind(v(k).Name, 'Real-Time')
disp(sprintf('%s, Version %s', ...

v(k).Name, v(k).Version))
end

end

Real-Time Windows Target, Version 3.4
Real-Time Workshop, Version 7.4
Real-Time Workshop Embedded Coder, Version 5.4

See Also computer, help, hostid, license, verlessthan, version, whatsnew

“Obtaining Information About your Installation”

2-4365



verctrl

Purpose Source control actions (Windows platforms)

GUI
Alternatives

As an alternative to the verctrl function, use Source Control in the
Filemenu of the Editor, the Simulink product, or the Stateflow product,
or in the context menu of the Current Folder browser.

Syntax verctrl('action',{'filename1','filename2',....},0)
result=verctrl('action',{'filename1','filename2',....},0)
verctrl('action','filename',0)
result=verctrl('isdiff','filename',0)
list = verctrl('all_systems')

Description verctrl('action',{'filename1','filename2',....},0) performs the
source control operation specified by 'action' for a single file or
multiple files. Enter one file as a string; specify multiple files using a
cell array of strings. Use the full paths for each file name and include
the extensions. Specify 0 as the last argument. Complete the resulting
dialog box to execute the operation. Available values for 'action' are
as follows:

action
Argument Purpose

'add' Adds files to the source control system. Files can
be open in the Editor or closed when added.

'checkin' Checks files into the source control system,
storing the changes and creating a new version.

'checkout' Retrieves files for editing.

'get' Retrieves files for viewing and compiling, but not
editing. When you open the files, they are labeled
as read-only.

'history' Displays the history of files.

2-4366



verctrl

action
Argument Purpose

'remove' Removes files from the source control system. It
does not delete the files from disk, but only from
the source control system.

'runscc' Starts the source control system. The file name
can be an empty string.

'uncheckout' Cancels a previous checkout operation and
restores the contents of the selected files to the
precheckout version. All changes made to the
files since the checkout are lost.

result=verctrl('action',{'filename1','filename2',....},0)
performs the source control operation specified by 'action' on a single
file or multiple files. The action can be any one of: 'add', 'checkin',
'checkout', 'get', 'history', or 'undocheckout'. result is a logical
1 (true) when you complete the operation by clicking OK in the resulting
dialog box, and is a logical 0 (false) when you abort the operation by
clicking Cancel in the resulting dialog box.

verctrl('action','filename',0) performs the source control
operation specified by 'action' for a single file. Use the absolute path
for 'filename'. Specify 0 as the last argument. Complete any resulting
dialog boxes to execute the operation. Available values for 'action'
are as follows:

action Argument Purpose

'showdiff' Displays the differences between a file and
the latest checked in version of the file in the
source control system.

'properties' Displays the properties of a file.

2-4367



verctrl

result=verctrl('isdiff','filename',0) compares filename with
the latest checked in version of the file in the source control system.
result is a logical 1 (true) when the files are different, and is a logical 0
(false) when the files are identical. Use the full path for 'filename'.
Specify 0 as the last argument.

list = verctrl('all_systems') displays in the Command Window a
list of all source control systems installed on your computer.

Examples Check In a File

Check in D:\file1.ext to the source control system:

result = verctrl('checkin','D:\file1.ext', 0)

This opens the Check in file(s) dialog box. Click OK to complete the
check in. MATLAB displays

result = 1

indicating the checkin was successful.

Add Files to the Source Control System

Add D:\file1.ext and D:\file2.ext to the source control system.

verctrl('add',{'D:\file1.ext','D:\file2.ext'}, 0)

This opens the Add to source control dialog box. Click OK to complete
the operation.

Display the Properties of a File

Display the properties of D:\file1.ext.

verctrl('properties','D:\file1.ext', 0)

This opens the source control properties dialog box for your source
control system. The function is complete when you close the properties
dialog box.

2-4368



verctrl

Show Differences for a File

To show the differences between the version of file1.ext that you just
edited and saved, with the last version in source control, run

verctrl('showdiff','D:\file1.ext',0)

MATLAB displays differences dialog boxes and results specific to
your source control system. After checking in the file, if you run this
statement again, MATLAB displays

??? The file is identical to latest version under source control.

List All Installed Source Control Systems

To view all of the source control systems installed on your computer,
type

list = verctrl ('all_systems')

MATLAB displays all the source control systems currently installed
on your computer. For example:

list =
'Microsoft Visual SourceSafe'
'ComponentSoftware RCS'

See Also checkin, checkout, undocheckout, cmopts

“Source Control Interface on Microsoft Windows” in MATLAB Desktop
Tools and Development Environment documentation

2-4369



verLessThan

Purpose Compare toolbox version to specified version string

Syntax verLessThan(toolbox, version)

Description verLessThan(toolbox, version) returns logical 1 (true) if the version
of the toolbox specified by the string toolbox is older than the version
specified by the string version, and logical 0 (false) otherwise. Use
this function when you want to write code that can run across multiple
versions of the MATLAB software, when there are differences in the
behavior of the code in the different versions.

The toolbox argument is a string enclosed within single quotation
marks that contains the name of a MATLAB toolbox folder. The
version argument is a string enclosed within single quotation marks
that contains the version to compare against. This argument must be
in the form major[.minor[.revision]], such as 7, 7.1, or 7.0.1. If
toolbox does not exist, MATLAB generates an error.

To specify toolbox, find the folder that holds the Contents.m file
for the toolbox and use that folder name. To see a list of all toolbox
folder names, enter the following statement in the MATLAB Command
Window:

dir([matlabroot '/toolbox'])

Remarks The verLessThan function is available with MATLAB Version 7.4 and
subsequent versions. If you are running a version of MATLAB prior to
7.4, you can download the verLessThan function from the following
MathWorks Technical Support solution. You must be running MATLAB
Version 6.0 or higher to use this function:

http://www.mathworks.com/support/solutions/data/1-38LI61.html?solution=1-

Examples These examples illustrate usage of the verLessThan function.

Example 1 – Checking For the Minimum Required Version

if verLessThan('simulink', '4.0')
error('Simulink 4.0 or higher is required.');

2-4370

http://www.mathworks.com/support/solutions/data/1-38LI61.html?solution=1-38LI61


verLessThan

end

Example 2 – Choosing Which Code to Run

if verLessThan('matlab', '7.0.1')
% -- Put code to run under MATLAB 7.0.0 and earlier here --
else
% -- Put code to run under MATLAB 7.0.1 and later here --
end

Example 3 – Looking Up the Folder Name

Find the name of the Data Acquisition Toolbox folder:

dir([matlabroot '/toolbox/d*'])

daq database des distcomp dotnetbuilder
dastudio datafeed dials dml dspblks

Use the toolbox folder name, daq, to compare the Data Acquisition
Toolbox software version that MATLAB is currently running against
version number 3:

verLessThan('daq', '3')
ans =

1

See Also ver, version, license, ispc, isunix, ismac, dir

2-4371



version

Purpose Version number for MATLAB and libraries

Syntax version
version('-date')
version('-description')
version('-release')
version('-java')
version -versionOption
v = version('-versionOption')

Description version displays the version and release number for the MATLAB
software currently running.

version('-date') displays the release date for the MATLAB software.

version('-description') displays a description of the version.
Usually, the description is for special versions, such as beta versions.

version('-release') displays the release number for the MATLAB
software currently running.

version('-java') displays the version of the Sun Microsystems JVM
software that MATLAB is using.

version -versionOption is an alternate form of the syntax.

v = version('-versionOption') returns a string containing the
result of version.

Examples Display the version:

version

MATLAB returns:

7.9.0.2601 (R2009b)

Display the release, prefaced by a descriptor:

2-4372



version

['Release R' version('-release')]

MATLAB returns:

Release R2009b

View the Java version:

version -java

MATLAB returns:

Java 1.6.0_12-b04 with Sun Microsystems Inc. Java HotSpot(TM) Clien

Alternatives To view version information, select Help > About MATLAB in the
MATLAB desktop.

See Also computer | ver | verlessthan | whatsnew

How To • “Check for Updates”

• “Using a Different Version of JVM Software”

2-4373



vertcat

Purpose Concatenate arrays vertically

Syntax C = vertcat(A1, A2, ...)

Description C = vertcat(A1, A2, ...) vertically concatenates matrices A1,
A2, and so on. All matrices in the argument list must have the same
number of columns.

vertcat concatenates N-dimensional arrays along the first dimension.
The remaining dimensions must match.

MATLAB calls C = vertcat(A1, A2, ...) for the syntax C = [A1;
A2; ...] when any of A1, A2, etc. is an object.

Examples Create a 5-by-3 matrix, A, and a 3-by-3 matrix, B. Then vertically
concatenate A and B.

A = magic(5); % Create 5-by-3 matrix, A
A(:, 4:5) = []

A =

17 24 1
23 5 7
4 6 13

10 12 19
11 18 25

B = magic(3)*100 % Create 3-by-3 matrix, B

B =

800 100 600
300 500 700
400 900 200

2-4374



vertcat

C = vertcat(A,B) % Vertically concatenate A and B

C =

17 24 1
23 5 7
4 6 13

10 12 19
11 18 25

800 100 600
300 500 700
400 900 200

See Also horzcat, cat

2-4375



vertcat (timeseries)

Purpose Vertical concatenation of timeseries objects

Syntax ts = vertcat(ts1,ts2,...)

Description ts = vertcat(ts1,ts2,...) performs

ts = [ts1;ts2;...]

This operation appends timeseries objects. The time vectors must not
overlap. The last time in ts1 must be earlier than the first time in ts2.
The data sample size of the timeseries objects must agree.

See Also timeseries

2-4376



vertcat (tscollection)

Purpose Vertical concatenation for tscollection objects

Syntax tsc = vertcat(tsc1,tsc2,...)

Description tsc = vertcat(tsc1,tsc2,...) performs

tsc = [tsc1;tsc2;...]

This operation appends tscollection objects. The time vectors must
not overlap. The last time in tsc1 must be earlier than the first time
in tsc2. All tscollection objects to be concatenated must have the
same timeseries members.

See Also horzcat (tscollection), tscollection

2-4377



TriRep.vertexAttachments

Purpose Return simplices attached to specified vertices

Syntax SI = vertexAttachments(TR, VI)

Description SI = vertexAttachments(TR, VI) returns the vertex-to-simplex
information for the specified vertices VI. In relation to 2-D
triangulations, if the triangulation has a consistent orientation the
triangles in each cell will be ordered consistently around each vertex.

Input
Arguments

TR Triangulation representation

VI VI is a column vector of indices into the array of
points representing the vertex coordinates, TR.X.
The simplices associated with vertex i are the
i’th entry in the cell array. If VI is not specified
the vertex-simplex information for the entire
triangulation is returned.

Output
Arguments

SI Cell array of indices of the simplices attached to a
vertex. A cell array is used to store the information
because the number of simplices associated with
each vertex can vary. The simplices associated with
vertex i are in the i’th entry in the cell array SI.

Definitions A simplex is a triangle/tetrahedron or higher dimensional equivalent.

Examples Example 1

Load a 2-D triangulation and use TriRep to compute the
vertex-to-triangle relations.

load trimesh2d

Find the indices of the tetrahedra attached to the first vertex:

2-4378



TriRep.vertexAttachments

Tv = vertexAttachments(trep, 1)
Tv{:}

Example 2

Perform a direct query of a 2-D triangulation created using
DelaunayTri.

x = rand(20,1);
y = rand(20,1);
dt = DelaunayTri(x,y);

Find the triangles attached to vertex 5:

t = vertexAttachments(dt,5);

Plot the triangulation:

triplot(dt);
hold on;

Plot the triangles attached to vertex 5 (in red):

triplot(dt(t{:},:),x,y,'Color','r');
hold off;

2-4379



TriRep.vertexAttachments

See Also DelaunayTri

2-4380



view

Purpose Viewpoint specification

Syntax view(az,el)
view([az,el])
view([x,y,z])
view(2)
view(3)
view(ax,...)
[az,el] = view
T = view

Description The position of the viewer (the viewpoint) determines the orientation of
the axes. You specify the viewpoint in terms of azimuth and elevation,
or by a point in three-dimensional space.

view(az,el) and view([az,el]) set the viewing angle for a
three-dimensional plot. The azimuth, az, is the horizontal rotation
about the z-axis as measured in degrees from the negative y-axis.
Positive values indicate counterclockwise rotation of the viewpoint. el
is the vertical elevation of the viewpoint in degrees. Positive values
of elevation correspond to moving above the object; negative values
correspond to moving below the object.

view([x,y,z]) sets the viewpoint to the Cartesian coordinates x, y,
and z. The magnitude of (x,y,z) is ignored.

view(2) sets the default two-dimensional view, az = 0, el = 90.

view(3) sets the default three-dimensional view, az = 37.5, el = 30.

view(ax,...) uses axes ax instead of the current axes.

[az,el] = view returns the current azimuth and elevation.

T = view returns the current 4-by-4 transformation matrix.

Remarks Azimuth is a polar angle in the x-y plane, with positive angles indicating
counterclockwise rotation of the viewpoint. Elevation is the angle above
(positive angle) or below (negative angle) the x-y plane.

2-4381



view

This diagram illustrates the coordinate system. The arrows indicate
positive directions.

Examples View the object from directly overhead.

az = 0;
el = 90;
view(az, el);

Set the view along the y-axis, with the x-axis extending horizontally
and the z-axis extending vertically in the figure.

view([0 0]);

Rotate the view about the z-axis by 180º.

az = 180;
el = 90;

2-4382



view

view(az, el);

See Also viewmtx, hgtransform, rotate3d

“Camera Viewpoint” on page 1-109 for related functions

Axes graphics object properties CameraPosition, CameraTarget,
CameraViewAngle, Projection

Defining the View for more information on viewing concepts and
techniques

Transforming Objects for information on moving and scaling objects in
groups

2-4383



viewmtx

Purpose View transformation matrices

Syntax viewmtx
T = viewmtx(az,el)
T = viewmtx(az,el,phi)
T = viewmtx(az,el,phi,xc)

Description viewmtx computes a 4-by-4 orthographic or perspective transformation
matrix that projects four-dimensional homogeneous vectors onto a
two-dimensional view surface (e.g., your computer screen).

T = viewmtx(az,el) returns an orthographic transformation matrix
corresponding to azimuth az and elevation el. az is the azimuth (i.e.,
horizontal rotation) of the viewpoint in degrees. el is the elevation of the
viewpoint in degrees. This returns the same matrix as the commands

view(az,el)
T = view

but does not change the current view.

T = viewmtx(az,el,phi) returns a perspective transformation matrix.
phi is the perspective viewing angle in degrees. phi is the subtended
view angle of the normalized plot cube (in degrees) and controls the
amount of perspective distortion.

Phi Description

0 degrees Orthographic projection

10 degrees Similar to telephoto lens

25 degrees Similar to normal lens

60 degrees Similar to wide-angle lens

T = viewmtx(az,el,phi,xc) returns the perspective transformation
matrix using xc as the target point within the normalized plot cube (i.e.,
the camera is looking at the point xc). xc is the target point that is the

2-4384



viewmtx

center of the view. You specify the point as a three-element vector, xc =
[xc,yc,zc], in the interval [0,1]. The default value is xc = [0,0,0].

A four-dimensional homogenous vector is formed by appending a 1 to
the corresponding three-dimensional vector. For example, [x,y,z,1]
is the four-dimensional vector corresponding to the three-dimensional
point [x,y,z].

Examples Determine the projected two-dimensional vector corresponding to the
three-dimensional point (0.5,0.0,-3.0) using the default view direction.
Note that the point is a column vector.

A = viewmtx(-37.5,30);
x4d = [.5 0 -3 1]';
x2d = A*x4d;
x2d = x2d(1:2)

% Vectors that trace the edges of a unit cube are
x = [0 1 1 0 0 0 1 1 0 0 1 1 1 1 0 0];
y = [0 0 1 1 0 0 0 1 1 0 0 0 1 1 1 1];
z = [0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 0];
% Transform the points in these vectors to the
% screen, then plot the object.A = viewmtx(-37.5,30);
[m,n] = size(x);
x4d = [x(:),y(:),z(:),ones(m*n,1)]';
x2d = A*x4d;
x2 = zeros(m,n); y2 = zeros(m,n);
x2(:) = x2d(1,:);
y2(:) = x2d(2,:);
plot(x2,y2)

2-4385



viewmtx

Use a perspective transformation with a 25 degree viewing angle:

A = viewmtx(-37.5,30,25);
x4d = [.5 0 -3 1]';
x2d = A*x4d;
x2d = x2d(1:2)/x2d(4) % Normalize
x2d =

0.1777
-1.8858

Transform the cube vectors to the screen and plot the object:

2-4386



viewmtx

A = viewmtx(-37.5,30,25);
[m,n] = size(x);
x4d = [x(:),y(:),z(:),ones(m*n,1)]';
x2d = A*x4d;
x2 = zeros(m,n); y2 = zeros(m,n);
x2(:) = x2d(1,:)./x2d(4,:);
y2(:) = x2d(2,:)./x2d(4,:);
plot(x2,y2)

See Also view | hgtransform

Tutorials • Defining the View

2-4387



visdiff

Purpose Compare two text files, MAT-Files, binary files, or folders

Syntax visdiff('fname1', 'fname2')

Description visdiff('fname1', 'fname2') opens the File and Folder Comparisons
tool and presents the differences between the two files or folders. Either
ensure that the two files or folders appear on the MATLAB path, or
provide the full path for each file or folder.

Note MATLAB supports displaying the differences in the File and
Folder Comparisons tool only when you have Java software installed.

2-4388



visdiff

Examples Specifying Files or Folders to Compare

The visdiff function accepts fully qualified file names, relative file
names, or names of files on the MATLAB path.

If the files you want to compare appear on the MATLAB path or in the
current folder, you can specify the file names without the full path,
for example:

visdiff('lengthofline.m','lengthofline2.m')

or

visdiff('lengthofline','lengthofline2')

If the files you want to compare are not on the path, either specify the
full path to each file, or add the folders to the path.

For example, to specify the fully qualified file names to compare two
example files:

visdiff(fullfile(matlabroot,'toolbox','matlab','demos','gatlin.mat'), ...

fullfile(matlabroot,'toolbox','matlab','demos','gatlin2.mat'))

Specify the full path to files as follows:

visdiff('C:\Work\comp\lengthofline.m', 'C:\Work\comp\lengthofline2.m')

You can specify paths to files relative to the current folder. For the
preceding example, if the current folder is Work, then the relative paths
are:

visdiff('comp\lengthofline.m', 'comp\lengthofline2.m')

Compare Two Text Files

To view a comparison of the two example files, lengthofline.m and
lengthofline2.m:

visdiff(fullfile(matlabroot,'help','techdoc','matlab_env',...
'examples','lengthofline.m'), fullfile(matlabroot,'help',...

2-4389



visdiff

'techdoc','matlab_env','examples','lengthofline2.m'))

For information about using the report features, see “Comparing Text
Files”.

2-4390



visdiff

Note If the text files you compare are XML files, you see different
results if you have MATLAB® Report Generator™ installed. For details,
see “Comparing Files and Folders”.

Compare Two MAT-Files

To compare two example files:

visdiff(fullfile(matlabroot,'toolbox','matlab','demos','gatlin.mat'), ...

fullfile(matlabroot,'toolbox','matlab','demos','gatlin2.mat'))

2-4391



visdiff

For information about the report features, see “Comparing MAT-Files”.

Compare Two Binary Files

The following example code adds a folder containing two MEX-files to
the MATLAB path, and then compares the files:

2-4392



visdiff

addpath([matlabroot '\extern\examples\shrlib'])
visdiff('shrlibsample.mexw32', 'yprime.mexw32')

The File and Folder Comparisons tool opens and indicates that the files
are different, but does not provide details about the differences.

Compare Two Folders

To view an example folder comparison and instructions for using the
report features, see “Comparing Folders”.

Alternatives As an alternative to the visdiff function, compare files and folders
using any of these GUI methods:

• From the Current Folder browser:

2-4393



visdiff

- Select a file or folder. Right-click the file or folder, and select
Compare Against.

- For two files or subfolders in the same folder, select the files or
folders. Then, right-click, and select Compare Selected Files or
Compare Selected Folders.

• From the MATLAB desktop, select Desktop > File and Folder
Comparisons, and then select the files or folders to compare.

• If you have a file open in the Editor, select Tools > Compare
Against. You can use the Editor options browse, Autosave Version,
or Compare Against Version on Disk.

How To • “Comparing Files and Folders”

2-4394



volumebounds

Purpose Coordinate and color limits for volume data

Syntax lims = volumebounds(X,Y,Z,V)
lims = volumebounds(X,Y,Z,U,V,W)
lims = volumebounds(V), lims = volumebounds(U,V,W)

Description lims = volumebounds(X,Y,Z,V) returns the x, y, z, and color limits of
the current axes for scalar data. lims is returned as a vector:

[xmin xmax ymin ymax zmin zmax cmin cmax]

You can pass this vector to the axis command.

lims = volumebounds(X,Y,Z,U,V,W) returns the x, y, and z limits of
the current axes for vector data. lims is returned as a vector:

[xmin xmax ymin ymax zmin zmax]

lims = volumebounds(V), lims = volumebounds(U,V,W) assumes
X, Y, and Z are determined by the expression

[X Y Z] = meshgrid(1:n,1:m,1:p)

where [m n p] = size(V).

Examples This example uses volumebounds to set the axis and color limits for an
isosurface generated by the flow function.

[x y z v] = flow;
p = patch(isosurface(x,y,z,v,-3));
isonormals(x,y,z,v,p)
daspect([1 1 1])
isocolors(x,y,z,flipdim(v,2),p)
shading interp
axis(volumebounds(x,y,z,v))
view(3)
camlight
lighting phong

2-4395



volumebounds

See Also isosurface, streamslice

“Volume Visualization” on page 1-111 for related functions

2-4396



voronoi

Purpose Voronoi diagram

Syntax voronoi(x,y)
voronoi(x,y,TRI)
voronoi(dt)
voronoi(AX,...)
voronoi(...,'LineSpec')
h = voronoi(...)
[vx,vy] = voronoi(...)

Description voronoi(x,y) plots the bounded cells of the Voronoi diagram for the
points x,y. Lines-to-infinity are approximated with an arbitrarily
distant endpoint.

voronoi(x,y,TRI) uses the triangulation TRI instead of computing
it via delaunay.

voronoi(dt) uses the Delaunay triangulation dt instead of computing
it.

voronoi(AX,...) plots into AX instead of gca.

voronoi(...,'LineSpec') plots the diagram with color and line style
specified.

h = voronoi(...) returns, in h, handles to the line objects created.

[vx,vy] = voronoi(...) returns the finite vertices of the Voronoi
edges in vx and vy so that plot(vx,vy,'-',x,y,'.') creates the
Voronoi diagram. The lines-to-infinity are the last columns of vx and
vy. To ensure the lines-to-infinity do not affect the settings of the axis
limits, use the commands:

h = plot(VX,VY,'-',X,Y,'.');
set(h(1:end-1),'xliminclude','off','yliminclude','off')

2-4397



voronoi

Note For the topology of the Voronoi diagram, i.e., the vertices for each
Voronoi cell, use voronoin.

[v,c] = voronoin([x(:) y(:)])

voronoi(X,Y,options) specifies a cell array of strings that were
previously used by Qhull. Qhull-specific options are no longer required
and are currently ignored. Support for these options will be removed
in a future release.

convhull uses CGAL, see http://www.cgal.org.

Definition Consider a set of coplanar points . For each point in the set , you
can draw a boundary enclosing all the intermediate points lying closer
to than to other points in the set . Such a boundary is called a
Voronoi polygon, and the set of all Voronoi polygons for a given point
set is called a Voronoi diagram.

Visualization Use one of these methods to plot a Voronoi diagram:

• If you provide no output argument, voronoi plots the diagram. See
Example 1.

• To gain more control over color, line style, and other figure properties,
use the syntax [vx,vy] = voronoi(...). This syntax returns the
vertices of the finite Voronoi edges, which you can then plot with the
plot function. See Example 2.

• To fill the cells with color, use voronoin with n = 2 to get the indices
of each cell, and then use patch and other plot functions to generate
the figure. Note that patch does not fill unbounded cells with color.
See Example 3.

2-4398

http://www.cgal.org


voronoi

Examples Example 1

This code uses the voronoi function to plot the Voronoi diagram for 10
randomly generated points.

x = gallery('uniformdata',[1 10],0);
y = gallery('uniformdata',[1 10],1);
voronoi(x,y)

Example 2

This code uses the vertices of the finite Voronoi edges to plot the Voronoi
diagram for the same 10 points.

x = gallery('uniformdata',[1 10],0);
y = gallery('uniformdata',[1 10],1);
[vx, vy] = voronoi(x,y);
plot(x,y,'r+',vx,vy,'b-'); axis equal

2-4399



voronoi

Note that you can add this code to get the figure shown in Example 1.

xlim([min(x) max(x)])
ylim([min(y) max(y)])

Example 3

This code uses voronoin and patch to fill the bounded cells of the same
Voronoi diagram with color.

x = gallery('uniformdata',[10 2],5);
[v,c]=voronoin(x);
for i = 1:length(c)
if all(c{i}~=1) % If at least one of the indices is 1,

% then it is an open region and we can't
% patch that.

patch(v(c{i},1),v(c{i},2),i); % use color i.
end

2-4400



voronoi

end

See Also DelaunayTri, convhull, delaunay, LineSpec, plot, voronoin

2-4401



DelaunayTri.voronoiDiagram

Purpose Voronoi diagram

Syntax [V, R] = voronoiDiagram(DT)

Description [V, R] = voronoiDiagram(DT) returns the vertices V and regions R
of the Voronoi diagram of the points DT.X. The region R{i} is a cell
array of indices into V that represents the Voronoi vertices bounding
the region. The Voronoi region associated with the i’th point, DT.X(i)
is R{i}. For 2-D, vertices in R{i} are listed in adjacent order, i.e.
connecting them will generate a closed polygon (Voronoi diagram). For
3-D the vertices in R{i} are listed in ascending order.

The Voronoi regions associated with points that lie on the convex hull
of DT.X are unbounded. Bounding edges of these regions radiate to
infinity. The vertex at infinity is represented by the first vertex in V.

Input
Arguments

DT Delaunay triangulation.

Output
Arguments

V numv-by-ndim matrix representing the
coordinates of the Voronoi vertices, where
numv is the number of vertices and ndim is
the dimension of the space where the points
reside.

R Vector cell array of length(DR.X),
representing the Voronoi cell associated with
each point.

Definitions The Voronoi diagram of a discrete set of points X decomposes the space
around each point X(i) into a region of influence R{i}. Locations within
the region are closer to point i than any other point. The region of
influence is called the Voronoi region. The collection of all the Voronoi
regions is the Voronoi diagram.

2-4402



DelaunayTri.voronoiDiagram

The convex hull of a set of points X is the smallest convex polygon (or
polyhedron in higher dimensions) containing all of the points of X.

Examples Compute the Voronoi Diagram of a set of points:

X = [ 0.5 0
0 0.5

-0.5 -0.5
-0.2 -0.1
-0.1 0.1
0.1 -0.1
0.1 0.1 ]

dt = DelaunayTri(X)
[V,R] = voronoiDiagram(dt)

See Also voronoi
voronoin

2-4403



voronoin

Purpose N-D Voronoi diagram

Syntax [V,C] = voronoin(X)
[V,C] = voronoin(X,options)

Description [V,C] = voronoin(X) returns Voronoi vertices V and the Voronoi cells
C of the Voronoi diagram of X. V is a numv-by-n array of the numv Voronoi
vertices in n-dimensional space, each row corresponds to a Voronoi
vertex. C is a vector cell array where each element contains the indices
into V of the vertices of the corresponding Voronoi cell. X is an m-by-n
array, representing m n-dimensional points, where n > 1 and m >= n+1.

The first row of V is a point at infinity. If any index in a cell of the cell
array is 1, then the corresponding Voronoi cell contains the first point
in V, a point at infinity. This means the Voronoi cell is unbounded.

voronoin uses Qhull.

[V,C] = voronoin(X,options) specifies a cell array of strings options
to be used in Qhull. The default options are

• {'Qbb'} for 2- and 3-dimensional input

• {'Qbb','Qx'} for 4 and higher-dimensional input

If options is [], the default options are used. If code is {''}, no options
are used, not even the default. For more information on Qhull and its
options, see http://www.qhull.org.

Visualization You can plot individual bounded cells of an n-dimensional Voronoi
diagram. To do this, use convhulln to compute the vertices of the facets
that make up the Voronoi cell. Then use patch and other plot functions
to generate the figure.

Examples Example 1

Let

x = [ 0.5 0

2-4404

http://www.qhull.org


voronoin

0 0.5
-0.5 -0.5
-0.2 -0.1
-0.1 0.1
0.1 -0.1
0.1 0.1 ]

then

[V,C] = voronoin(x)

V =
Inf Inf
0.3833 0.3833
0.7000 -1.6500
0.2875 0.0000

-0.0000 0.2875
-0.0000 -0.0000
-0.0500 -0.5250
-0.0500 -0.0500
-1.7500 0.7500
-1.4500 0.6500

C =

[1x4 double]
[1x5 double]
[1x4 double]
[1x4 double]
[1x4 double]
[1x5 double]
[1x4 double]

Use a for loop to see the contents of the cell array C.

for i=1:length(C), disp(C{i}), end

4 2 1 3
10 5 2 1 9

2-4405



voronoin

9 1 3 7
10 8 7 9
10 5 6 8
8 6 4 3 7
6 4 2 5

In particular, the fifth Voronoi cell consists of 4 points: V(10,:),
V(5,:), V(6,:), V(8,:).

Example 2

The following example illustrates the options input to voronoin. The
commands

X = [-1 -1; 1 -1; 1 1; -1 1];
[V,C] = voronoin(X)

return an error message.

? qhull input error: can not scale last coordinate. Input is
cocircular

or cospherical. Use option 'Qz' to add a point at infinity.

The error message indicates that you should add the option 'Qz'. The
following command passes the option 'Qz', along with the default
'Qbb', to voronoin.

[V,C] = voronoin(X,{'Qbb','Qz'})
V =

Inf Inf
0 0

C =

[1x2 double]
[1x2 double]
[1x2 double]

2-4406



voronoin

[1x2 double]

Algorithm voronoin is based on Qhull [1]. For information about Qhull,
see http://www.qhull.org/. For copyright information, see
http://www.qhull.org/COPYING.txt.

See Also DelaunayTri, convhull, convhulln, delaunay, delaunayn, voronoi

Reference [1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, “The Quickhull
Algorithm for Convex Hulls,” ACM Transactions on Mathematical
Software, Vol. 22, No. 4, Dec. 1996, p. 469-483.

2-4407

http://www.qhull.org/
http://www.qhull.org/COPYING.txt


wait

Purpose Wait until timer stops running

Syntax wait(obj)

Description wait(obj) blocks the MATLAB command line and waits until the
timer, represented by the timer object obj, stops running. When a
timer stops running, the value of the timer object’s Running property
changes from 'on' to 'off'.

If obj is an array of timer objects, wait blocks the MATLAB command
line until all the timers have stopped running.

If the timer is not running, wait returns immediately.

See Also timer, start, stop

2-4408



waitbar

Purpose Open or update a wait bar dialog box

Syntax h = waitbar(x,'message')
waitbar(x,'message','CreateCancelBtn','button_callback')
waitbar(x,'message',property_name,property_value,...)
waitbar(x)
waitbar(x,h)
waitbar(x,h,'updated message')

Description A wait bar is a figure that displays what percentage of a calculation is
complete as the calculation proceeds by progressively filling a bar with
red from left to right.

h = waitbar(x,'message') displays a wait bar of fractional length x.
The wait bar figure displays until the code that controls it closes it or
the use clicks its Close Window button. Its (figure) handle is returned
in h. The argument x must be between 0 and 1.

Note Wait bars are not modal figures (their WindowStyle is 'normal').
They often appear to be modal because the computational loops within
which they are called prevent interaction with the Command Window
until they terminate. For more information, see WindowStyle in the
MATLAB Figure Properties documentation.

waitbar(x,'message','CreateCancelBtn','button_callback')
specifying CreateCancelBtn adds a Cancel button to the figure that
executes the MATLAB commands specified in button_callback when
the user clicks the Cancel button or the Close Figure button. waitbar
sets both the Cancel button callback and the figure CloseRequestFcn
to the string specified in button_callback.

waitbar(x,'message',property_name,property_value,...)
optional arguments property_name and property_value enable you to
set figure properties for the waitbar.

2-4409

../ref/figure_props.html#CloseRequestFcn
../ref/figure_props.html


waitbar

waitbar(x) subsequent calls to waitbar(x) extend the length of the
bar to the new position x. Successive values of x normally increase. If
they decrease, the wait bar runs in reverse.

waitbar(x,h) extends the length of the bar in the wait bar h to the
new position x.

waitbar(x,h,'updated message') updates the message text in the
waitbar figure, in addition to setting the fractional length to x.

Examples Example 1 — Basic Wait Bar

Typically, you call waitbar repeatedly inside a for loop that performs a
lengthy computation. For example:

h = waitbar(0,'Please wait...');
steps = 1000;
for step = 1:steps

% computations take place here
waitbar(step / steps)

end
close(h)

Example 2 — Wait Bar with Dynamic Text and Cancel Button

Adding a Cancel button allows user to abort the computation. Clicking
it sets a logical flag in the figure’s application data (appdata). The
function tests for that value within the main loop and exits the loop as
soon as the flag has been set. The example iteratively approximates the
value of π. At each step, the current value is encoded as a string and
displayed in the wait bar’s message field. When the function finishes,

2-4410



waitbar

it destroys the wait bar and returns the current estimate of π and the
number of steps it ran.

Copy the following function to a code file and save it as approxpi.m.
Execute it as follows, allowing it to run for 10,000 iterations.

[estimated_pi steps] = approxpi(10000)

You can click Cancel or close the window to abort the computation and
return the current estimate of π.

function [valueofpi step] = approxpi(steps)
% Converge on pi in steps iterations, displaying waitbar.
% User can click Cancel or close button to exit the loop.
% Ten thousand steps yields error of about 0.001 percent.

h = waitbar(0,'1','Name','Approximating pi...',...
'CreateCancelBtn',...
'setappdata(gcbf,''canceling'',1)');

setappdata(h,'canceling',0)
% Approximate as pi^2/8 = 1 + 1/9 + 1/25 + 1/49 + ...
pisqover8 = 1;
denom = 3;
valueofpi = sqrt(8 * pisqover8);
for step = 1:steps

% Check for Cancel button press
if getappdata(h,'canceling')

break
end
% Report current estimate in the waitbar's message field
waitbar(step/steps,h,sprintf('%12.9f',valueofpi))
% Update the estimate
pisqover8 = pisqover8 + 1 / (denom * denom);
denom = denom + 2;
valueofpi = sqrt(8 * pisqover8);

end
delete(h) % DELETE the waitbar; don't try to CLOSE it.

2-4411



waitbar

The function sets the figure Name property to describe what is being
computed. In the for loop, calling waitbar sets the fractional
progress indicator and displays intermediate results. the code
waitbar(i/steps,h,sprintf('%12.9f',valueofpi)) sets the wait
bar’s message variable to a string representation of the current estimate
of pi. Naturally, the extra computation involved makes iterations last
longer than they need to, but such feedback can be helpful to users.

Note You should call delete to remove a wait bar when you give it
a CloseRequestFcn, as in the preceding code; calling close does not
close it, and makes its Cancel and Close Window buttons unresponsive.
This happens because the figure’s CloseRequestFcn recursively calls
itself. In such a situation you must forcibly remove the wait bar, for
example like this:

set(0,'ShowHiddenHandles','on')
delete(get(0,'Children'))

However, as issuing these commands will delete all open figures—not
just the wait bar—it is best never to use close in a CloseRequestFcn to
close a window.

See Also “Predefined Dialog Boxes” on page 1-113 for related functions

close, delete, dialog, msgbox, getappdata, setappdata

2-4412



waitfor

Purpose Wait for condition before resuming execution

Syntax waitfor(h)
waitfor(h,'PropertyName')
waitfor(h,'PropertyName',PropertyValue)

Description waitfor(h) blocks the caller execution stream until the graphics object
identified by handle h is deleted or you type Ctrl+C in the Command
Window. h must be scalar. When either of those events occur, waitfor
stops blocking execution and returns. If h does not exist, waitfor
returns immediately without processing any events.

waitfor(h,'PropertyName'), in addition to the conditions in the
previous syntax, stops blocking and returns when the value of
'PropertyName' (any property of the graphics object h) changes. If
'PropertyName' is not a valid property for the object, waitfor returns
immediately without processing any events.

waitfor(h,'PropertyName',PropertyValue) stops blocking and
returns when the value of 'PropertyName' for the graphics object h
changes to PropertyValue. If you previously set 'PropertyName' to
PropertyValue, waitfor returns immediately without processing any
events.

Definitions waitfor blocks the caller execution stream so that command-line
expressions and statements in the blocked file do not execute until a
specified condition occurs. While waitfor blocks an execution stream,
other execution streams generated by callbacks that respond to various
events (for example, pressing a mouse button) can run, unaffected by
waitfor. It also blocks Simulink models from executing. However,
callbacks do execute during the blocking of the execution stream.
waitfor can block nested execution streams. For example, a callback
invoked during a waitfor statement can invoke waitfor.

Examples Create a plot and pause execution of the rest of the statements until you
delete the figure window:

2-4413



waitfor

h = figure;
plot(rand(10,1));
disp('Waiting for you to delete the figure...')
drawnow % Necessary to plot and put message on the screen
waitfor(h)
% The next line only executes when the figure is deleted
disp('Thank you.')

Display the current date and time only while a button is depressed

figure('Position',[560 526 420 315]);
hb = uicontrol('Style','togglebutton','Value',0,...

'Units','normalized',...
'Position',[.4 .6 .2 .05],...
'String','Start/Stop');

ht = uicontrol('Style','text','Units','normalized',...
'Position',[.275 .5 .425 .04],...
'FontSize',10,...
'String',datestr(now));

% Iterate 100,000 times then quit
% Typing Ctrl+C in Command Window will also stop the count
count = 0;
while count < 100000 % Exit condition

waitfor(hb,'Value',1) %Until togglebutton is down
% Text only updates while Start/Stop button is down
set(ht,'String',datestr(now)) % Update date and time
drawnow % Update text field
count = count+1;

end

2-4414



waitfor

If you close the figure while the code is executing, an error occurs
because the code attempts to access handles of objects that no longer
exist. You can handle the error by enclosing code in the loop in a
try/catch block, as follows:

...
while count < 100000 % Exit condition

try % An error occurs if you delete the figure here
waitfor(hb,'Value',1) %Until togglebutton is down
% Text only updates while Start/Stop button is down
set(ht,'String',datestr(now)) % Update date and time
drawnow % Update text field

catch ME % Catch the error and exit gracefully
% You can place more code to respond to the error here

return
end

end

2-4415



waitfor

The ME variable is a MATLAB Exception object that you can use to
determine the type of error that occurred. For more information, see
“Responding to an Exception”.

See Also drawnow | keyboard | pause | uiresume | uiwait |
waitforbuttonpress

How To • “Controlling Callback Execution and Interruption”

• Developing User Interfaces

2-4416



waitforbuttonpress

Purpose Wait for key press or mouse-button click

Syntax k = waitforbuttonpress

Description k = waitforbuttonpress blocks the caller’s execution stream until
the function detects that the user has clicked a mouse button or pressed
a key while the figure window is active. The function returns

• 0 if it detects a mouse button click

• 1 if it detects a key press

Additional information about the event that causes execution to resume
is available through the figure’s CurrentCharacter, SelectionType,
and CurrentPoint properties.

If a WindowButtonDownFcn is defined for the figure, its callback is
executed before waitforbuttonpress returns a value.

You can interrupt waitforbuttonpress by typing Ctrl+C, but an error
results unless the function is called from within a try-catch block. You
also receive an error from waitforbuttonpress if you close the figure
by clicking the X close box unless you call waitforbuttonpress within
a try-catch block.

Example These statements display text in the Command Window when the user
either clicks a mouse button or types a key in the figure window:

w = waitforbuttonpress;
if w == 0

disp('Button click')
else

disp('Key press')
end

See Also dragrect, ginput, rbbox, waitfor

“User Interface Development” on page 1-114 for related functions

2-4417

../ref/figure_props.html#CurrentCharacter
../ref/figure_props.html#SelectionType
../ref/figure_props.html#CurrentPoint


warndlg

Purpose Open warning dialog box

Syntax h = warndlg
h = warndlg(warningstring)
h = warndlg(warningstring,dlgname)
h = warndlg(warningstring,dlgname,createmode)

Description h = warndlg displays a dialog box named Warning Dialog containing
the string This is the default warning string. The warndlg
function returns the handle of the dialog box in h. The warning dialog
box disappears after the user clicks OK.

h = warndlg(warningstring) displays a dialog box with the title
Warning Dialog containing the string specified by warningstring.
The warningstring argument can be any valid string format – cell
arrays are preferred.

To use multiple lines in your warning, define warningstring using
either of the following:

• sprintf with newline characters separating the lines

warndlg(sprintf('Message line 1 \n Message line 2'))

• Cell arrays of strings

warndlg({'Message line 1';'Message line 2'})

h = warndlg(warningstring,dlgname) displays a dialog box with
title dlgname.

h = warndlg(warningstring,dlgname,createmode) specifies whether
the warning dialog box is modal or nonmodal. Optionally, it can also
specify an interpreter for warningstring and dlgname. The createmode
argument can be a string or a structure.

If createmode is a string, it must be one of the values shown in the
following table.

2-4418



warndlg

createmode Value Description

modal Replaces the warning dialog box having the
specified Title, that was last created or
clicked on, with a modal warning dialog box
as specified. All other warning dialog boxes
with the same title are deleted. The dialog
box which is replaced can be either modal
or nonmodal.

non-modal (default) Creates a new nonmodal warning dialog
box with the specified parameters. Existing
warning dialog boxes with the same title
are not deleted.

replace Replaces the warning dialog box having the
specified Title, that was last created or
clicked on, with a nonmodal warning dialog
box as specified. All other warning dialog
boxes with the same title are deleted. The
dialog box which is replaced can be either
modal or nonmodal.

Note A modal dialog box prevents the user from interacting with other
windows before responding. To block MATLAB program execution as
well, use the uiwait function.

If you open a dialog with errordlg, msgbox, or warndlg using
'CreateMode','modal' and a non-modal dialog created with any of
these functions is already present and has the same name as the modal
dialog, the non-modal dialog closes when the modal one opens.

For more information about modal dialog boxes, see WindowStyle in
the Figure Properties.

2-4419



warndlg

If CreateMode is a structure, it can have fields WindowStyle and
Interpreter. WindowStyle must be one of the options shown in the
table above. Interpreter is one of the strings 'tex' or 'none'. The
default value for Interpreter is 'none'.

Examples The statement

warndlg('Pressing OK will clear memory','!! Warning !!')

displays this dialog box:

See Also dialog, errordlg, helpdlg, inputdlg, listdlg, msgbox, questdlg

figure, uiwait, uiresume, warning

“Predefined Dialog Boxes” on page 1-113 for related functions

2-4420



warning

Purpose Warning message

Syntax warning('message')
warning('message', a1, a2,...)
warning('message_id', 'message')
warning('message_id', 'message', a1, a2, ..., an)
s = warning(state, 'message_id')
s = warning(state, mode)

Description warning('message') displays descriptive text message and sets the
warning state that lastwarn returns. If message is an empty string
(''), warning resets the warning state but does not display any text.

warning('message', a1, a2,...) displays a message string that
contains formatting conversion characters, such as those used with the
MATLAB sprintf function. Each conversion character in message is
converted to one of the values a1, a2, ... in the argument list.

Note MATLAB converts special characters (like \n and %d) in the
warning message string only when you specify more than one input
argument with warning. See Example 4 below.

warning('message_id', 'message') attaches a unique identifier,
or message_id, to the warning message. The identifier enables you
to single out certain warnings during the execution of your program,
controlling what happens when the warnings are encountered.
See “Message Identifiers” and “Warning Control” in the MATLAB
Programming Fundamentals documentation for more information on
the message_id argument and how to use it.

warning('message_id', 'message', a1, a2, ..., an) includes
formatting conversion characters in message, and the character
translations in arguments a1, a2, ..., an.

s = warning(state, 'message_id') is a warning control statement
that enables you to indicate how you want MATLAB to act on certain

2-4421



warning

warnings. The state argument can be 'on', 'off', or 'query'. The
message_id argument can be a message identifier string, 'all',
or 'last'. See “Warning Control Statements” in the MATLAB
Programming Fundamentals documentation for more information.

Output s is a structure array that indicates the previous state of the
selected warnings. The structure has the fields identifier and state.
See “Output from Control Statements” in the MATLAB Programming
Fundamentals documentation for more.

s = warning(state, mode) is a warning control statement that
enables you to display a stack trace or display more information with
each warning. The state argument can be 'on', 'off', or 'query'.
The mode argument can be 'backtrace' or 'verbose'. See “Backtrace
and Verbose Modes” in the MATLAB Programming Fundamentals
documentation for more information.

Examples Example 1

Generate a warning that displays a simple string:

if ~ischar(p1)
warning('Input must be a string')

end

Example 2

Generate a warning string that is defined at run-time. The first
argument defines a message identifier for this warning:

warning('MATLAB:paramAmbiguous', ...
'Ambiguous parameter name, "%s".', param)

Example 3

Attempting to concatenate integers of a different size generates the
following warning:

warning on all;

A = [int8(150), int16(300)];

2-4422



warning

Warning: Concatenation with dominant (left-most) integer
class may overflow other operands on conversion to
return class.

If your program displays additional warning messages but you would
prefer to see only this one, you can set the state of all warnings to off,
and then set this one warning to on. To set the warning state, you
must first know the message identifier for the one warning you want to
enable. Query the last warning to acquire the identifier:

warnStruct = warning('query', 'last');
msgid_integerCat = warnStruct.identifier
msgid_integerCat =

MATLAB:concatenation:integerInteraction

Disable all but the integer concatenation warning:

warning off all;
warning('on', msgid_integerCat);

Use query to determine the current state of all warnings. It
reports that you have set all warnings to off with the exception of
Simulink:actionNotTaken:

The default warning state is 'off'. Warnings not set to the default are

State Warning Identifier

on MATLAB:concatenation:integerInteraction

Example 4

MATLAB converts special characters (like \n and %d) in the warning
message string only when you specify more than one input argument
with warning. In the single argument case shown below, \n is taken to
mean backslash-n. It is not converted to a newline character:

warning('In this case, the newline \n is not converted.')
Warning: In this case, the newline \n is not converted.

2-4423



warning

But, when more than one argument is specified, MATLAB does convert
special characters. This is true regardless of whether the additional
argument supplies conversion values or is a message identifier:

warning('WarnTests:convertTest', ...
'In this case, the newline \n is converted.')

Warning: In this case, the newline
is converted.

Example 5

Turn on one particular warning, saving the previous state of this one
warning in s. Remember that this nonquery syntax performs an
implicit query prior to setting the new state:

s = warning('on', 'Control:parameterNotSymmetric');

After doing some work that includes making changes to the state of
some warnings, restore the original state of all warnings:

warning(s)

See Also lastwarn, warndlg, error, lasterror, errordlg, dbstop, disp,
sprintf

2-4424



waterfall

Purpose Waterfall plot

GUI
Alternatives

To graph selected variables, use the Plot Selector in the
Workspace Browser, or use the Figure Palette Plot Catalog. Manipulate
graphs in plot edit mode with the Property Editor. For details, see
Plotting Tools — Interactive Plotting in the MATLAB Graphics
documentation and Creating Graphics from the Workspace Browser in
the MATLAB Desktop Tools documentation.

Syntax waterfall(Z)
waterfall(X,Y,Z)
waterfall(...,C)
waterfall(axes_handles,...)
h = waterfall(...)

Description The waterfall function draws a mesh similar to the meshz function,
but it does not generate lines from the columns of the matrices. This
produces a “waterfall” effect.

waterfall(Z) creates a waterfall plot using x = 1:size(Z,1) and
y = 1:size(Z,1). Z determines the color, so color is proportional to
surface height.

waterfall(X,Y,Z) creates a waterfall plot using the values specified
in X, Y, and Z. Z also determines the color, so color is proportional to the
surface height. If X and Y are vectors, X corresponds to the columns of
Z, and Y corresponds to the rows, where length(x) = n, length(y) =
m, and [m,n] = size(Z). X and Y are vectors or matrices that define
the x- and y-coordinates of the plot. Z is a matrix that defines the
z-coordinates of the plot (i.e., height above a plane). If C is omitted,
color is proportional to Z.

waterfall(...,C) uses scaled color values to obtain colors from the
current colormap. Color scaling is determined by the range of C, which

2-4425



waterfall

must be the same size as Z. MATLAB performs a linear transformation
on C to obtain colors from the current colormap.

waterfall(axes_handles,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

h = waterfall(...) returns the handle of the patch graphics object
used to draw the plot.

Remarks For column-oriented data analysis, use waterfall(Z') or
waterfall(X',Y',Z').

Examples Produce a waterfall plot of the peaks function.

[X,Y,Z] = peaks(30);
waterfall(X,Y,Z)

2-4426



waterfall

Algorithm The range of X, Y, and Z, or the current setting of the axes Llim, YLim,
and ZLim properties, determines the range of the axes (also set by
axis). The range of C, or the current setting of the axes CLim property,
determines the color scaling (also set by caxis).

The CData property for the patch graphics objects specifies the color at
every point along the edge of the patch, which determines the color
of the lines.

The waterfall plot looks like a mesh surface; however, it is a patch
graphics object. To create a surface plot similar to waterfall, use the
meshz function and set the MeshStyle property of the surface to 'Row'.

2-4427



waterfall

For a discussion of parametric surfaces and related color properties,
see surf.

See Also axes, axis, caxis, meshz, ribbon, surf

Properties for patch graphics objects

2-4428

../infotool/hgprop/doc_frame.html


wavfinfo

Purpose Information about WAVE (.wav) sound file

Syntax [m d] = wavfinfo(filename)

Description [m d] = wavfinfo(filename) returns information about the contents
of the WAVE sound file specified by the string filename. Enclose the
filename input in single quotes.

m is the string 'Sound (WAV) file', if filename is a WAVE file.
Otherwise, it contains an empty string ('').

d is a string that reports the number of samples in the file and the
number of channels of audio data. If filename is not a WAVE file, it
contains the string 'Not a WAVE file'.

See Also wavplay, wavread, wavrecord, wavwrite

2-4429



wavplay

Purpose Play recorded sound on PC-based audio output device

Syntax wavplay(y,Fs)
wavplay(..., mode')

Description wavplay(y,Fs) plays the audio signal stored in the vector y on a
PC-based audio output device. Fs is the integer sample rate in Hz
(samples per second). The default value for Fs is 11025 Hz. wavplay
supports only 1- or 2-channel (mono or stereo) audio signals. To play in
stereo, y must be a two-column matrix.

wavplay(..., mode') specifies how wavplay interacts with the
command line, according to the string 'mode'. The string 'mode' can be

• 'async': You have immediate access to the command line as soon as
the sound begins to play on the audio output device (a nonblocking
device call).

• 'sync' (default value): You don’t have access to the command line
until the sound has finished playing (a blocking device call).

The audio signal y can be one of four data types. The number of bits
used to quantize and play back each sample depends on the data type.

Data Types for wavplay

Data Type Quantization

Double-precision (default value) 16 bits/sample

Single-precision 16 bits/sample

16-bit signed integer 16 bits/sample

8-bit unsigned integer 8 bits/sample

2-4430



wavplay

Remarks The wavplay function is for use only with 32-bit Microsoft Windows
operating systems. To play audio data on other platforms, use
audioplayer.

Examples The MAT-files gong.mat and chirp.mat both contain an audio signal
y and a sampling frequency Fs. Load and play the gong and the chirp
audio signals. Change the names of these signals in between load
commands and play them sequentially using the 'sync' option for
wavplay.

load chirp;
y1 = y; Fs1 = Fs;
load gong;
wavplay(y1,Fs1,'sync') % The chirp signal finishes before the
wavplay(y,Fs) % gong signal begins playing.

See Also audioplayer, wavfinfo, wavread, wavrecord, wavwrite

2-4431



wavread

Purpose Read WAVE (.wav) sound file

Graphical
Interface

As an alternative to wavread, use the Import Wizard. To activate the
Import Wizard, select File > Import Data.

Syntax y = wavread(filename)
[y, Fs] = wavread(filename)
[y, Fs, nbits] = wavread(filename)
[y, Fs, nbits, opts] = wavread(filename)
[...] = wavread(filename, N)
[...] = wavread(filename, [N1 N2])
[...] = wavread(..., fmt)
siz = wavread(filename,'size')

Description y = wavread(filename) loads a WAVE file specified by the string
filename, returning the sampled data in y. If filename does not
include an extension, wavread appends .wav.

[y, Fs] = wavread(filename) returns the sample rate (Fs) in Hertz
used to encode the data in the file.

[y, Fs, nbits] = wavread(filename) returns the number of bits
per sample (nbits).

[y, Fs, nbits, opts] = wavread(filename) returns a structure
opts of additional information contained in the WAV file. The content
of this structure differs from file to file. Typical structure fields
include opts.fmt (audio format information) and opts.info (text that
describes the title, author, etc.).

[...] = wavread(filename, N) returns only the first N samples
from each channel in the file.

[...] = wavread(filename, [N1 N2]) returns only samples N1
through N2 from each channel in the file.

[...] = wavread(..., fmt) specifies the data format of y used to
represent samples read from the file. fmt can be either of the following
values, or a partial match (case-insensitive):

2-4432



wavread

'double' Double-precision normalized samples (default).

'native' Samples in the native data type found in the file.

siz = wavread(filename,'size') returns the size of the audio data
contained in filename instead of the actual audio data, returning the
vector siz = [samples channels].

Output Scaling

The range of values in y depends on the data format fmt specified. Some
examples of output scaling based on typical bit-widths found in a WAV
file are given below for both 'double' and 'native' formats.

Native Formats

Number of
Bits

MATLAB Data Type Data Range

8 uint8 (unsigned integer) 0 <= y <= 255

16 int16 (signed integer) -32768 <= y <= +32767

24 int32 (signed integer) -2^23 <= y <= 2^23-1

32 single (floating point) -1.0 <= y < +1.0

Double Formats

Number of Bits MATLAB Data Type Data Range

N<32 double -1.0 <= y < +1.0

N=32 double -1.0 <= y <= +1.0
Note: Values in y
might exceed -1.0 or
+1.0 for the case of
N=32 bit data samples
stored in the WAV
file.

2-4433



wavread

wavread supports multi-channel data, with up to 32 bits per sample.

wavread supports Pulse-code Modulation (PCM) data format only.

Examples Create a WAV file from the demo file handel.mat, and read portions of
the file back into MATLAB.

% Create WAV file in current folder.
load handel.mat

hfile = 'handel.wav';
wavwrite(y, Fs, hfile)
clear y Fs

% Read the data back into MATLAB, and listen to audio.
[y, Fs, nbits, readinfo] = wavread(hfile);
sound(y, Fs);

% Pause before next read and playback operation.
duration = numel(y) / Fs;
pause(duration + 2)

% Read and play only the first 2 seconds.
nsamples = 2 * Fs;
[y2, Fs] = wavread(hfile, nsamples);
sound(y2, Fs);
pause(4)

% Read and play the middle third of the file.
sizeinfo = wavread(hfile, 'size');

tot_samples = sizeinfo(1);
startpos = tot_samples / 3;
endpos = 2 * startpos;

[y3, Fs] = wavread(hfile, [startpos endpos]);
sound(y3, Fs);

2-4434



wavread

See Also audioplayer, audiorecorder, mmfileinfo, sound, wavfinfo, wavwrite

2-4435



wavrecord

Purpose Record sound using PC-based audio input device

Syntax y = wavrecord(n,Fs)
y = wavrecord(...,ch)
y = wavrecord(...,'dtype')

Description y = wavrecord(n,Fs) records n samples of an audio signal, sampled
at a rate of Fs Hz (samples per second). The default value for Fs is
11025 Hz.

y = wavrecord(...,ch) uses ch number of input channels from the
audio device. ch can be either 1 or 2, for mono or stereo, respectively.
The default value for ch is 1.

y = wavrecord(...,'dtype') uses the data type specified by the
string 'dtype' to record the sound. The following table lists the string
values for 'dtype' along with the corresponding bits per sample and
acceptable data range for y.

dtype Bits/sample y Data Range

'double' 16 –1.0 <= y < +1.0

'single' 16 –1.0 <= y < +1.0

'int16' 16 –32768 <= y <= +32767

'uint8' 8 0 <= y <= 255

Remarks Standard sampling rates for PC-based audio hardware are 8000,
11025, 22050, and 44100 samples per second. Stereo signals are
returned as two-column matrices. The first column of a stereo audio
matrix corresponds to the left input channel, while the second column
corresponds to the right input channel.

The wavrecord function is for use only with 32-bit Microsoft Windows
operating systems. To record audio data from audio input devices on
other platforms, use audiorecorder.

2-4436



wavrecord

Examples Record 5 seconds of 16-bit audio sampled at 11025 Hz. Play back the
recorded sound using wavplay. Speak into your audio device (or produce
your audio signal) while the wavrecord command runs.

Fs = 11025;
y = wavrecord(5*Fs,Fs,'int16');
wavplay(y,Fs);

See Also audiorecorder, wavfinfo, wavplay, wavread, wavwrite

2-4437



wavwrite

Purpose Write WAVE (.wav) sound file

Syntax wavwrite(y,filename)
wavwrite(y,Fs,filename)
wavwrite(y,Fs,N,filename)

Description wavwrite(y,filename) writes the data stored in the variable y to a
WAVE file called filename. The filename input is a string enclosed in
single quotes. The data has a sample rate of 8000 Hz and is assumed
to be 16-bit. Each column of the data represents a separate channel.
Therefore, stereo data should be specified as a matrix with two columns.

wavwrite(y,Fs,filename) writes the data stored in the variable y to
a WAVE file called filename. The data has a sample rate of Fs Hz
and is assumed to be 16-bit.

wavwrite(y,Fs,N,filename) writes the data stored in the variable y to
a WAVE file called filename. The data has a sample rate of Fs Hz and
is N-bit, where N is 8, 16, 24, or 32.

Input Data Ranges

The range of values in y depends on the number of bits specified by N
and the data type of y. The following tables list the valid input ranges
based on the value of N and the data type of y.

If y contains integer data:

N Bits y Data Type y Data Range Output
Format

8 uint8 0 <= y <= 255 uint8

16 int16 –32768 <= y <= +32767 int16

24 int32 –2^23 <= y <= 2^23 – 1 int32

2-4438



wavwrite

If y contains floating-point data:

N Bits y Data Type y Data Range Output
Format

8 single or double –1.0 <= y < +1.0 uint8

16 single or double –1.0 <= y < +1.0 int16

24 single or double –1.0 <= y < +1.0 int32

32 single or double –1.0 <= y <= +1.0 single

For floating point data where N < 32, amplitude values are clipped to
the range –1.0 <= y < +1.0.

Note 8-, 16-, and 24-bit files are type 1 integer pulse code modulation
(PCM). 32-bit files are written as type 3 normalized floating point.

See Also audioplayer, audiorecorder, mmfileinfo, sound, wavfinfo, wavread

2-4439



web

Purpose Open Web site or file in Web or Help browser

Syntax web
web url
web url -new
web url -notoolbar
web url -noaddressbox
web url -helpbrowser
web url -browser
web(...)
stat = web('url', '-browser')
[stat, h1] = web
[stat, h1, url] = web

Description web opens an empty MATLAB Web browser.

web url displays the page specified by url in the MATLAB Web
browser. If any MATLAB Web browsers are already open, it displays
the page in the browser that was used last. Files up to 1.5 MB in size
display in the MATLAB Web browser, while larger files instead display
in the system Web browser. The web function accepts a valid URL such
as a web site address, a full path to a file, or a relative path to a file
(using url within the current folder if it exists there). If url is located
in the folder returned when you run docroot (an unsupported utility
function), the page displays in the MATLAB Help browser instead of
the MATLAB Web browser.

web url -new displays the page specified by url in a new MATLAB
Web browser.

web url -notoolbar displays the page specified by urlin a MATLAB
Web browser that does not include the toolbar and address field. If any
MATLAB Web browsers are already open, also use the -new option.
Otherwise url displays in the browser that was used last, regardless
of its toolbar status.

web url -noaddressbox displays the page specified by urlin a MATLAB
Web browser that does not include the address field. If any MATLAB
Web browsers are already open, also use the -new option. Otherwise

2-4440



web

url displays in the browser that was used last, regardless of its address
field status.

web url -helpbrowser displays the page specified by url in the
MATLAB Help browser.

web url -browser displays url in a system Web browser window. url
can be in any form that the browser supports. On Microsoft Windows
and Apple Macintosh platforms, the system Web browser is determined

2-4441



web

by the operating system. On UNIX21 platforms, the default system
Web browser for MATLAB is Mozilla® Firefox®. To specify a different
browser, use MATLAB Web preferences.

web(...) is the functional form of web.

stat = web('url', '-browser') runs web and returns the status of
web to the variable stat.

Value of stat Description

0 Browser was found and launched.

1 Browser was not found.

2 Browser was found but could not be launched.

[stat, h1] = web returns the status of web to the variable stat, and
returns a handle, h1, to the Sun Microsystems Java class for the last
active browser. You can use close(h1) to close the browser instance.
The browser, h1, could have been opened by previously executing the
web function, or when a desktop tool ran the web function. For example,
clicking a link to an external site from the Help browser runs web to
open the Web site in a system browser. In that case, h1 would is the
handle to that browser instance.

[stat, h1, url] = web returns the status of web to the variable stat,
returns a handle to the Java class h1 for the last active browser, and
returns its current URL to url.

Examples Display the Mathtools Web site:

web http://www.mathtools.net

MATLAB displays:

21. UNIX is a registered trademark of The Open Group in the United States and
other countries.

2-4442



web

web http://www.mathworks.com loads the MathWorks Web site home
page into the MATLAB Web browser.

web file:///disk/dir1/dir2/foo.html opens the file foo.html in
the MATLAB Web browser.

web mydir/myfile.html opens myfile.html in the MATLAB Web
browser, where mydir is in the current folder.

web(['file:///' which('foo.html')]) opens foo.html if the file is
in a folder on the search path or in the current folder for MATLAB.

web('text://<html><h1>Hello World</h1></html>') displays the
HTML-formatted text Hello World.

web('http://www.mathworks.com', '-new', '-notoolbar') loads
the MathWorks Web site home page into a new MATLAB Web browser
that does not include a toolbar or address field.

2-4443



web

web file:///disk/dir1/foo.html -helpbrowser opens the file
foo.html in the MATLAB Help browser.

web file:///disk/dir1/foo.html -browser opens the file foo.html
in the system Web browser.

web mailto:email_address uses the system browser’s default e-mail
application to send a message to email_address.

web http://www.mathtools.net -browser opens the system Web
browser at mathtools.net.

[stat,h1]=web('http://www.mathworks.com'); opens
mathworks.com in a MATLAB Web browser. Use close(h1) to close
the browser window.

See Also doc, helpbrowser, matlabcolon, urlread, urlwrite

Related topics in the User Guide:

• “Using Web Browsers in MATLAB” in the MATLAB Desktop Tools
and Development Environment documentation

• “Specifying Proxy Server Settings”

• “Specifying the System Browser for UNIX Platforms”

2-4444



weekday

Purpose Day of week

Syntax [N, S] = weekday(D)
[N, S] = weekday(D, form)
[N, S] = weekday(D, locale)
[N, S] = weekday(D, form, locale)

Description [N, S] = weekday(D) returns the day of the week in numeric (N) and
string (S) form for a given serial date number or date string D. Input
argument D can represent more than one date in an array of serial date
numbers or a cell array of date strings.

[N, S] = weekday(D, form) returns the day of the week in numeric
(N) and string (S) form, where the content of S depends on the form
argument. If form is ’long’, then S contains the full name of the weekday
(e.g., Tuesday). If form is ’short’, then S contains an abbreviated name
(e.g., Tues) from this table.

The days of the week are assigned these numbers and abbreviations.

N S (short) S (long)

1 Sun Sunday

2 Mon Monday

3 Tue Tuesday

4 Wed Wednesday

5 Thu Thursday

6 Fri Friday

7 Sat Saturday

[N, S] = weekday(D, locale) returns the day of the week in numeric
(N) and string (S) form, where the format of the output depends on the
locale argument. If locale is ’local’, then weekday uses local format
for its output. If locale is ’en_US’, then weekday uses US English.

2-4445



weekday

[N, S] = weekday(D, form, locale) returns the day of the week
using the formats described above for form and locale.

Examples Either

[n, s] = weekday(728647)

or

[n, s] = weekday('19-Dec-1994')

returns n = 2 and s = Mon.

See Also datenum, datevec, eomday

2-4446



what

Purpose List MATLAB files in folder

Graphical
Interface

As an alternative to the what function, use the Current Folder browser.

Syntax what
what folderName
what className
what packageName
s = what('folderName')

Description what lists the path for the current folder, and lists all files and folders
relevant to MATLAB found in the current folder. Files listed are M,
MAT, MEX, MDL, and P-files. Folders listed are all class and package
folders.

what folderName lists path, file, and folder information for folderName.
Use an absolute or partial path for folderName.

what className lists path, file, and folder information for method
folder @className. For example, what cfit lists the MATLAB files and
folders in toolbox/curvefit/curvefit/@cfit.

what packageName lists path, file, and folder information for package
folder +packageName. For example, what commsrc lists the MATLAB
files and folders in toolbox/comm/comm/+commsrc.

s = what('folderName') returns the results in a structure array with
the fields shown in the following table.

Field Description

path Path to folder

m Cell array of MATLAB program file names

mat Cell array of MAT-file names

mex Cell array of MEX-file names

2-4447



what

Field Description

mdl Cell array of MDL-file names

p Cell array of P-file names

classes Cell array of class folders

packages Cell array of package folders

Examples List Files and Folders Relevant to MATLAB

List the MATLAB files and folders in toolbox/matlab/audiovideo:

what audiovideo

M-files in directory matlabroot\toolbox\matlab\audiovideo

Contents avifinfo sound
audiodevinfo aviinfo soundsc
audioplayerreg aviread wavfinfo
audiorecorderreg lin2mu wavplay
audiouniquename mmcompinfo wavread
aufinfo mmfileinfo wavrecord
auread movie2avi wavwrite
auwrite mu2lin
avgate prefspanel

MAT-files in directory matlabroot\toolbox\matlab\audiovideo

chirp handel splat
gong laughter train

MEX-files in directory matlabroot\toolbox\matlab\audiovideo

winaudioplayer
winaudiorecorder

Classes in directory matlabroot\toolbox\matlab\audiovideo

2-4448



what

audioplayer avifile
audiorecorder mmreader

Return Names to a Structure

Obtain a structure array containing the file and folder names in
toolbox/matlab/general that are relevant to MATLAB:

s = what('general')
s =

path: 'matlabroot:\toolbox\matlab\general'
m: {89x1 cell}

mat: {0x1 cell}
mex: {2x1 cell}
mdl: {0x1 cell}

p: {'callgraphviz.p'}
classes: {'char'}

packages: {0x1 cell}

List Files in a Package

Find the supporting files for one of the packages in the Communications
Toolbox product:

p1 = what('comm');
p1.packages
ans =

'commdevice'
'crc'
'commsrc'

p2 = what('commsrc');
p2.m
ans =

'abstractJitter.m'
'abstractPulse.m'

2-4449



what

'combinedjitter.m'
'diracjitter.m'
'periodicjitter.m'
'randomjitter.m'

See Also dir, exist, lookfor, ls, mfilename, path, which, who

“Managing Files in MATLAB”

2-4450



whatsnew

Purpose Release Notes for MathWorks products

Syntax whatsnew

Description whatsnew displays the Release Notes in the Help browser, presenting
information about new features, problems from previous releases that
have been fixed in the current release, and compatibility issues, all
organized by product.

See Also help, version

2-4451



which

Purpose Locate functions and files

Graphical
Interface

As an alternative to the which function, you can use the“Using the
Current Folder Browser” to find files. You can find functions using the
Function Browser in the Command Window or Editor.

Syntax which fun
which classname/fun
which private/fun
which classname/private/fun
which fun1 in fun2
which fun(a,b,c,...)
which file.ext
which fun -all
s = which('fun',...)

Description which fun displays the full pathname for the argument fun. If fun is a

• MATLAB function or Simulink model in an M, P, or MDL file on
the MATLAB path, then which displays the full pathname for the
corresponding file

• Workspace variable, then which displays a message identifying fun
as a variable

• Method in a loaded Java class, then which displays the package,
class, and method name for that method

If fun is an overloaded function or method, then which fun returns only
the pathname of the first function or method found.

which classname/fun displays the full pathname for the file that
defines the fun method in MATLAB class, classname. For example,
which serial/fopen displays the path for fopen.m in the MATLAB
class folder, @serial.

2-4452



which

which private/fun limits the search to private functions. For example,
which private/orthog displays the path for orthog.m in the /private
subfolder of toolbox/matlab/elmat.

which classname/private/fun limits the search to private methods
defined by the MATLAB class, classname. For example, which
dfilt/private/todtf displays the path for todtf.m in the private
folder of the dfilt class.

which fun1 in fun2 displays the pathname to function fun1 in the
context of file fun2. You can use this form to determine whether
a subfunction is being called instead of a function on the path. For
example, which get in editpath tells you which get function is called
by editpath.m.

During debugging of fun2, using which fun1 gives the same result.

which fun(a,b,c,...) displays the path to the specified function
with the given input arguments. For example, which feval(g),
when g=inline('sin(x)'), indicates that inline/feval.m would be
invoked. which toLowerCase(s), when s=java.lang.String('my
Java string'), indicates that the toLowerCase method in class
java.lang.String would be invoked.

which file.ext displays the full pathname of the specified file if that
file is in the current working folder or on the MATLAB path. To display
the path for a file that has no file extension, type “which file.” (the
period following the filename is required). Use exist to check for the
existence of files anywhere else.

which fun -all displays the paths to all items on the MATLAB path
with the name fun. Such items include methods of instantiated classes.
You may use the -all qualifier with any of the above formats of the
which function.

s = which('fun',...) returns the results of which in the string s.
For workspace variables, s is the string ’variable’. You may specify an
output variable in any of the above formats of the which function.

If -all is used with this form, the output s is always a cell array of
strings, even if only one string is returned.

2-4453



which

Examples The statement below indicates that pinv is in the matfun folder of
MATLAB.

which pinv
matlabroot\toolbox\matlab\matfun\pinv.m

To find the fopen function used on MATLAB serial class objects

which serial/fopen

matlabroot\toolbox\matlab\iofun\@serial\fopen.m % serial method

To find the setMonth method used on objects of the Java Date class,
the class must first be loaded into MATLAB. The class is loaded when
you create an instance of the class:

myDate = java.util.Date;
which setMonth

MATLAB displays:

setMonth is a Java method % java.util.Date method

When you specify an output variable, which returns a cell array of
strings to the variable. You must use the function form of which,
enclosing all arguments in parentheses and single quotes:

s = which('private/stradd','-all');
whos s

Name Size Bytes Class
s 3x1 562 cell array

Grand total is 146 elements using 562 bytes

See Also dir, doc, exist, lookfor, mfilename, path, type, what, who

2-4454



while

Purpose Repeatedly execute statements while condition is true

Syntax while expression
program statements

:
end

Description while expression, program statements, end repeatedly executes
one or more MATLAB program statements in a loop, continuing
until expression no longer holds true or until MATLAB encounters a
break, or return instruction, thus forcing an immediate exit of the
loop code. If MATLAB encounters a continue statement in the loop
code, it interrupts execution of the loop code at the location of the
continue statement, and begins another iteration of the loop at the
while expression statement.

expression is a MATLAB expression that evaluates to a result of
logical 1 (true) or logical 0 (false). expression can be scalar or an
array. It must contain all real elements, and the statement all(A(:))
must be equal to logical 1 for the expression to be true.

expression usually consists of variables or smaller expressions joined
by relational operators (e.g., count < limit) or logical functions
(e.g., isreal(A)). Simple expressions can be combined by logical
operators (&&, ||, ~) into compound expressions such as the following.
MATLAB evaluates compound expressions from left to right, adhering
to “Operator Precedence” rules.

(count < limit) && ((height - offset) >= 0)

statements is one or more MATLAB statements to be executed only
while the expression is true or nonzero.

The scope of a while statement is always terminated with a matching
end.

See “Program Control Statements” in the MATLAB Programming
Fundamentals documentation for more information on controlling the
flow of your program code.

2-4455



while

Remarks Nonscalar Expressions

If the evaluated expression yields a nonscalar value, then every
element of this value must be true or nonzero for the entire expression
to be considered true. For example, the statement while (A < B) is
true only if each element of matrix A is less than its corresponding
element in matrix B. See “Example 2 – Nonscalar Expression” on page
2-4457, below.

Partial Evaluation of the Expression Argument

Within the context of an if or while expression, MATLAB does not
necessarily evaluate all parts of a logical expression. In some cases it is
possible, and often advantageous, to determine whether an expression
is true or false through only partial evaluation.

For example, if A equals zero in statement 1 below, then the expression
evaluates to false, regardless of the value of B. In this case, there is no
need to evaluate B and MATLAB does not do so. In statement 2, if A is
nonzero, then the expression is true, regardless of B. Again, MATLAB
does not evaluate the latter part of the expression.

1) while (A && B) 2) while (A || B)

You can use this property to your advantage to cause MATLAB to
evaluate a part of an expression only if a preceding part evaluates to
the desired state. Here are some examples.

while (b ~= 0) && (a/b > 18.5)
if exist('myfun.m') && (myfun(x) >= y)
if iscell(A) && all(cellfun('isreal', A))

Empty Arrays

In most cases, using while on an empty array returns false. There are
some conditions however under which while evaluates as true on an
empty array. Two examples of this are

A = [];
while all(A), do_something, end
while 1|A, do_something, end

2-4456



while

Short-Circuiting Behavior

When used in the context of a while or if expression, and only in this
context, the element-wise | and & operators use short-circuiting in
evaluating their expressions. That is, A|B and A&B ignore the second
operand, B, if the first operand, A, is sufficient to determine the result.

See “Short-Circuiting in Elementwise Operators” for more information
on this.

Examples Example 1 – Simple while Statement

The variable eps is a tolerance used to determine such things as near
singularity and rank. Its initial value is the machine epsilon, the
distance from 1.0 to the next largest floating-point number on your
machine. Its calculation demonstrates while loops.

eps = 1;
while (1+eps) > 1

eps = eps/2;
end
eps = eps*2

This example is for the purposes of illustrating while loops only and
should not be executed in your MATLAB session. Doing so will disable
the eps function from working in that session.

Example 2 – Nonscalar Expression

Given matrices A and B,

A = B =
1 0 1 1
2 3 3 4

2-4457



while

Expression Evaluates As Because

A < B false A(1,1) is not less than B(1,1).

A < (B + 1) true Every element of A is less than
that same element of B with 1
added.

A & B false A(1,2) is false, and B is ignored
due to short-circuiting.

B < 5 true Every element of B is less than
5.

See Also end, for, break, continue, return, all, any, if, switch

2-4458



whitebg

Purpose Change axes background color

Syntax whitebg
whitebg(fig)
whitebg(ColorSpec)
whitebg(fig, ColorSpec)
whitebg(fig, ColorSpec)
whitebg(fig)

Description whitebg complements the colors in the current figure.

whitebg(fig) complements colors in all figures specified in the vector
fig.

whitebg(ColorSpec) and whitebg(fig, ColorSpec) change the
color of the axes, which are children of the figure, to the color
specified by ColorSpec. Without a figure specification, whitebg or
whitebg(ColorSpec) affects the current figure and the root’s default
properties so subsequent plots and new figures use the new colors.

whitebg(fig, ColorSpec) sets the default axes background color of
the figures in the vector fig to the color specified by ColorSpec. Other
axes properties and the figure background color can change as well so
that graphs maintain adequate contrast. ColorSpec can be a 1-by-3
RGB color or a color string such as 'white' or 'w'.

whitebg(fig) complements the colors of the objects in the specified
figures. This syntax is typically used to toggle between black and white
axes background colors, and is where whitebg gets its name. Include
the root window handle (0) in fig to affect the default properties for
new windows or for clf reset.

Remarks whitebg works best in cases where all the axes in the figure have the
same background color.

whitebg changes the colors of the figure’s children, with the exception
of shaded surfaces. This ensures that all objects are visible against the
new background color. whitebg sets the default properties on the root
such that all subsequent figures use the new background color.

2-4459



whitebg

Examples Set the background color to blue-gray.

whitebg([0 .5 .6])

Set the background color to blue.

whitebg('blue')

See Also ColorSpec, colordef

The figure graphics object property InvertHardCopy

“Color Operations” on page 1-108 for related functions

2-4460



who, whos

Purpose List variables in workspace

Graphical
Interface

As an alternative to whos, use the Workspace browser. For information
on viewing the contents of MAT-files without loading them, see “Using
the Current Folder Browser”.

Syntax who
whos
who(variable_list)
whos(variable_list)
who(variable_list, qualifiers)
whos(variable_list, qualifiers)
s = who(variable_list, qualifiers)
s = whos(variable_list, qualifiers)
who variable_list qualifiers
whos variable_list qualifiers

Description who lists in alphabetical order all variables in the currently active
workspace.

whos lists in alphabetical order all variables in the currently active
workspace along with their sizes and types.

Note If who or whos is executed within a nested function, the MATLAB
software lists the variables in the workspace of that function and in the
workspaces of all functions containing that function. See the Remarks
section, below.

who(variable_list) and whos(variable_list) list only those
variables specified in variable_list, where variable_list is a
comma-delimited list of quoted strings: 'var1', 'var2', ...,
'varN'. You can use the wildcard character * to display variables that
match a pattern. For example, who('A*') finds all variables in the
current workspace that start with A.

2-4461



who, whos

who(variable_list, qualifiers) and whos(variable_list,
qualifiers) list those variables in variable_list that meet all
qualifications specified in qualifiers. You can specify any or all of the
following qualifiers, and in any order.

Qualifier
Syntax Description Example

global List variables in the
global workspace.

whos('global')

-file ,
filename

List variables in the
specified MAT-file.
Use the full path for
filename.

whos('-file',
'mydata')

-regexp ,
exprlist

List variables that
match any of the
regular expressions in
exprlist.

whos('-regexp',
'[AB].', '\w\d')

s = who(variable_list, qualifiers) returns cell array s containing
the names of the variables specified in variable_list that meet the
conditions specified in qualifiers.

s = whos(variable_list, qualifiers) returns structure s
containing the following fields for the variables specified in
variable_list that meet the conditions specified in qualifiers:

Field Name Description

name Name of the variable

size Dimensions of the variable array

bytes Number of bytes allocated for the variable array

class Class of the variable. Set to the string
'(unassigned)' if the variable has no value.

global True if the variable is global; otherwise false

2-4462



who, whos

Field Name Description

sparse True if the variable is sparse; otherwise false

complex True if the variable is complex; otherwise false

nesting Structure having the following fields:

• function—Name of the nested or outer function
that defines the variable

• level — Nesting level of that function

persistent True if the variable is persistent; otherwise false

who variable_list qualifiers and whos variable_list
qualifiers are the unquoted forms of the syntax. Both variable_list
and qualifiers are space-delimited lists of unquoted strings.

Remarks Nested Functions. When you use who or whos inside of a nested
function, MATLAB returns or displays all variables in the workspace
of that function, and in the workspaces of all functions in which that
function is nested. This applies whether you include calls to who or
whos in your function code or if you call who or whos from the MATLAB
debugger.

If your code assigns the output of whos to a variable, MATLAB returns
the information in a structure array containing the fields described
above. If you do not assign the output to a variable, MATLAB displays
the information at the Command Window, grouped according to
workspace.

If your code assigns the output of who to a variable, MATLAB returns
the variable names in a cell array of strings. If you do not assign
the output, MATLAB displays the variable names at the Command
Window, but not grouped according to workspace.

2-4463



who, whos

Compressed Data. Information returned by the command whos
-file is independent of whether the data in that file is compressed or
not. The byte counts returned by this command represent the number
of bytes data occupies in the MATLAB workspace, and not in the file
the data was saved to. See the function reference for save for more
information on data compression.

MATLAB Objects. whos -file filename does not return the sizes of
any MATLAB objects that are stored in file filename.

Examples Example 1

Show variable names starting with the letter a:

who a*

Show variables stored in MAT-file mydata.mat:

who -file mydata

Example 2

Return information on variables stored in file mydata.mat in structure
array s:

s = whos('-file', 'mydata1')
s =
6x1 struct array with fields:

name
size
bytes
class
global
sparse
complex
nesting
persistent

2-4464



who, whos

Display the name, size, and class of each of the variables returned by
whos:

for k=1:length(s)

disp([' ' s(k).name ' ' mat2str(s(k).size) ' ' s(k).class])

end

A [1 1] double

spArray [5 5] double

strArray [2 5] cell

x [3 2 2] double

y [4 5] cell

Example 3

Show variables that start with java and end with Array. Also show
their dimensions and class name:

whos -file mydata2 -regexp \<java.*Array\>

Name Size Bytes Class

javaChrArray 3x1 java.lang.String[][][]

javaDblArray 4x1 java.lang.Double[][]

javaIntArray 14x1 java.lang.Integer[][]

Example 4

The function shown here uses variables with persistent, global, sparse,
and complex attributes:

function show_attributes
persistent p;
global g;
o = 1; g = 2;
s = sparse(eye(5));
c = [4+5i 9-3i 7+6i];
whos

When the function is run, whos displays these attributes:

show_attributes

2-4465



who, whos

Name Size Bytes Class Attributes

c 1x3 48 double complex
g 1x1 8 double global
p 1x1 8 double persistent
s 5x5 84 double sparse

Example 5

Function whos_demo contains two nested functions. One of these
functions calls whos; the other calls who:

function whos_demo
date_time = datestr(now);

[str pos] = textscan(date_time, '%s%s%s', ...
1, 'delimiter', '- :');

get_date(str);

str = textscan(date_time(pos+1:end), '%s%s%s', ...
1, 'delimiter', '- :');

get_time(str);

function get_date(d)
day = d{1}; mon = d{2}; year = d{3};
whos

end
function get_time(t)

hour = t{1}; min = t{2}; sec = t{3};
who

end
end

When nested function get_date calls whos, MATLAB displays
information on the variables in all workspaces that are in scope at the
time. This includes nested function get_date and also the function
in which it is nested, whos_demo. The information is grouped by
workspace:

2-4466



who, whos

whos_demo
Name Size Bytes Class

---- get_date -----------------------------------------
d 1x3 378 cell
day 1x1 64 cell
mon 1x1 66 cell
year 1x1 68 cell

---- whos_demo ----------------------------------------
ans 0x0 0 (unassigned)
date_time 1x20 40 char
pos 1x1 8 double
str 1x3 378 cell

When nested function get_time calls who, MATLAB displays names
of the variables in the workspaces that are in scope at the time. This
includes nested function get_time and also the function in which it
is nested, whos_demo. The information is not grouped by workspace
in this case:

Your variables are:

hour min sec t ans date_time
pos str

See Also assignin, clear, computer, dir, evalin, exist, inmem, load, save,
what, workspace

“MATLAB Workspace” in the Desktop Tools and Development
Environment documentation

2-4467



wilkinson

Purpose Wilkinson’s eigenvalue test matrix

Syntax W = wilkinson(n)

Description W = wilkinson(n) returns one of J. H. Wilkinson’s eigenvalue test
matrices. It is a symmetric, tridiagonal matrix with pairs of nearly,
but not exactly, equal eigenvalues.

Examples wilkinson(7)

ans =

3 1 0 0 0 0 0
1 2 1 0 0 0 0
0 1 1 1 0 0 0
0 0 1 0 1 0 0
0 0 0 1 1 1 0
0 0 0 0 1 2 1
0 0 0 0 0 1 3

The most frequently used case is wilkinson(21). Its two largest
eigenvalues are both about 10.746; they agree to 14, but not to 15,
decimal places.

See Also eig, gallery, pascal

2-4468



winopen

Purpose Open file in appropriate application (Windows)

Syntax winopen(fileName)

Description winopen(fileName) opens fileName in the associated Microsoft
Windows application. The application is associated with the extension
in fileName in the Windows operating system. filename is a string
enclosed in single quotes. winopen uses a Windows shell command, and
performs the same action as double-clicking the file in the Windows
Explorer program. That is, winopen calls the application associated
the file extension to open the file. Use an absolute or relative path for
fileName.

Examples Open the file thesis.doc, located in the current folder, in the Microsoft
Word program:

winopen('thesis.doc')

Open myresults.html in the system Web browser:

winopen('D:/myfiles/myresults.html')

On Microsoft Windows platforms, open the current folder in the
Windows Explorer tool:

winopen(cd)

To open a file on the MATLAB path, use winopen with which. For
example, to open the meshgrid function in the Editor, use:

winopen(which(meshgrid))

See Also dos, open, web

2-4469



winopen

“Managing Files in MATLAB”

2-4470



winqueryreg

Purpose Item from Windows registry

Syntax valnames = winqueryreg('name', 'rootkey', 'subkey')
value = winqueryreg('rootkey', 'subkey', 'valname')
value = winqueryreg('rootkey', 'subkey')

Description valnames = winqueryreg('name', 'rootkey', 'subkey') returns
all value names in rootkey\subkey of Microsoft Windows operating
system registry to a cell array of strings. The first argument is the
literal quoted string, 'name'.

value = winqueryreg('rootkey', 'subkey', 'valname') returns
the value for value name valname in rootkey\subkey.

If the value retrieved from the registry is a string, winqueryreg returns
a string. If the value is a 32-bit integer, winqueryreg returns the value
as an integer of the MATLAB software type int32.

value = winqueryreg('rootkey', 'subkey') returns a value in
rootkey\subkey that has no value name property.

Note The literal name argument and the rootkey argument are
case-sensitive. The subkey and valname arguments are not.

Remarks This function works only for the following registry value types:

• strings (REG_SZ)

• expanded strings (REG_EXPAND_SZ)

• 32-bit integer (REG_DWORD)

Examples Example 1

Get the value of CLSID for the MATLAB sample Microsoft COM control
mwsampctrl.2:

winqueryreg 'HKEY_CLASSES_ROOT' 'mwsamp.mwsampctrl.2\clsid'

2-4471



winqueryreg

ans =
{5771A80A-2294-4CAC-A75B-157DCDDD3653}

Example 2

Get a list in variable mousechar for registry subkey Mouse,
which is under subkey Control Panel, which is under root key
HKEY_CURRENT_USER.

mousechar = winqueryreg('name', 'HKEY_CURRENT_USER', ...
'control panel\mouse');

For each name in the mousechar list, get its value from the registry and
then display the name and its value:

for k=1:length(mousechar)

setting = winqueryreg('HKEY_CURRENT_USER', ...

'control panel\mouse', mousechar{k});

str = sprintf('%s = %s', mousechar{k}, num2str(setting));

disp(str)

end

ActiveWindowTracking = 0

DoubleClickHeight = 4

DoubleClickSpeed = 830

DoubleClickWidth = 4

MouseSpeed = 1

MouseThreshold1 = 6

MouseThreshold2 = 10

SnapToDefaultButton = 0

SwapMouseButtons = 0

2-4472



wk1finfo

Purpose Determine whether file contains 1-2-3 WK1 worksheet

Note wk1finfo will be removed in a future version.

Syntax [extens, typ] = wk1finfo(filename)

Description [extens, typ] = wk1finfo(filename) returns the string ’WK1’ in
extens, and ’ 1-2-3 Spreadsheet’ in typ if the file filename contains
a readable worksheet. The filename input is a string enclosed in single
quotes.

Examples This example returns information on spreadsheet file matA.wk1:

[extens, typ] = wk1finfo('matA.wk1')

extens =
WK1

typ =
123 Spreadsheet

See Also xlsread, xlswrite, dlmread, dlmwrite

2-4473



wk1read

Purpose Read Lotus 1-2-3 WK1 spreadsheet file into matrix

Note wk1read will be removed in a future version.

Syntax M = wk1read(filename)
M = wk1read(filename,r,c)
M = wk1read(filename,r,c,range)

Description M = wk1read(filename) reads a Lotus1-2-3 WK1 spreadsheet file into
the matrix M. The filename input is a string enclosed in single quotes.

M = wk1read(filename,r,c) starts reading at the row-column cell
offset specified by (r,c). r and c are zero based so that r=0, c=0
specifies the first value in the file.

M = wk1read(filename,r,c,range) reads the range of values specified
by the parameter range, where range can be

• A four-element vector specifying the cell range in the format

[upper_left_row upper_left_col lower_right_row lower_right_col]

• A cell range specified as a string, for example, 'A1...C5'

• A named range specified as a string, for example, 'Sales'

2-4474



wk1read

Examples Create a 8-by-8 matrix A and export it to Lotus spreadsheet matA.wk1:

A = [1:8; 11:18; 21:28; 31:38; 41:48; 51:58; 61:68; 71:78]
A =

1 2 3 4 5 6 7 8
11 12 13 14 15 16 17 18
21 22 23 24 25 26 27 28
31 32 33 34 35 36 37 38
41 42 43 44 45 46 47 48
51 52 53 54 55 56 57 58
61 62 63 64 65 66 67 68
71 72 73 74 75 76 77 78

wk1write('matA.wk1', A);

To read in a limited block of the spreadsheet data, specify the upper left
row and column of the block using zero-based indexing:

M = wk1read('matA.wk1', 3, 2)
M =

33 34 35 36 37 38
43 44 45 46 47 48
53 54 55 56 57 58
63 64 65 66 67 68
73 74 75 76 77 78

To select a more restricted block of data, you can specify both the upper
left and lower right corners of the block you want imported. Read in a
range of values from row 4, column 3 (defining the upper left corner)
to row 6, column 6 (defining the lower right corner). Note that, unlike
the second and third arguments, the range argument [4 3 6 6] is
one-based:

M = wk1read('matA.wk1', 3, 2, [4 3 6 6])
M =

33 34 35 36
43 44 45 46
53 54 55 56

2-4475



wk1read

See Also xlsread

2-4476



wk1write

Purpose Write matrix to Lotus 1-2-3 WK1 spreadsheet file

Note wk1write will be removed in a future version.

Syntax wk1write(filename,M)
wk1write(filename,M,r,c)

Description wk1write(filename,M) writes the matrix M into a Lotus1-2-3 WK1
spreadsheet file named filename. The filename input is a string
enclosed in single quotes.

wk1write(filename,M,r,c) writes the matrix starting at the
spreadsheet location (r,c). r and c are zero based so that r=0, c=0
specifies the first cell in the spreadsheet.

Examples Write a 4-by-5 matrix A to spreadsheet file matA.wk1. Place the matrix
with its upper left corner at row 2, column 3 using zero-based indexing:

A = [1:5; 11:15; 21:25; 31:35]
A =

1 2 3 4 5
11 12 13 14 15
21 22 23 24 25
31 32 33 34 35

2-4477



wk1write

wk1write('matA.wk1', A, 2, 3)

M = wk1read('matA.wk1')
M =

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 2 3 4 5
0 0 0 11 12 13 14 15
0 0 0 21 22 23 24 25
0 0 0 31 32 33 34 35

See Also dlmwrite, dlmread, xlswrite, xlsread

2-4478



workspace

Purpose Open Workspace browser to manage workspace

GUI
Alternatives

As an alternative to the workspace function, select
Desktop > Workspace in the MATLAB desktop.

Syntax workspace

Description workspace displays the Workspace browser, a graphical user interface
that allows you to view and manage the contents of the workspace in
MATLAB. It provides a graphical representation of the whos display,
and allows you to perform the equivalent of the clear, load, open, and
save functions.

The Workspace browser also displays and automatically updates
statistical calculations for each variable, which you can choose to show
or hide.

2-4479



workspace

You can edit a value directly in the Workspace browser for small numeric
and character arrays. To see and edit a graphical representation of
larger variables and for other classes, double-click the variable in the
Workspace browser. The variable displays in the Variable Editor, where
you can view the full contents and make changes.

2-4480



workspace

See Also openvar, who

“MATLAB Workspace”

2-4481



Tiff.write

Purpose Write entire image

Syntax tiffobj.write(imageData)
tiffobj.write(Y,Cb,Cr)

Description tiffobj.write(imageData) writes imageData to TIFF file associated
with the Tiff object, tiffobj. The write method breaks the data into
strips or tiles, depending on the value of the RowsPerStrip tag, or the
TileLength and TileWidth tags.

tiffobj.write(Y,Cb,Cr) writes the YCbCr component data to the
TIFF file.

See Also Tiff.writeDirectory

Tutorials • “Exporting Image Data and Metadata to TIFF Files”

2-4482



Tiff.writeDirectory

Purpose Create new IFD and make it current IFD

Syntax tiffobj.writeDirectory()

Description tiffobj.writeDirectory() create a new image file directory (IFD) and
makes it the current IFD. Tiff object methods operate on the current
IFD. If you are creating a TIFF file that only contains one image, you do
not need to use this method. With single-image TIFF files, just close the
Tiff object to write data to the file.

Examples Open a TIFF file for modification and create a new IFD in the file.
writeDirectorymakes the newly created IFD the current IFD. Replace
the name myfile.tif with the name of a TIFF file on your MATLAB
path.

t = Tiff('myfile.tif', 'r+');
dnum = t.currentDirectory();
t.writeDirectory();
dnum = t.currentDirectory();

References This method corresponds to the TIFFWriteDirectory function in the
LibTIFF C API. To use this method, you must be familiar with LibTIFF
version 3.7.1, as well as the TIFF specification and technical notes.
View this documentation at LibTIFF - TIFF Library and Utilities.

See Also Tiff.write | Tiff.close

Tutorials • “Exporting Image Data and Metadata to TIFF Files”

• “Reading Image Data and Metadata from TIFF Files”

2-4483

http://www.remotesensing.org/libtiff/


Tiff.writeEncodedStrip

Purpose Write data to specified strip

Syntax tiffobj.writeEncodedStrip(stripNumber,imageData)
tiffobj.writeEncodedStrip(stripNumber,Y,Cb,Cr)

Description tiffobj.writeEncodedStrip(stripNumber,imageData) writes
the data in imageData to the strip specified by stripNumber. Strip
identification numbers are one-based. If imageData has fewer bytes
than fit into a strip, writeEncodedStrip silently pads the strip. If
imageData has more bytes than fit into a strip, writeEncodedStrip
issues a warning and truncates the data. To determine the size of a
strip, view the value of the RowsPerStrip tag.

tiffobj.writeEncodedStrip(stripNumber,Y,Cb,Cr) writes the
YCbCr component data to the specified tile. You must set the
YCbCrSubSampling tag.

Examples Open a Tiff object for modification. Replace myfile.tif with the name
of a TIFF file on your MATLAB path. The folder in which you run the
example must be writable.

t = Tiff('myfile.tif', 'r+');

if ~t.isTiled()
width = t.getTag('ImageWidth');

height = t.getTag('RowsPerStrip');
numSamples = t.getTag('SamplesPerPixel');
imageData = zeros(height,width,numSamples,'uint8');
t.writeEncodedStrip(1,imageData);

end

References This method corresponds to the TIFFWriteEncodedStrip function in the
LibTIFF C API. To use this method, you must be familiar with LibTIFF
version 3.7.1, as well as the TIFF specification and technical notes.
View this documentation at LibTIFF - TIFF Library and Utilities.

See Also Tiff.writeEncodedTile

2-4484

http://www.remotesensing.org/libtiff/


Tiff.writeEncodedStrip

Tutorials • “Exporting Image Data and Metadata to TIFF Files”

• “Reading Image Data and Metadata from TIFF Files”

2-4485



Tiff.writeEncodedTile

Purpose Write data to specified tile

Syntax tiffobj.writeEncodedTile(tileNumber,imageData)
tiffobj.writeEncodedTile(tileNumber,Y,Cb,Cr)

Description tiffobj.writeEncodedTile(tileNumber,imageData) writes the data
in imageData to the tile specified by tileNumber. Tile identification
numbers are one-based. If imageData has fewer bytes than fit into a
tile, writeEncodedTile silently pads the tile. If imageData has more
bytes than fit into a tile, writeEncodedTile issues a warning and
truncates the data. To determine the size of a tile, view the value of the
tileLength and tileWidth tags.

tiffobj.writeEncodedTile(tileNumber,Y,Cb,Cr) writes the
YCbCr component data to the specified tile. You must set the
YCbCrSubSampling tags.

Examples Open a TIFF file for modification. Replace myfile.tif with the name
of a TIFF file on your MATLAB path.

t = Tiff('myfile.tif', 'r+');

if t.isTiled()
width = t.getTag('tileWidth');
height = t.getTag('tileLength');
numSamples = t.getTag('SamplesPerPixel');
imageData = zeros(height,width,numSamples,'uint8');
t.writeEncodedTile(1,imageData);

end

References This method corresponds to the TIFFWriteEncodedTile function in the
LibTIFF C API. To use this method, you must be familiar with LibTIFF
version 3.7.1, as well as the TIFF specification and technical notes.
View this documentation at LibTIFF - TIFF Library and Utilities.

See Also Tiff.writeEncodedStrip

2-4486

http://www.remotesensing.org/libtiff/


Tiff.writeEncodedTile

Tutorials • “Exporting Image Data and Metadata to TIFF Files”

• “Reading Image Data and Metadata from TIFF Files”

2-4487



xlabel, ylabel, zlabel

Purpose Label x-, y-, and z-axis

GUI
Alternative

To control the presence and appearance of axis labels on a graph, use

the Property Editor, one of the plotting tools . For details, see The
Property Editor in the MATLAB Graphics documentation.

Syntax xlabel('string')
xlabel(fname)
xlabel(...,'PropertyName',PropertyValue,...)
xlabel(axes_handle,...)
h = xlabel(...)

ylabel(...)
ylabel(axes_handle,...)
h = ylabel(...)

zlabel(...)
zlabel(axes_handle,...)
h = zlabel(...)

Description Each axes graphics object can have one label for the x-, y-, and z-axis.
The label appears beneath its respective axis in a two-dimensional plot
and to the side or beneath the axis in a three-dimensional plot.

xlabel('string') labels the x-axis of the current axes.

xlabel(fname) evaluates the function fname, which must return a
string, then displays the string beside the x-axis.

xlabel(...,'PropertyName',PropertyValue,...) specifies
property name and property value pairs for the text graphics object
created by xlabel.

2-4488



xlabel, ylabel, zlabel

xlabel(axes_handle,...), ylabel(axes_handle,...), and
zlabel(axes_handle,...) plot into the axes with handle axes_handle
instead of the current axes (gca).

h = xlabel(...), h = ylabel(...), and h = zlabel(...) return the handle to
the text object used as the label.

ylabel(...) and zlabel(...) label the y-axis and z-axis, respectively,
of the current axes.

Remarks Reissuing an xlabel, ylabel, or zlabel command causes the new label
to replace the old label.

For three-dimensional graphics, MATLAB puts the label in the front
or side, so that it is never hidden by the plot.

Examples Create a multiline label for the x-axis using a multiline cell array:

xlabel({'first line';'second line'})

Create a bold label for the y-axis that contains a single quote:

ylabel('George''s Popularity','fontsize',12,'fontweight','b')

See Also strings, text, title

“Annotating Plots” on page 1-97 for related functions

“Adding Axis Labels to Graphs” for more information about labeling
axes

2-4489



xlim, ylim, zlim

Purpose Set or query axis limits

GUI
Alternative

To control the upper and lower axis limits on a graph, use the Property

Editor, one of the plotting tools . For details, see The Property
Editor in the MATLAB Graphics documentation.

Syntax xlim
xlim([xmin xmax])
xlim('mode')
xlim('auto')
xlim('manual')
xlim(axes_handle,...)

Note that the syntax for each of these three functions is the same; only
the xlim function is used for simplicity. Each operates on the respective
x-, y-, or z-axis.

Description xlim with no arguments returns the respective limits of the current
axes.

xlim([xmin xmax]) sets the axis limits in the current axes to the
specified values.

xlim('mode') returns the current value of the axis limits mode, which
can be either auto (the default) or manual.

xlim('auto') sets the axis limit mode to auto.

xlim('manual') sets the respective axis limit mode to manual.

xlim(axes_handle,...) performs the set or query on the axes
identified by the first argument, axes_handle. When you do not specify
an axes handle, these functions operate on the current axes.

Remarks xlim, ylim, and zlim set or query values of the axes object XLim, YLim,
ZLim, and XLimMode, YLimMode, ZLimMode properties.

When the axis limit modes are auto (the default), MATLAB uses limits
that span the range of the data being displayed and are round numbers.

2-4490



xlim, ylim, zlim

Setting a value for any of the limits also sets the corresponding mode
to manual. Note that high-level plotting functions like plot and surf
reset both the modes and the limits. If you set the limits on an existing
graph and want to maintain these limits while adding more graphs, use
the hold command.

Examples This example illustrates how to set the x- and y-axis limits to match the
actual range of the data, rather than the rounded values of [-2 3] for
the x-axis and [-2 4] for the y-axis originally selected by MATLAB.

[x,y] = meshgrid([-1.75:.2:3.25]);
z = x.*exp(-x.^2-y.^2);
surf(x,y,z)
xlim([-1.75 3.25])
ylim([-1.75 3.25])

2-4491



xlim, ylim, zlim

See Also axis

The axes properties XLim, YLim, ZLim

“Aspect Ratio and Axis Limits” on page 1-110 for related functions

Understanding Axes Aspect Ratio for more information on how axis
limits affect the axes

2-4492



xlsfinfo

Purpose Determine whether file contains a Microsoft Excel spreadsheet

Syntax typ = xlsfinfo(filename)
[typ, desc] = xlsfinfo(filename)
[typ, desc, fmt] = xlsfinfo(filename)
xlsfinfo filename

Description typ = xlsfinfo(filename) returns the string 'Microsoft Excel
Spreadsheet' if the file specified by filename is an Excel file that
can be read by the MATLAB xlsread function. Otherwise, typ is the
empty string, (''). The filename input is a string enclosed in single
quotation marks.

[typ, desc] = xlsfinfo(filename) returns in desc a cell array
of strings containing the names of each spreadsheet in the file. If
a spreadsheet is unreadable, the cell in desc that represents that
spreadsheet contains an error message.

[typ, desc, fmt] = xlsfinfo(filename) returns in the fmt output
a string containing the Excel-reported file format. On UNIX systems,
or on Windows systems without Excel software installed, xlsfinfo
returns fmt as an empty string, ('').

xlsfinfo filename is the command format for xlsfinfo. It returns
only the first output, typ, assigning it to the MATLAB default variable
ans.

Remarks If your system has Excel for Windows installed, xlsfinfo uses the
COM server to obtain information. This server is part of the typical
installation of Excel for Windows. If the COM server is unavailable,
xlsfinfo returns a warning indicating that it cannot start an ActiveX
server. To establish connectivity with the COM server, you might need
to reinstall your Excel software.

Examples Get information about an .xls file:

[typ, desc, fmt] = xlsfinfo('myaccount.xls')

2-4493



xlsfinfo

typ =
Microsoft Excel Spreadsheet

desc =
'Sheet1' 'Income' 'Expenses'

fmt =
xlWorkbookNormal

Export the .xls file to comma-separated value (CSV) format. Use
xlsfinfo to see the format of the exported file:

[typ, desc, fmt] = xlsfinfo('myaccount.csv');
fmt

fmt =
xlCSV

Export the .xls file to HTML format. xlsfinfo returns the following
format string:

[typ, desc, fmt] = xlsfinfo('myaccount.html');
fmt

fmt =
xlHtml

Export the .xls file to XML format. xlsfinfo returns the following
format string:

[typ, desc, fmt] = xlsfinfo('myaccount.xml');
fmt

fmt =
xlXMLSpreadsheet

See Also xlsread, xlswrite

2-4494



xlsread

Purpose Read Microsoft Excel spreadsheet file

Syntax num = xlsread(filename)
num = xlsread(filename, -1)
num = xlsread(filename, sheet)
num = xlsread(filename, range)
num = xlsread(filename, sheet, range)
num = xlsread(filename, sheet, range, 'basic')
num = xlsread(filename, ..., functionhandle)
[num, txt]= xlsread(filename, ...)
[num, txt, raw] = xlsread(filename, ...)
[num, txt, raw, X] = xlsread(filename, ..., functionhandle)
xlsread filename sheet range basic

Description num = xlsread(filename) returns numeric data in double array
num from the first sheet in the Microsoft Excel spreadsheet file named
filename. The filename argument is a string enclosed in single
quotation marks.

xlsread ignores any outer rows or columns of the spreadsheet that
contain no numeric data. If there are single or multiple nonnumeric
rows at the top or bottom, or single or multiple nonnumeric columns to
the left or right, xlsread does not include these rows or columns in
the output. For example, xlsread ignores one or more header lines
appearing at the top of a spreadsheet.

Any inner rows or columns in which some or all cells contain
nonnumeric data are not ignored. Instead, xlsread assigns a value of
NaN to the nonnumeric cells.

num = xlsread(filename, -1) opens the file filename in an Excel
window, enabling you to interactively select the worksheet to read and
the range of data on that worksheet to import.

To import an entire worksheet, first select the sheet in the Excel
window, and then click the OK button in the Data Selection Dialog box.
To import a certain range of data from the sheet, select the worksheet in
the Excel window, drag and drop the mouse over the desired range, and
then click OK. (See “COM Server Requirements” on page 2-4498 below.)

2-4495



xlsread

num = xlsread(filename, sheet) reads the specified worksheet,
where sheet is either a positive, double scalar value or a quoted string
containing the sheet name. To determine the names of the sheets in
a spreadsheet file, use xlsfinfo.

num = xlsread(filename, range) reads data from a specific
rectangular region of the default worksheet (Sheet1). (See “COM Server
Requirements” on page 2-4498 below.)

Specify range using the syntax 'C1:C2', where C1 and C2 are two
opposing corners that define the region to be read. For example,
'D2:H4' represents the 3-by-5 rectangular region between the two
corners D2 and H4 on the worksheet. The range input is not case
sensitive and uses Excel A1 reference style. For more information on
this reference style, see Excel help.

Note If you specify only two inputs, xlsread must decide whether the
second input refers to a sheet or a range. To specify a range (even a
range of a single cell), include a colon character in the input string
(e.g., 'D2:H4'). If you do not include a colon character (e.g., 'sales'
or 'D2'), xlsread interprets the second input as the name or index
of a worksheet.

num = xlsread(filename, sheet, range) reads data from a specific
rectangular region (range) of the worksheet specified by sheet. If you
specify both sheet and range, range can refer to a named range that
you defined in the Excel file. (For more information on named ranges,
see the Excel help.) See the previous two syntax formats for further
explanation of the sheet and range inputs. (Also, see “COM Server
Requirements” on page 2-4498 below.)

num = xlsread(filename, sheet, range, 'basic') imports data
from the spreadsheet in basic import mode. xlsread uses this mode on
systems where Excel software is not installed. Import ability is limited.
xlsread ignores the value for range and, consequently, imports the
whole active range of a sheet. (You can set range to the empty string

2-4496



xlsread

('').) Also, in basic mode, sheet is case sensitive and must be a quoted
string.

num = xlsread(filename, ..., functionhandle) calls the function
associated with functionhandle just prior to obtaining spreadsheet
values. This enables you to operate on the spreadsheet data (for
example, convert it to a numeric type) before reading it in. (See “COM
Server Requirements” on page 2-4498 below.)

You can write your own custom function and pass a handle to
this function to xlsread. When xlsread executes, it reads from
the spreadsheet, executes your function on the data read from the
spreadsheet, and returns the final results to you. When xlsread calls
your function, it passes a range interface from the Excel application to
provide access to the data read from the spreadsheet. Your function
must include this interface both as an input and output argument.
Example 5 below shows how you might use this syntax.

For more information, see “Function Handles” in the MATLAB
Programming Fundamentals documentation.

[num, txt]= xlsread(filename, ...) returns numeric data in array
num and text data in cell array txt. All cells in txt that correspond to
numeric data contain the empty string.

[num, txt, raw] = xlsread(filename, ...) returns numeric and
text data in num and txt, and unprocessed cell content in cell array
raw, which contains both numeric and text data. (See “COM Server
Requirements” on page 2-4498 below.)

If the Excel file includes cells with undefined values (such as '#N/A'),
xlsread returns these values as '#N/A' in the txt output, and as
'ActiveX VT_ERROR:' in the raw output.

[num, txt, raw, X] = xlsread(filename, ..., functionhandle)
calls the function associated with functionhandle just prior to reading
from the spreadsheet file. This syntax returns one additional output
X from the function mapped to by functionhandle. Example 6 below
shows how you might use this syntax. (See “COM Server Requirements”
on page 2-4498 below.)

2-4497



xlsread

xlsread filename sheet range basic is an example of the command
format for xlsread, showing its usage with all input arguments
specified. When using this format, you must specify sheet as a string,
(for example, Income or Sheet4) and not a numeric index. If the sheet
name contains space characters, then quotation marks are required
around the string, (for example, 'Income 2002').

Remarks COM Server Requirements

The typical installation of Excel for Windows includes the ability to start
a COM server. With Excel for Windows installed, you can use xlsread
to read any file format recognized by your version of Excel, including
XLS, XLSX, XLSB, XLSM, and HTML-based formats. xlsread can read
data saved in files that are currently open in Excel for Windows.

If your system does not have Excel for Windows installed, or MATLAB
cannot access the COM server, xlsread operates in basic mode. In this
mode, xlsread only reads XLS files.

The following five syntax formats are supported only on computer
systems able to start a COM server from a MATLAB session. They
are not supported in basic mode.

num = xlsread(filename, -1)

num = xlsread(filename, 'range')

num = xlsread(filename, sheet, 'range')

num = xlsread(filename, ..., functionhandle)

[num, txt, raw, opt] = xlsread(filename, ..., functionhandle)

Handling Excel Date Values

MATLAB functions import all formatted dates as strings. To import a
numeric date, the date field in Excel must have a numeric format.

Both Excel and MATLAB applications represent numeric dates as a
number of serial days elapsed from a specific reference date. However,
Excel and MATLAB use different reference dates:

2-4498



xlsread

Application Reference Date

MATLAB January 0, 0000

Excel for Windows January 1, 1900

Excel for the Macintosh January 2, 1904

Therefore, you must convert any numeric date that you import before
you process it in MATLAB. For more information, see “Converting
Dates” in the MATLAB Data Import and Export documentation.

Consider using the functionhandle parameter for this conversion,
discussed in the Syntax Description and in Example 5 and Example 6.

Examples Example 1— Reading Numeric Data

The Microsoft Excel spreadsheet file testdata1.xls contains this data:

1 6
2 7
3 8
4 9
5 10

To read this data into MATLAB, use this command:

A = xlsread('testdata1.xls')
A =

1 6
2 7
3 8
4 9
5 10

Example 2 — Handling Text Data

The Microsoft Excel spreadsheet file testdata2.xls contains a mix
of numeric and text data:

1 6

2-4499



xlsread

2 7
3 8
4 9
5 text

xlsread puts a NaN in place of the text data in the result:

A = xlsread('testdata2.xls')
A =

1 6
2 7
3 8
4 9
5 NaN

Example 3 — Selecting a Range of Data

To import only rows 4 and 5 from worksheet 1, specify the range as
'A4:B5':

A = xlsread('testdata2.xls', 1, 'A4:B5')

A =
4 9
5 NaN

Example 4 — Handling Files with Row or Column Headers

A Microsoft Excel worksheet labeled Temperatures in the file
tempdata.xls contains two columns of numeric data with text headers
for each column:

Time Temp
12 98
13 99
14 97

If you want to import only the numeric data, use xlsread with a single
return argument. Specify the filename and sheet name as inputs.

2-4500



xlsread

xlsread ignores any leading row or column of text in the numeric result.

ndata = xlsread('tempdata.xls', 'Temperatures')

ndata =
12 98
13 99
14 97

To import both the numeric data and the text data, specify two return
values for xlsread:

[ndata, headertext] = xlsread('tempdata.xls', 'Temperatures')

ndata =

12 98

13 99

14 97

headertext =

'Time' 'Temp'

Example 5 — Passing a Function Handle

This example calls xlsread twice, the first time as a simple read from
a file, and the second time requesting that xlsread execute some
user-defined modifications on the data prior to returning the results
of the read. A user-written function, setMinMax, that you pass as a
function handle in the call to xlsread, performs these modifications.
When xlsread executes, it reads from the spreadsheet, executes the
function on the data read from the spreadsheet, and returns the final
results to you.

Note The function passed to xlsread operates on the copy of the data
read from the spreadsheet. It does not modify data in the spreadsheet
itself.

2-4501



xlsread

Read a 10-by-3 numeric array from Excel spreadsheet testsheet.xls
with a simple xlsread statement that does not pass a function handle.
The returned values range from -587 to +4,149:

arr = xlsread('testsheet.xls')
arr =

1.0e+003 *
1.0020 4.1490 0.2300
1.0750 0.1220 -0.4550

-0.0301 3.0560 0.2471
0.4070 0.1420 -0.2472
2.1160 -0.0557 -0.5870
0.4040 2.9280 0.0265
0.1723 3.4440 0.1112
4.1180 0.1820 2.8630
0.9000 0.0573 1.9750
0.0163 0.2000 -0.0223

In preparation for the second part of this example, write a function
setMinMax that restricts the values returned from the read to be in
the range of 0 to 2000. You need to pass this function in the call to
xlsread, which then executes the function on the data it has read
before returning it to you.

When xlsread calls your function, it passes an Excel range interface to
provide access to the data read from the spreadsheet. This is shown as
DataRange in this example. Your function must include this interface
both as an input and output argument. The output argument allows
your function to pass modified data back to xlsread:

function [DataRange] = setMinMax(DataRange)
maxval = 2000; minval = 0;

for k = 1:DataRange.Count
v = DataRange.Value{k};
if v > maxval || v < minval

if v > maxval
DataRange.Value{k} = maxval;

2-4502



xlsread

else
DataRange.Value{k} = minval;

end
end

end

Now call xlsread, passing a function handle for the setMinMax function
as the final argument, using '' as placeholders for sheet, range, and
import mode. After this call, all values are between 0 and 2000:

arr = xlsread('testsheet.xls', '', '', '', @setMinMax)
arr =

1.0e+003 *
1.0020 2.0000 0.2300
1.0750 0.1220 0

0 2.0000 0.2471
0.4070 0.1420 0
2.0000 0 0
0.4040 2.0000 0.0265
0.1723 2.0000 0.1112
2.0000 0.1820 2.0000
0.9000 0.0573 1.9750
0.0163 0.2000 0

Example 6 — Passing a Function Handle with Additional
Output

This example adds onto the previous one by returning an additional
output from the call to setMinMax. Modify the function so that it not
only limits the range of values returned, but also returns the indices
of the altered elements. Return this information in a new output
argument, indices:

function [DataRange, indices] = setMinMax(DataRange)
maxval = 2000; minval = 0;
indices = [];

for k = 1:DataRange.Count
v = DataRange.Value{k};

2-4503



xlsread

if v > maxval || v < minval
if v > maxval

DataRange.Value{k} = maxval;
else

DataRange.Value{k} = minval;
end

indices = [indices k];
end

end

When you call xlsread this time, account for the three initial outputs,
and add a fourth called idx to accept the indices returned from
setMinMax:

[arr txt raw idx] = xlsread('testsheet.xls', ...
'', '', '', @setMinMax);

idx
idx =

3 5 8 11 13 15 16 17 22 24 25 28 30
arr
arr =

1.0e+003 *
1.0020 2.0000 0.2300
1.0750 0.1220 0

0 2.0000 0.2471
0.4070 0.1420 0
2.0000 0 0
0.4040 2.0000 0.0265
0.1723 2.0000 0.1112
2.0000 0.1820 2.0000
0.9000 0.0573 1.9750
0.0163 0.2000 0

See Also xlswrite, xlsfinfo, importdata, uiimport, textscan,
function_handle

2-4504



xlswrite

Purpose Write Microsoft Excel spreadsheet file

Syntax xlswrite(filename, M)
xlswrite(filename, M, sheet)
xlswrite(filename, M, range)
xlswrite(filename, M, sheet, range)
status = xlswrite(filename, ...)
[status, message] = xlswrite(filename, ...)
xlswrite filename M sheet range

Description xlswrite(filename, M) writes matrix M to the Excel file filename.
The filename input is a string enclosed in single quotation marks, and
should include the file extension. The matrix M is an m-by-n numeric or
character array or, if each cell contains a single element, a cell array
(see Example 2). xlswrite writes the matrix data to the first worksheet
in the file, starting at cell A1.

If filename does not exist, xlswrite creates a new file. The file
extension you provide as part of filename determines the Excel format
that xlswrite uses for the new file. An extension of .xls creates a
worksheet compatible with Excel 97-2003 software. Use extensions
.xlsx, .xlsb, or .xlsm to create worksheets in Excel 2007 file formats.
The maximum size of the matrix M depends on the associated Excel
version. (For more information on Excel specifications and limits, see
Excel help.)

xlswrite(filename, M, sheet) writes matrix M to the specified
worksheet sheet in the file filename. The sheet argument can be
either a positive, double scalar value representing the worksheet index,
or a quoted string containing the sheet name. The sheet argument
cannot contain a colon.

If sheet does not exist, xlswrite adds a new sheet at the end of the
worksheet collection. If sheet is an index larger than the number
of worksheets, xlswrite appends empty sheets until the number of
worksheets in the workbook equals sheet. In either case, xlswrite
generates a warning indicating that it has added a new worksheet.

2-4505



xlswrite

xlswrite(filename, M, range) writes matrix M to a rectangular
region specified by range in the first worksheet of the file filename.

Specify range using the syntax 'C1:C2', where C1 and C2 are two
opposing corners that define the region to write. For example, the
range 'D2:H4' represents the 3-by-5 rectangular region between the
two corners D2 and H4 on the worksheet. The range input is not case
sensitive and uses the Excel A1 reference style. (For more information
on this reference style, see Excel help.) xlswrite does not recognize
named ranges.

The size defined by range should fit the size of M. If range is larger
than the size of M, Excel software fills the remainder of the region with
#N/A. If range is smaller than the size of M, xlswrite writes only the
submatrix that fits into range to the file specified by filename.

Note If you specify only three inputs, xlswrite must decide whether
the third input refers to a sheet or a range. To specify a range, include
a colon character in the input string (such as 'D2:H4'). If you do
not include a colon character (such as 'sales' or 'D2'), xlswrite
interprets the third input as a value for sheet.

xlswrite(filename, M, sheet, range) writes matrix M to a
rectangular region specified by range in worksheet sheet of the file
filename. If you specify both sheet and range, the range can either
fit the size of M or contain only the first cell (such as 'A2'). See the
previous two syntax formats for further explanation of the sheet and
range inputs.

status = xlswrite(filename, ...) returns the completion status
of the write operation in status. If the write completes successfully,
status is equal to logical 1 (true). Otherwise, status is logical 0
(false). Unless you specify an output parameter, xlswrite does not
display a status value in the Command Window.

2-4506



xlswrite

[status, message] = xlswrite(filename, ...) returns any
warning or error message generated by the write operation in the
MATLAB structure message. The message structure has two fields:

• message— String containing the text of the warning or error message

• identifier — String containing the message identifier for the
warning or error

xlswrite filename M sheet range is the command format for
xlswrite, showing its usage with all input arguments specified. When
using this format, you must specify sheet as a string (for example,
Income or Sheet4). If the sheet name contains space characters,
then you must place quotation marks around the string (for example,
'Income 2002').

Remarks Excel converts Inf values to 65535. MATLAB converts NaN values to
empty cells.

If your system does not have Excel for Windows installed, or if the
COM server (part of the typical installation of Excel for Windows)
is unavailable, xlswrite:

• Writes matrix M as a text file in comma-separated value (CSV) format.

• Ignores the sheet and range arguments.

• Generates an error if the input matrix M is a cell array.

If your system has Microsoft Office 2003 software installed, but you
want to create a file in an Excel 2007 format, you must install the Office
2007 Compatibility Pack.

Numeric Dates

Both Excel and MATLAB applications represent numeric dates as a
number of serial days elapsed from a specific reference date. However,
Excel and MATLAB use different reference dates:

2-4507



xlswrite

Application Reference Date

MATLAB January 0, 0000

Excel for Windows January 1, 1900

Excel for the Macintosh January 2, 1904

For more information, see “Converting Dates” in the MATLAB Data
Import and Export documentation.

Examples Example 1 — Writing Numeric Data to the Default Worksheet

Write a 7-element vector to Microsoft Excel file testdata.xls. By
default, xlswrite writes the data to cells A1 through G1 in the first
worksheet in the file:

xlswrite('testdata.xls', [12.7 5.02 -98 63.9 0 -.2 56])

Example 2 — Writing Mixed Data to a Specific Worksheet

This example writes the following mixed text and numeric data to the
file tempdata.xls:

d = {'Time', 'Temp'; 12 98; 13 99; 14 97};

Call xlswrite, specifying the worksheet labeled Temperatures, and
the region within the worksheet to write the data to. xlswrite writes
the 4-by-2 matrix to the rectangular region that starts at cell E1 in
its upper left corner:

s = xlswrite('tempdata.xls', d, 'Temperatures', 'E1')
s =

1

The output status s shows that the write operation succeeded. The data
appears as shown here in the output file:

Time Temp
12 98
13 99

2-4508



xlswrite

14 97

Example 3 — Appending a New Worksheet to the File

Now write the same data to a worksheet that doesn’t yet exist in
tempdata.xls. In this case, xlswrite appends a new sheet to the
workbook, calling it by the name you supplied in the sheets input
argument, 'NewTemp'. xlswrite displays a warning indicating that it
has added a new worksheet to the file:

xlswrite('tempdata.xls', d, 'NewTemp', 'E1')
Warning: Added specified worksheet.

If you don’t want to see these warnings, you can turn them off with
this command:

warning off MATLAB:xlswrite:AddSheet

Now try the write command again, this time creating another new
worksheet, NewTemp2. Although the message does not appear this
time, you can still retrieve it and its identifier from the second output
argument, msg:

[stat msg] = xlswrite('tempdata.xls', d, 'NewTemp2', 'E1');

msg
msg =

message: 'Added specified worksheet.'
identifier: 'MATLAB:xlswrite:AddSheet'

See Also xlsread | xlsfinfo

How To • “Formatting Cells in Excel Files”

2-4509



xmlread

Purpose Parse XML document and return Document Object Model node

Syntax DOMnode = xmlread(filename)

Description DOMnode = xmlread(filename) reads a URL or filename and returns
a Document Object Model node representing the parsed document. The
filename input is a string enclosed in single quotes. The node can be
manipulated by using standard DOM functions.

A properly parsed document displays to the screen as

xDoc = xmlread(...)
xDoc =

[#document: null]

Remarks Find out more about the Document Object Model at the World Wide
Web Consortium (W3C®) Web site, http://www.w3.org/DOM/.

Examples Example 1

All XML files have a single root element. Some XML files declare
a preferred schema file as an attribute of this element. Use the
getAttributemethod of the DOM node to get the name of the preferred
schema file:

xDoc = xmlread(fullfile(matlabroot, ...

'toolbox/matlab/general/info.xml'));

xRoot = xDoc.getDocumentElement;

schemaURL = ...

char(xRoot.getAttribute('xsi:noNamespaceSchemaLocation'))

schemaURL =

http://www.mathworks.com/namespace/info/v1/info.xsd

2-4510

http://www.w3.org/DOM/


xmlread

Example 2

Each info.xml file on the MATLAB path contains several listitem
elements with a label and callback element. This script finds the
callback that corresponds to the label 'Plot Tools':

infoLabel = 'Plot Tools';

infoCbk = '';

itemFound = false;

xDoc = xmlread(fullfile(matlabroot, ...

'toolbox/matlab/general/info.xml'));

% Find a deep list of all listitem elements.

allListItems = xDoc.getElementsByTagName('listitem');

% Note that the item list index is zero-based.

for k = 0:allListItems.getLength-1

thisListItem = allListItems.item(k);

childNode = thisListItem.getFirstChild;

while ~isempty(childNode)

%Filter out text, comments, and processing instructions.

if childNode.getNodeType == childNode.ELEMENT_NODE

% Assume that each element has a single

% org.w3c.dom.Text child.

childText = char(childNode.getFirstChild.getData);

switch char(childNode.getTagName)

case 'label';

itemFound = strcmp(childText, infoLabel);

case 'callback' ;

infoCbk = childText;

end

end % End IF

childNode = childNode.getNextSibling;

end % End WHILE

2-4511



xmlread

if itemFound

break;

else

infoCbk = '';

end

end % End FOR

disp(sprintf('Item "%s" has a callback of "%s".', ...

infoLabel, infoCbk))

Example 3

This function parses an XML file using methods of the DOM node
returned by xmlread, and stores the data it reads in the Name,
Attributes, Data, and Children fields of a MATLAB structure:

function theStruct = parseXML(filename)
% PARSEXML Convert XML file to a MATLAB structure.
try

tree = xmlread(filename);
catch

error('Failed to read XML file %s.',filename);
end

% Recurse over child nodes. This could run into problems
% with very deeply nested trees.
try

theStruct = parseChildNodes(tree);
catch

error('Unable to parse XML file %s.',filename);
end

% ----- Subfunction PARSECHILDNODES -----
function children = parseChildNodes(theNode)
% Recurse over node children.
children = [];
if theNode.hasChildNodes

2-4512



xmlread

childNodes = theNode.getChildNodes;
numChildNodes = childNodes.getLength;
allocCell = cell(1, numChildNodes);

children = struct( ...
'Name', allocCell, 'Attributes', allocCell, ...
'Data', allocCell, 'Children', allocCell);

for count = 1:numChildNodes
theChild = childNodes.item(count-1);
children(count) = makeStructFromNode(theChild);

end
end

% ----- Subfunction MAKESTRUCTFROMNODE -----
function nodeStruct = makeStructFromNode(theNode)
% Create structure of node info.

nodeStruct = struct( ...
'Name', char(theNode.getNodeName), ...
'Attributes', parseAttributes(theNode), ...
'Data', '', ...
'Children', parseChildNodes(theNode));

if any(strcmp(methods(theNode), 'getData'))
nodeStruct.Data = char(theNode.getData);

else
nodeStruct.Data = '';

end

% ----- Subfunction PARSEATTRIBUTES -----
function attributes = parseAttributes(theNode)
% Create attributes structure.

attributes = [];
if theNode.hasAttributes

theAttributes = theNode.getAttributes;

2-4513



xmlread

numAttributes = theAttributes.getLength;
allocCell = cell(1, numAttributes);
attributes = struct('Name', allocCell, 'Value', ...

allocCell);

for count = 1:numAttributes
attrib = theAttributes.item(count-1);
attributes(count).Name = char(attrib.getName);
attributes(count).Value = char(attrib.getValue);

end
end

See Also xmlwrite, xslt

2-4514



xmlwrite

Purpose Serialize XML Document Object Model node

Syntax xmlwrite(filename, DOMnode)
str = xmlwrite(DOMnode)

Description xmlwrite(filename, DOMnode) serializes the Document Object Model
node DOMnode to the file specified by filename. The filename input is a
string enclosed in single quotes.

str = xmlwrite(DOMnode) serializes the Document Object Model node
DOMnode and returns the node tree as a string, str.

Remarks Find out more about the Document Object Model at the World Wide
Web Consortium (W3C) Web site, http://www.w3.org/DOM/.

Example % Create a sample XML document.

docNode = com.mathworks.xml.XMLUtils.createDocument...

('root_element')

docRootNode = docNode.getDocumentElement;

for i=1:20

thisElement = docNode.createElement('child_node');

thisElement.appendChild...

(docNode.createTextNode(sprintf('%i',i)));

docRootNode.appendChild(thisElement);

end

docNode.appendChild(docNode.createComment('this is a comment'));

% Save the sample XML document.

xmlFileName = [tempname,'.xml'];

xmlwrite(xmlFileName,docNode);

edit(xmlFileName);

See Also xmlread, xslt

2-4515

http://www.w3.org/DOM/


xor

Purpose Logical exclusive-OR

Syntax C = xor(A, B)

Description C = xor(A, B) performs an exclusive OR operation on the
corresponding elements of arrays A and B. The resulting element
C(i,j,...) is logical true (1) if A(i,j,...) or B(i,j,...), but not
both, is nonzero.

A B C

Zero Zero 0

Zero Nonzero 1

Nonzero Zero 1

Nonzero Nonzero 0

Examples Given A = [0 0 pi eps] and B = [0 -2.4 0 1], then

C = xor(A,B)
C =

0 1 1 0

To see where either A or B has a nonzero element and the other matrix
does not,

spy(xor(A,B))

See Also all, any, find, Elementwise Logical Operators, Short-Circuit Logical
Operators

2-4516



xslt

Purpose Transform XML document using XSLT engine

Syntax result = xslt(source, style, dest)
[result,style] = xslt(...)
xslt(...,'-web')

Description result = xslt(source, style, dest) transforms an XML document
using a stylesheet and returns the resulting document’s URL. The
function uses these inputs, the first of which is required:

• source is the filename or URL of the source XML file. source can
also specify a DOM node.

• style is the filename or URL of an XSL stylesheet.

• dest is the filename or URL of the desired output document. If
dest is absent or empty, the function uses a temporary filename. If
dest is '-tostring', the function returns the output document as
a MATLAB string.

[result,style] = xslt(...) returns a processed stylesheet
appropriate for passing to subsequent XSLT calls as style. This
prevents costly repeated processing of the stylesheet.

xslt(...,'-web') displays the resulting document in the Help
Browser.

Remarks MATLAB uses the Saxon XSLT processor, version 6.5.5, which
supports XSLT 1.0 expressions. For more information, see
http://saxon.sourceforge.net/saxon6.5.5/

For additional information on writing XSL stylesheets,
see the World Wide Web Consortium (W3C) web site,
http://www.w3.org/Style/XSL/.

Example This example converts the file info.xml using the stylesheet info.xsl,
writing the output to the file info.html. It launches the resulting

2-4517

http://saxon.sourceforge.net/saxon6.5.5/index.html
http://www.w3.org/Style/XSL/


xslt

HTML file in the Help Browser. MATLAB has several info.xml files
that are used by the Start menu.

xslt info.xml info.xsl info.html -web

See Also xmlread, xmlwrite

2-4518



zeros

Purpose Create array of all zeros

Syntax B = zeros(n)
B = zeros(m,n)
B = zeros([m n])
B = zeros(m,n,p,...)
B = zeros([m n p ...])
B = zeros(size(A))
zeros(m, n,...,classname)
zeros([m,n,...],classname)

Description B = zeros(n) returns an n-by-n matrix of zeros. An error message
appears if n is not a scalar.

B = zeros(m,n) or B = zeros([m n]) returns an m-by-n matrix of
zeros.

B = zeros(m,n,p,...) or B = zeros([m n p ...]) returns an
m-by-n-by-p-by-... array of zeros.

Note The size inputs m, n, p, ... should be nonnegative integers.
Negative integers are treated as 0. If any trailing dimensions are 0,
output B does not include those dimensions.

B = zeros(size(A)) returns an array the same size as A consisting
of all zeros.

zeros(m, n,...,classname) or zeros([m,n,...],classname) is an
m-by-n-by-... array of zeros of data type classname. classname is a
string specifying the data type of the output. classname can have the
following values: 'double', 'single', 'int8', 'uint8', 'int16',
'uint16', 'int32', 'uint32', 'int64', or 'uint64'.

Example x = zeros(2,3,'int8');

2-4519



zeros

Remarks The MATLAB language does not have a dimension statement; MATLAB
automatically allocates storage for matrices. Nevertheless, for large
matrices, MATLAB programs may execute faster if the zeros function
is used to set aside storage for a matrix whose elements are to be
generated one at a time, or a row or column at a time. For example

x = zeros(1,n);
for i = 1:n, x(i) = i; end

See Also eye, ones, rand, randn, complex

2-4520



zip

Purpose Compress files into zip file

Syntax zip(zipfile,files)
zip(zipfile,files,rootfolder)
entrynames = zip(...)

Description zip(zipfile,files) creates a zip file with the name zipfile from the
list of files and folders specified in files. Folders recursively include
all of their content. If files includes relative paths, the zip file also
contains relative paths. The zip file does not include absolute paths.

zipfile is a string specifying the name of the zip file. If zipfile has
no extension, MATLAB appends the .zip extension.

files is a string or cell array of strings containing the list of files or
folders included in zipfile.

Individual files that are on the MATLAB path can be specified as partial
path names. Otherwise an individual file can be specified relative to the
current folder or with an absolute path.

Folders must be specified relative to the current folder or with absolute
paths. On UNIX systems, folders can also start with ~/ or ~username/,
which expands to the current user’s home folder or the specified user’s
home folder, respectively. The wildcard character * can be used when
specifying files or folders, except when relying on the MATLAB path to
resolve a file name or partial path name.

zip(zipfile,files,rootfolder) specifies the path for files relative
to rootfolder instead of the current folder. Relative paths in the
zip file reflect the relative paths in files, and do not include path
information from rootfolder.

entrynames = zip(...) returns a string cell array of the names of the
files contained in zipfile. If files includes relative paths, entrynames
also contains relative paths.

2-4521



zip

Examples Zip a File

Create a zip file of the file membrane.m, which is in the MATLAB demos
folder. Save the zip file in tmwlogo.zip in the current folder.

file = fullfile(matlabroot,'toolbox','matlab','demos','membrane.m');
zip('tmwlogo',file);

Run zip for the files membrane.m and logo.m and save the zip file,
tmwlogo.zip, in the specified folder. The source files are on the
MATLAB search path.

myfile = fullfile('d:','myfiles','tmwlogo.zip');
zip(myfile,{'membrane.m','logo.m'});

Zip Selected Files

Run zip for all .m and .mat files in the current folder to the file
backup.zip:

zip('backup',{'*.m','*.mat'});

Zip a Folder

Run zip for the folder mywork, which is a subfolder of the current
folder. The zip file myfiles.zip recursively includes the contents of all
subfolders of mywork, and stores the relative paths.

zip('myfiles.zip','mywork');

Zip Between Folders

Run zip for the files thesis.doc and defense.ppt, which are located
in d:/PhD, to the zip file thesis.zip in the folder one level up from the
current folder.

zip('../thesis.zip',{'thesis.doc','defense.ppt'},'d:/PhD');

2-4522



zip

See Also gzip, gunzip, tar, untar, unzip

2-4523



zoom

Purpose Turn zooming on or off or magnify by factor

GUI
Alternatives

Use the Zoom tools on the figure toolbar to zoom in or zoom
out on a plot, or select Zoom In or Zoom Out from the figure’s Tools
menu. For details, see “Enlarging the View” in the MATLAB Graphics
documentation.

Syntax zoom on
zoom off
zoom out
zoom reset
zoom
zoom xon
zoom yon
zoom(factor)
zoom(fig, option)
h = zoom(figure_handle)

Description zoom on turns on interactive zooming. When interactive zooming is
enabled in a figure, pressing a mouse button while your cursor is within
an axes zooms into the point or out from the point beneath the mouse.
Zooming changes the axes limits. When using zoom mode, you

• Zoom in by positioning the mouse cursor where you want the center
of the plot to be and either

- Press the mouse button or

- Rotate the mouse scroll wheel away from you (upward).

• Zoom out by positioning the mouse cursor where you want the center
of the plot to be and either

- Simultaneously press Shift and the mouse button, or

- Rotate the mouse scroll wheel toward you (downward).

Each mouse click or scroll wheel click zooms in or out by a factor of 2.

2-4524



zoom

Clicking and dragging over an axes when zooming in is enabled draws a
rubberband box. When you release the mouse button, the axes zoom in
to the region enclosed by the rubberband box.

Double-clicking over an axes returns the axes to its initial zoom setting
in both zoom-in and zoom-out modes.

zoom off turns interactive zooming off.

zoom out returns the plot to its initial zoom setting.

zoom reset remembers the current zoom setting as the initial zoom
setting. Later calls to zoom out, or double-clicks when interactive zoom
mode is enabled, will return to this zoom level.

zoom toggles the interactive zoom status between off and on (restoring
the most recently used zoom tool).

zoom xon and zoom yon set zoom on for the x- and y-axis, respectively.

zoom(factor) zooms in or out by the specified zoom factor, without
affecting the interactive zoom mode. Values greater than 1 zoom in by
that amount, while numbers greater than 0 and less than 1 zoom out
by 1/factor.

zoom(fig, option) Any of the preceding options can be specified on a
figure other than the current figure using this syntax.

h = zoom(figure_handle) returns a zoom mode object for the figure
figure_handle for you to customize the mode’s behavior.

Using Zoom Mode Objects

Access the following properties of zoom mode objects via get and modify
some of them using set.

• Enable 'on'|'off' — Specifies whether this figure mode is
currently enabled on the figure

• FigureHandle <handle>— The associated figure handle, a read-only
property that cannot be set

2-4525



zoom

• Motion 'horizontal'|'vertical'|'both'— The type of zooming
enabled for the figure

• Direction 'in'|'out'— The direction of the zoom operation

• RightClickAction 'InverseZoom'|'PostContextMenu' — The
behavior of a right-click action

A value of 'InverseZoom' causes a right-click to zoom out. A value of
'PostContextMenu' displays a context menu. This setting persists
between MATLAB sessions.

• UIContextMenu <handle>— Specifies a custom context menu to be
displayed during a right-click action

This property is ignored if the RightClickAction property has been
set to 'on'.

Zoom Mode Callbacks

You can program the following callbacks for zoom mode operations.

• ButtonDownFilter <function_handle> — Function to intercept
ButtonDown events

The application can inhibit the zoom operation under circumstances
the programmer defines, depending on what the callback returns.
The input function handle should reference a function with two
implicit arguments (similar to Handle Graphics object callbacks),
as follows:

function [res] = myfunction(obj,event_obj)
% obj handle to the object that has been clicked on
% event_obj struct for event data (empty in this release)
% res [output] a logical flag to determine whether the zoom
% operation should take place or the 'ButtonDownFcn'
% property of the object should take precedence

• ActionPreCallback <function_handle> — Function to execute
before zooming

2-4526



zoom

Set this callback if you want to execute code when a zoom operation
starts. The input function handle should reference a function with
two implicit arguments (similar to Handle Graphics object callbacks),
as follows:

function myfunction(obj,event_obj)
% obj handle to the figure that has been clicked on.
% event_obj object containing struct of event data

The event data has the following field.

Axes The handle of the axes that is
being zoomed

• ActionPostCallback <function_handle> — Function to execute
after zooming

Set this callback if you want to execute code when a zoom operation
finishes. The input function handle should reference a function with
two implicit arguments (similar to Handle Graphics object callbacks),
as follows:

function myfunction(obj,event_obj)
% obj handle to the figure that has been clicked on
% event_obj object containing struct of event data (same as the
% event data of the 'ActionPreCallback' callback)

Zoom Mode Utility Functions

The following functions in zoom mode query and set certain of its
properties.

• flags = isAllowAxesZoom(h,axes) — Function querying
permission to zoom axes

Calling the function isAllowAxesZoom on the zoom object, h, with a
vector of axes handles, axes, as input returns a logical array of the

2-4527



zoom

same dimension as the axes handle vector, which indicates whether a
zoom operation is permitted on the axes objects.

• setAllowAxesZoom(h,axes,flag) — Function to set permission to
zoom axes

Calling the function setAllowAxesZoom on the zoom object, h, with a
vector of axes handles, axes, and a logical scalar, flag, either allows
or disallows a zoom operation on the axes objects.

• info = getAxesZoomMotion(h,axes) — Function to get style of
zoom operations

Calling the function getAxesZoomMotion on the zoom object, H, with
a vector of axes handles, axes, as input returns a character cell array
of the same dimension as the axes handle vector, which indicates the
type of zoom operation for each axes. Possible values for the type of
operation are 'horizontal', 'vertical', or 'both'.

• setAxesZoomMotion(h,axes,style)— Function to set style of zoom
operations

Calling the function setAxesZoomMotion on the zoom object, h, with
a vector of axes handles, axes, and a character array, style, ses
the style of zooming on each axes.

Examples Example 1 — Entering Zoom Mode

Plot a graph and turn on Zoom mode:

plot(1:10);
zoom on
% zoom in on the plot

Example 2 — Constrained Zoom

Create zoom mode object and constrain to x-axis zooming:

plot(1:10);
h = zoom;

set(h,'Motion','horizontal','Enable','on');

2-4528



zoom

% zoom in on the plot in the horizontal direction.

Example 3 — Constrained Zoom in Subplots

Create four axes as subplots and set zoom style differently for each by
setting a different property for each axes handle:

ax1 = subplot(2,2,1);
plot(1:10);
h = zoom;
ax2 = subplot(2,2,2);
plot(rand(3));
setAllowAxesZoom(h,ax2,false);
ax3 = subplot(2,2,3);
plot(peaks);
setAxesZoomMotion(h,ax3,'horizontal');
ax4 = subplot(2,2,4);
contour(peaks);
setAxesZoomMotion(h,ax4,'vertical');
% Zoom in on the plots.

Example 4 — Coding a ButtonDown Callback

Create a buttonDown callback for zoom mode objects to trigger. Copy
the following code to a new file, execute it, and observe zooming
behavior:

function demo
% Allow a line to have its own 'ButtonDownFcn' callback.
hLine = plot(rand(1,10));
set(hLine,'ButtonDownFcn','disp(''This executes'')');
set(hLine,'Tag','DoNotIgnore');
h = zoom;
set(h,'ButtonDownFilter',@mycallback);
set(h,'Enable','on');
% mouse click on the line
%

2-4529



zoom

function [flag] = mycallback(obj,event_obj)
% If the tag of the object is 'DoNotIgnore', then return true.
objTag = get(obj,'Tag');
if strcmpi(objTag,'DoNotIgnore')

flag = true;
else

flag = false;
end

Example 5 — Coding Pre- and Post-Callback Behavior

Create callbacks for pre- and post-buttonDown events for zoom mode
objects to trigger. Copy the following code to a new file, execute it, and
observe zoom behavior:

function demo
% Listen to zoom events
plot(1:10);
h = zoom;
set(h,'ActionPreCallback',@myprecallback);
set(h,'ActionPostCallback',@mypostcallback);
set(h,'Enable','on');
%
function myprecallback(obj,evd)
disp('A zoom is about to occur.');
%
function mypostcallback(obj,evd)
newLim = get(evd.Axes,'XLim');
msgbox(sprintf('The new X-Limits are [%.2f %.2f].',newLim));

Example 6 — Creating a Context Menu for Zoom Mode

Coding a context menu that lets the user to switch to Pan mode by
right-clicking:

figure;plot(magic(10))
hCMZ = uicontextmenu;

2-4530



zoom

hZMenu = uimenu('Parent',hCMZ,'Label','Switch to pan','Callback','p
hZoom = zoom(gcf);
set(hZoom,'UIContextMenu',hCMZ);
zoom('on')

You cannot add items to the built-in zoom context menu, but you can
replace it with your own.

Remarks zoom changes the axes limits by a factor of 2 (in or out) each time you
press the mouse button while the cursor is within an axes. You can
also click and drag the mouse to define a zoom area, or double-click
to return to the initial zoom level.

You can create a zoom mode object once and use it to customize the
behavior of different axes, as Example 3 illustrates. You can also
change its callback functions on the fly.

Note Do not change figure callbacks within an interactive
mode. While a mode is active (when panning, zooming, etc.), you will
receive a warning if you attempt to change any of the figure’s callbacks
and the operation will not succeed. The one exception to this rule is the
figure WindowButtonMotionFcn callback, which can be changed from
within a mode. Therefore, if you are creating a GUI that updates a
figure’s callbacks, the GUI should some keep track of which interactive
mode is active, if any, before attempting to do this.

When you assign different zoom behaviors to different subplot axes
via a mode object and then link them using the linkaxes function,
the behavior of the axes you manipulate with the mouse carries over
to the linked axes, regardless of the behavior you previously set for
the other axes.

See Also linkaxes, pan, rotate3d

“Object Manipulation” on page 1-110 for related functions

2-4531

../ref/figure_props.html#WindowButtonMotionFcn


zoom

2-4532



Index

IndexSymbols and Numerics
’ 2-44
& 2-56 2-63
* 2-44
+ 2-44
- 2-44
/ 2-44
: 2-70
< 2-54
> 2-54
@ 2-1618
\ 2-44
^ 2-44
| 2-56 2-63
~ 2-56 2-63
&& 2-63
== 2-54
]) 2-68
|| 2-63
~= 2-54
1-norm 2-2769 2-3238
2-norm (estimate of) 2-2771

A
abs 2-73
absolute accuracy

BVP 2-473
DDE 2-1083
ODE 2-2820

absolute value 2-73
Accelerator

Uimenu property 2-4164
accumarray 2-74
accuracy

of linear equation solution 2-869
of matrix inversion 2-869

acos 2-81
acosd 2-83
acosh 2-84

acot 2-86
acotd 2-88
acoth 2-89
acsc 2-91
acscd 2-93
acsch 2-94
activelegend 2-3028
actxcontrol 2-96
actxserver 2-107
Adams-Bashforth-Moulton ODE solver 2-2809
addCause, MException method 2-111
addevent 2-114
addframe

AVI files 2-116
addition (arithmetic operator) 2-44
addlistener 2-118
addOptional method

of inputParser object 2-120
addParamValue method

of inputParser object 2-123
addpath 2-126
addpref function 2-128
addprop dynamicprops method 2-129
addRequired method

of inputParser object 2-132
addressing selected array elements 2-70
addsample 2-135
addsampletocollection 2-137
addtodate 2-139
addts 2-141
adjacency graph 2-1189
airy 2-143
Airy functions

relationship to modified Bessel
functions 2-143

align function 2-145
aligning scattered data

multi-dimensional 2-2682
ALim, Axes property 2-293
all 2-151

Index-1



Index

allchild function 2-153
allocation of storage (automatic) 2-4520
AlphaData

image property 2-1959
surface property 2-3816
surfaceplot property 2-3839

AlphaDataMapping
image property 2-1960
patch property 2-2921
surface property 2-3817
surfaceplot property 2-3839

AmbientLightColor, Axes property 2-294
AmbientStrength

Patch property 2-2922
Surface property 2-3817
surfaceplot property 2-3840

amd 2-161
analytical partial derivatives (BVP) 2-474
analyzer

code 2-2604
and 2-166
and (function equivalent for &) 2-60
AND, logical

bit-wise 2-419
angle 2-168
annotating graphs

in plot edit mode 2-3029
Annotation

areaseries property 2-221
contourgroup property 2-894
errorbarseries property 2-1263
hggroup property 2-1864
hgtransform property 2-1893
image property 2-1960
line property 2-352 2-2313
lineseries property 2-2328
Patch property 2-2922
quivergroup property 2-3186
rectangle property 2-3264
scattergroup property 2-3429

stairseries property 2-3626
stemseries property 2-3660
Surface property 2-3818
surfaceplot property 2-3840
text property 2-3923

annotation function 2-169
ans 2-211
anti-diagonal 2-1811
any 2-212
arccosecant 2-91
arccosine 2-81
arccotangent 2-86
arcsecant 2-244
arctangent 2-259

four-quadrant 2-261
arguments

checking number of inputs 2-2673
checking number of outputs 2-2677
number of output 2-2675
passing variable numbers of 2-4362

arguments, function
number of input 2-2675

arithmetic operations, matrix and array
distinguished 2-44

arithmetic operators
reference 2-44

array
addressing selected elements of 2-70
dimension

rearrange 2-1527
displaying 2-1166
flip dimension of 2-1527
left division (arithmetic operator) 2-46
maximum elements of 2-2491
mean elements of 2-2497
median elements of 2-2500
minimum elements of 2-2576
multiplication (arithmetic operator) 2-45
of all ones 2-2841
of all zeros 2-4519

Index-2



Index

power (arithmetic operator) 2-46
product of elements 2-3103
rearrange

dimension 2-1527
removing first n singleton dimensions

of 2-3513
removing singleton dimensions of 2-3613
reshaping 2-3339
reverse dimension of 2-1527
right division (arithmetic operator) 2-45
shift circularly 2-774
shifting dimensions of 2-3513
size of 2-3527
sorting elements of 2-3548
structure 2-1724 2-3368 2-3496
sum of elements 2-3795
swapping dimensions of 2-2117 2-2995
transpose (arithmetic operator) 2-46

arrayfun 2-237
arrays

detecting empty 2-2133
maximum size of 2-867

arrays, structure
field names of 2-1403

arrowhead matrix 2-850
ASCII

delimited files
writing 2-1184

ASCII data
converting sparse matrix after loading

from 2-3562
reading 2-1180
reading from disk 2-2379
saving to disk 2-3404

ascii function 2-243
asec 2-244
asecd 2-246
asech 2-247
asinh 2-253
aspect ratio of axes 2-998 2-2957

assert 2-255
assignin 2-257
atan 2-259
atan2 2-261
atand 2-263
atanh 2-264
.au files

reading 2-279
writing 2-281

audio
saving in AVI format 2-282
signal conversion 2-2306 2-2656

audiodevinfo 2-266
audioplayer 2-268
audiorecorder 2-273
aufinfo 2-278
auread 2-279
AutoScale

quivergroup property 2-3187
AutoScaleFactor

quivergroup property 2-3187
autoselection of OpenGL 2-1441
auwrite 2-281
average of array elements 2-2497
average,running 2-1490
avi 2-282
avifile 2-282
aviinfo 2-285
aviread 2-287
axes 2-288

editing 2-3029
setting and querying data aspect ratio 2-998
setting and querying limits 2-4490
setting and querying plot box aspect

ratio 2-2957
Axes

creating 2-288
defining default properties 2-289
fixed-width font 2-310
property descriptions 2-293

Index-3



Index

axis 2-331
axis crossing. See zero of a function
azimuth (spherical coordinates) 2-3578
azimuth of viewpoint 2-4381

B
BackFaceLighting

Surface property 2-3819
surfaceplot property 2-3842

BackFaceLightingpatch property 2-2924
BackgroundColor

annotation textbox property 2-201
Text property 2-3924
Uitable property 2-4241

BackGroundColor
Uicontrol property 2-4116

badly conditioned 2-3238
balance 2-337
BarLayout

barseries property 2-353
BarWidth

barseries property 2-353
base to decimal conversion 2-372
base two operations

conversion from decimal to binary 2-1097
logarithm 2-2400
next power of two 2-2765

base2dec 2-372
BaseLine

barseries property 2-353
stem property 2-3661

BaseValue
areaseries property 2-222
barseries property 2-354
stem property 2-3661

beep 2-373
BeingDeleted

areaseries property 2-222
barseries property 2-354

contour property 2-895
errorbar property 2-1264
group property 2-1408 2-1961 2-3926
hggroup property 2-1865
hgtransform property 2-1894
light property 2-2296
line property 2-2314
lineseries property 2-2329
quivergroup property 2-3187
rectangle property 2-3265
scatter property 2-3430
stairseries property 2-3627
stem property 2-3661
surface property 2-3819
surfaceplot property 2-3842
transform property 2-2924
Uipushtool property 2-4203
Uitable property 2-4242
Uitoggletool property 2-4272
Uitoolbar property 2-4285

bench 2-374
benchmark 2-374
Bessel functions

first kind 2-383
modified, first kind 2-380
modified, second kind 2-386
second kind 2-389

Bessel functions, modified
relationship to Airy functions 2-143

besseli 2-380
besselj 2-383
besselk 2-386
Bessel’s equation

(defined) 2-383
modified (defined) 2-380

bessely 2-389
beta 2-392
beta function

(defined) 2-392
incomplete (defined) 2-394

Index-4



Index

natural logarithm 2-397
betainc 2-394
betaln 2-397
bicg 2-398
bicgstab 2-407
bicgstabl 2-413
BiConjugate Gradients method 2-398
BiConjugate Gradients Stabilized method 2-407

2-413
bin2dec 2-416
binary data

reading from disk 2-2379
saving to disk 2-3404

binary function 2-417
binary to decimal conversion 2-416
bisection search 2-1642
bit depth

querying 2-1983
bit-wise operations

AND 2-419
get 2-422
OR 2-426
set bit 2-427
shift 2-428
XOR 2-430

bitand 2-419
bitcmp 2-420
bitget 2-422
bitmaps

writing 2-2012
bitmax 2-424
bitor 2-426
bitset 2-427
bitshift 2-428
bitxor 2-430
blanks 2-431

removing trailing 2-1094
blkdiag 2-432
BMP files

writing 2-2012

bold font
TeX characters 2-3949

boundary value problems 2-479
box 2-433
Box, Axes property 2-295
braces, curly (special characters) 2-66
brackets (special characters) 2-66
break 2-434
breakpoints

listing 2-1054
removing 2-1040
resuming execution from 2-1043
setting in code files 2-1058

browser
for help 2-1850

brush 2-437
bsxfun 2-447
bubble plot (scatter function) 2-3424
Buckminster Fuller 2-3893
builtin 2-450
BusyAction

areaseries property 2-222
Axes property 2-295
barseries property 2-354
contour property 2-895
errorbar property 2-1265
Figure property 2-1409
hggroup property 2-1866
hgtransform property 2-1895
Image property 2-1962
Light property 2-2297
line property 2-2315
Line property 2-2329
patch property 2-2925
quivergroup property 2-3188
rectangle property 2-3266
Root property 2-3372
scatter property 2-3431
stairseries property 2-3628
stem property 2-3662

Index-5



Index

Surface property 2-3819
surfaceplot property 2-3842
Text property 2-3926
Uicontextmenu property 2-4101
Uicontrol property 2-4117
Uimenu property 2-4165
Uipushtool property 2-4204
Uitable property 2-4242
Uitoggletool property 2-4273
Uitoolbar property 2-4285

ButtonDownFcn
area series property 2-223
Axes property 2-296
barseries property 2-355
contour property 2-896
errorbar property 2-1265
Figure property 2-1409
hggroup property 2-1866
hgtransform property 2-1895
Image property 2-1962
Light property 2-2297
Line property 2-2315
lineseries property 2-2330
patch property 2-2925
quivergroup property 2-3188
rectangle property 2-3266
Root property 2-3372
scatter property 2-3431
stairseries property 2-3628
stem property 2-3662
Surface property 2-3820
surfaceplot property 2-3843
Text property 2-3927
Uicontrol property 2-4118
Uitable property 2-4243

BVP solver properties
analytical partial derivatives 2-474
error tolerance 2-472
Jacobian matrix 2-474
mesh 2-476

singular BVPs 2-476
solution statistics 2-477
vectorization 2-473

bvp4c 2-451
bvp5c 2-462
bvpget 2-467
bvpinit 2-468
bvpset 2-471
bvpxtend 2-479

C
calendar 2-480
call history 2-3110
CallBack

Uicontextmenu property 2-4102
Uicontrol property 2-4119
Uimenu property 2-4166

CallbackObject, Root property 2-3372
calllib 2-481
callSoapService 2-483
camdolly 2-485
camera

dollying position 2-485
moving camera and target postions 2-485
positioning to view objects 2-491
rotating around camera target 2-493 2-495
rotating around viewing axis 2-501
setting and querying position 2-497
setting and querying projection type 2-499
setting and querying target 2-502
setting and querying up vector 2-504
setting and querying view angle 2-506

CameraPosition, Axes property 2-297
CameraPositionMode, Axes property 2-298
CameraTarget, Axes property 2-298
CameraTargetMode, Axes property 2-298
CameraUpVector, Axes property 2-298
CameraUpVectorMode, Axes property 2-299
CameraViewAngle, Axes property 2-299

Index-6



Index

CameraViewAngleMode, Axes property 2-299
camlookat 2-491
camorbit 2-493
campan 2-495
campos 2-497
camproj 2-499
camroll 2-501
camtarget 2-502
camup 2-504
camva 2-506
camzoom 2-508
cart2pol 2-512
cart2sph 2-514
Cartesian coordinates 2-512 2-514 2-3041 2-3578
case 2-515

in switch statement (defined) 2-3880
lower to upper 2-4325
upper to lower 2-2412

cast 2-517
cat 2-518
catch 2-520
caxis 2-524
Cayley-Hamilton theorem 2-3061
cd 2-529
cd (ftp) function 2-534
CData

Image property 2-1963
scatter property 2-3432
Surface property 2-3821
surfaceplot property 2-3844
Uicontrol property 2-4119
Uipushtool property 2-4204
Uitoggletool property 2-4273

CDataMapping
Image property 2-1965
patch property 2-2927
Surface property 2-3822
surfaceplot property 2-3844

CDataMode
surfaceplot property 2-3845

CDatapatch property 2-2926
CDataSource

scatter property 2-3432
surfaceplot property 2-3845

cdf2rdf 2-535
cdfepoch 2-537
cdfinfo 2-539
cdflib

summary of capabilities 2-543
cdfread 2-715
cdfwrite 2-719
ceil 2-722
cell 2-723
cell array

conversion to from numeric array 2-2779
creating 2-723
structure of, displaying 2-743

cell2mat 2-725
cell2struct 2-727
celldisp 2-736
CellEditCallback

Uitable property 2-4244
cellfun 2-737
cellplot 2-743
CellSelectionCallback

Uitable property 2-4246
cgs 2-746
char 2-751
characters

conversion, in serial format specification
string 2-1575

check boxes 2-4109
Checked, Uimenu property 2-4166
checkerboard pattern (example) 2-3328
checkin 2-752

examples 2-753
options 2-752

checkout 2-755
examples 2-756
options 2-755

Index-7



Index

child functions 2-3105
Children

areaseries property 2-224
Axes property 2-301
barseries property 2-356
contour property 2-896
errorbar property 2-1266
Figure property 2-1411
hggroup property 2-1867
hgtransform property 2-1896
Image property 2-1966
Light property 2-2297
Line property 2-2316
lineseries property 2-2330
patch property 2-2928
quivergroup property 2-3189
rectangle property 2-3267
Root property 2-3372
scatter property 2-3433
stairseries property 2-3629
stem property 2-3663
Surface property 2-3822
surfaceplot property 2-3846
Text property 2-3928
Uicontextmenu property 2-4102
Uicontrol property 2-4120
Uimenu property 2-4167
Uitable property 2-4246
Uitoolbar property 2-4286

chol 2-758
Cholesky factorization 2-758

(as algorithm for solving linear
equations) 2-2600

lower triangular factor 2-2900
preordering for 2-850

cholinc 2-763
cholupdate 2-771
circle

rectangle function 2-3259
circshift 2-774

cla 2-778
clabel 2-779
class, object. See object classes
classes

field names 2-1403
loaded 2-2044

clc 2-789 2-799 2-3512
clear

serial port I/O 2-798
clearing

Command Window 2-789
items from workspace 2-790
Java import list 2-793

clf 2-799
ClickedCallback

Uipushtool property 2-4205
Uitoggletool property 2-4274

CLim, Axes property 2-301
CLimMode, Axes property 2-302
clipboard 2-800
Clipping

areaseries property 2-224
Axes property 2-302
barseries property 2-356
contour property 2-897
errrobar property 2-1266
Figure property 2-1411
hggroup property 2-1867
hgtransform property 2-1896
Image property 2-1966
Light property 2-2297
Line property 2-2317
lineseries property 2-2331
quivergroup property 2-3189
rectangle property 2-3267
Root property 2-3373
scatter property 2-3433
stairseries property 2-3629
stem property 2-3663
Surface property 2-3823

Index-8



Index

surfaceplot property 2-3846
Text property 2-3928
Uicontrol property 2-4120
Uitable property 2-4246

Clippingpatch property 2-2928
clock 2-801
close 2-802

AVI files 2-805
close (ftp) function 2-806
CloseRequestFcn, Figure property 2-1411
closest point search 2-1205
closest triangle search 2-4062
closing

MATLAB 2-3177
cmapeditor 2-830
cmpermute 2-810
cmunique 2-811
code

analyzer 2-2604
Code Analyzer

function 2-2604
function for entire folder 2-2614
HTML report 2-2614

code files
setting breakpoints 2-1058

colamd 2-814
colon operator 2-70
color

quantization performed by rgb2ind 2-3356
Color

annotation arrow property 2-173
annotation doublearrow property 2-177
annotation line property 2-185
annotation textbox property 2-201
Axes property 2-302
errorbar property 2-1266
Figure property 2-1414
Light property 2-2297
Line property 2-2317
lineseries property 2-2331

quivergroup property 2-3190
stairseries property 2-3630
stem property 2-3664
Text property 2-3928
textarrow property 2-191

color approximation
performed by rgb2ind 2-3356

color of fonts, see also FontColor property 2-3949
colorbar 2-818
colormap 2-825

editor 2-830
Colormap, Figure property 2-1414
colormaps

converting from RGB to HSV 2-3354
plotting RGB components 2-3358
rearranging colors in 2-810
removing duplicate entries in 2-811

ColorOrder, Axes property 2-302
ColorSpec 2-848
colperm 2-850
ColumnEditable

Uitable property 2-4247
ColumnFormat

Uitable property 2-4247
ColumnName

Uitable property 2-4253
ColumnWidth

Uitable property 2-4253
COM

object methods
actxcontrol 2-96
actxserver 2-107
delete 2-1125
events 2-1302
get 2-1696
inspect 2-2060
load 2-2384
move 2-2633
propedit 2-3114
save 2-3411

Index-9



Index

set 2-3475
server methods

Execute 2-1304
Feval 2-1374

combinations of n elements 2-2681
combs 2-2681
comet 2-852
comet3 2-854
comma (special characters) 2-67
command syntax 2-3898
Command Window

clearing 2-789
cursor position 2-1916
get width 2-857

commandhistory 2-856
commands

help for 2-1846 2-1854
system 2-3901
UNIX 2-4301

commandwindow 2-857
comments

block of 2-68
common elements. See set operations,

intersection
compan 2-858
companion matrix 2-858
compass 2-859
CompilerConfiguration 2-2561
CompilerConfigurationDetails 2-2561
complementary error function

(defined) 2-1252
scaled (defined) 2-1252

complete elliptic integral
(defined) 2-1233
modulus of 2-1231 2-1233

complex 2-862 2-1950
exponential (defined) 2-1312
logarithm 2-2397 to 2-2398
numbers 2-1925
numbers, sorting 2-3548 2-3552

phase angle 2-168
See also imaginary

complex conjugate 2-879
sorting pairs of 2-954

complex data
creating 2-862

complex numbers, magnitude 2-73
complex Schur form 2-3448
compression

lossy 2-2017
computer 2-867
computer MATLAB is running on 2-867
concatenation

of arrays 2-518
cond 2-869
condeig 2-870
condest 2-871
condition number of matrix 2-869 2-3238

improving 2-337
coneplot 2-873
conj 2-879
conjugate, complex 2-879

sorting pairs of 2-954
connecting to FTP server 2-1608
containers

Map 2-2157 2-2237 2-2277 2-2450 2-3323
2-3530 2-4355

context menu 2-4097
continuation (..., special characters) 2-67
continue 2-880
continued fraction expansion 2-3232
contour

and mesh plot 2-1332
filled plot 2-1324
functions 2-1320
of mathematical expression 2-1321
with surface plot 2-1353

contour3 2-885
contourc 2-889
contourf 2-891

Index-10



Index

ContourMatrix
contour property 2-897

contours
in slice planes 2-915

contourslice 2-915
contrast 2-919
conv 2-920
conv2 2-922
conversion

base to decimal 2-372
binary to decimal 2-416
Cartesian to cylindrical 2-512
Cartesian to polar 2-512
complex diagonal to real block diagonal 2-535
cylindrical to Cartesian 2-3041
decimal number to base 2-1091 2-1096
decimal to binary 2-1097
decimal to hexadecimal 2-1098
full to sparse 2-3559
hexadecimal to decimal 2-1858
integer to string 2-2074
lowercase to uppercase 2-4325
matrix to string 2-2461
numeric array to cell array 2-2779
numeric array to logical array 2-2401
numeric array to string 2-2783
partial fraction expansion to

pole-residue 2-3341
polar to Cartesian 2-3041
pole-residue to partial fraction

expansion 2-3341
real to complex Schur form 2-3401
spherical to Cartesian 2-3578
string matrix to cell array 2-745
string to numeric array 2-3687
uppercase to lowercase 2-2412
vector to character string 2-751

conversion characters in serial format
specification string 2-1575

convex hulls

multidimensional vizualization 2-930
two-dimensional visualization 2-928

convhull 2-928
convhulln 2-930
convn 2-932
convolution 2-920

inverse. See deconvolution
two-dimensional 2-922

coordinate system and viewpoint 2-4382
coordinates

Cartesian 2-512 2-514 2-3041 2-3578
cylindrical 2-512 2-514 2-3041
polar 2-512 2-514 2-3041
spherical 2-3578

coordinates. 2-512
See also conversion

copyfile 2-933
copying

files and folders 2-933
copyobj 2-937
corrcoef 2-939
cosecant

hyperbolic 2-970
inverse 2-91
inverse hyperbolic 2-94

cosh 2-945
cosine

hyperbolic 2-945
inverse 2-81
inverse hyperbolic 2-84

cot 2-947
cotangent 2-947

hyperbolic 2-950
inverse 2-86
inverse hyperbolic 2-89

cotd 2-949
coth 2-950
cov 2-952
cplxpair 2-954
cputime 2-955

Index-11



Index

create, RandStream method 2-956
createCopy method

of inputParser object 2-960
CreateFcn

areaseries property 2-224
Axes property 2-303
barseries property 2-356
contour property 2-898
errorbar property 2-1267
Figure property 2-1414
group property 2-1896
hggroup property 2-1867
Image property 2-1966
Light property 2-2298
Line property 2-2317
lineseries property 2-2331
patch property 2-2928
quivergroup property 2-3190
rectangle property 2-3268
Root property 2-3373
scatter property 2-3433
stairseries property 2-3630
stemseries property 2-3664
Surface property 2-3823
surfaceplot property 2-3846
Text property 2-3928
Uicontextmenu property 2-4102
Uicontrol property 2-4120
Uimenu property 2-4167
Uipushtool property 2-4205
Uitable property 2-4254
Uitoggletool property 2-4274
Uitoolbar property 2-4286

createSoapMessage 2-964
creating your own MATLAB functions 2-1615
cross 2-966
cross product 2-966
csc 2-967
cscd 2-969

csch 2-970
csvread 2-972
csvwrite 2-975
ctranspose (function equivalent for \q) 2-50
ctranspose (timeseries) 2-977
cubic interpolation 2-2090 2-2093 2-2096 2-2967

piecewise Hermite 2-2080
cubic spline interpolation

one-dimensional 2-2080 2-2090 2-2093
2-2096

cumprod 2-979
cumsum 2-981
cumtrapz 2-983
cumulative

product 2-979
sum 2-981

curl 2-985
curly braces (special characters) 2-66
current folder 2-529

changing 2-529
See also search path

CurrentAxes 2-1415
CurrentAxes, Figure property 2-1415
CurrentCharacter, Figure property 2-1416
CurrentFigure, Root property 2-3373
CurrentObject, Figure property 2-1416
CurrentPoint

Axes property 2-304
Figure property 2-1417

cursor images
reading 2-1998

cursor position 2-1916
Curvature, rectangle property 2-3269
curve fitting (polynomial) 2-3053
customverctrl 2-989
Cuthill-McKee ordering, reverse 2-3883 2-3893
cylinder 2-990
cylindrical coordinates 2-512 2-514 2-3041

Index-12



Index

D
daqread 2-993
daspect 2-998
data

ASCII
reading from disk 2-2379

ASCII, saving to disk 2-3404
binary, saving to disk 2-3404
computing 2-D stream lines 2-3697
computing 3-D stream lines 2-3699
formatted

reading from files 2-1596
isosurface from volume data 2-2181
reading binary from disk 2-2379
reading from files 2-3954
reducing number of elements in 2-3284
smoothing 3-D 2-3542

Data
Uitable property 2-4255

data aspect ratio of axes 2-998
data brushing

different plot types 2-438
gestures for 2-443
restrictions on 2-440

data types
complex 2-862

data, aligning scattered
multi-dimensional 2-2682

data, ASCII
converting sparse matrix after loading

from 2-3562
DataAspectRatio, Axes property 2-306
DataAspectRatioMode, Axes property 2-308
datatipinfo 2-1012
date 2-1013
date and time functions 2-1245
date string

format of 2-1018
date vector 2-1038
datenum 2-1014

datestr 2-1018
datevec 2-1036
dbclear 2-1040
dbcont 2-1043
dbdown 2-1044
dblquad 2-1045
dbmex 2-1047
dbquit 2-1049
dbstack 2-1051
dbstatus 2-1054
dbstep 2-1056
dbstop 2-1058
dbtype 2-1068
dbup 2-1069
DDE solver properties

error tolerance 2-1082
event location 2-1088
solver output 2-1084
step size 2-1086

dde23 2-1070
ddeget 2-1075
ddephas2 output function 2-1085
ddephas3 output function 2-1085
ddeplot output function 2-1085
ddeprint output function 2-1085
ddesd 2-1076
ddeset 2-1081
deal 2-1091
deblank 2-1094
debugging

changing workspace context 2-1044
changing workspace to calling file 2-1069
displaying function call stack 2-1051
files 2-3105
function 2-2236
MEX-files on UNIX 2-1047
removing breakpoints 2-1040
resuming execution from breakpoint 2-1056
setting breakpoints in 2-1058
stepping through lines 2-1056

Index-13



Index

dec2base 2-1091 2-1096
dec2bin 2-1097
dec2hex 2-1098
decic function 2-1100
decimal number to base conversion 2-1091

2-1096
decimal point (.)

(special characters) 2-67
to distinguish matrix and array

operations 2-44
decomposition

Dulmage-Mendelsohn 2-1188
"economy-size" 2-3872
Schur 2-3448
singular value 2-3231 2-3872

deconv 2-1102
deconvolution 2-1102
definite integral 2-3152
del operator 2-1103
del2 2-1103
Delaunay tessellation

multidimensional vizualization 2-1118
delaunayn 2-1118
delete 2-1123 2-1125

serial port I/O 2-1129
timer object 2-1131

delete (ftp) function 2-1127
delete handle method 2-1128
DeleteFcn

areaseries property 2-225
Axes property 2-309
barseries property 2-357
contour property 2-898
errorbar property 2-1267
Figure property 2-1418
hggroup property 2-1868
hgtransform property 2-1897
Image property 2-1966
Light property 2-2299
lineseries property 2-2332

quivergroup property 2-3190
Root property 2-3373
scatter property 2-3434
stairseries property 2-3630
stem property 2-3665
Surface property 2-3823
surfaceplot property 2-3847
Text property 2-3929 2-3932
Uicontextmenu property 2-4104 2-4121
Uimenu property 2-4169
Uipushtool property 2-4206
Uitable property 2-4256
Uitoggletool property 2-4275
Uitoolbar property 2-4288

DeleteFcn, line property 2-2318
DeleteFcn, rectangle property 2-3269
DeleteFcnpatch property 2-2929
deleting

files 2-1123
items from workspace 2-790

delevent 2-1134
delimiters in ASCII files 2-1180 2-1184
delsample 2-1135
delsamplefromcollection 2-1136
demo 2-1137
demos

in Command Window 2-1209
density

of sparse matrix 2-2766
depdir 2-1140
dependence, linear 2-3787
dependent functions 2-3105
depfun 2-1141
derivative

approximate 2-1157
polynomial 2-3050

desktop
starting without 2-2477

det 2-1145
detecting

Index-14



Index

alphabetic characters 2-2161
empty arrays 2-2133
global variables 2-2148
logical arrays 2-2162
members of a set 2-2164
objects of a given class 2-2123
positive, negative, and zero array

elements 2-3520
sparse matrix 2-2199

determinant of a matrix 2-1145
detrend 2-1146
detrend (timeseries) 2-1148
deval 2-1149
diag 2-1151
diagonal 2-1151

anti- 2-1811
k-th (illustration) 2-4030
main 2-1151
sparse 2-3564

dialog 2-1153
dialog box

error 2-1281
help 2-1852
input 2-2049
list 2-2374
message 2-2649
print 2-3093
question 2-3173
warning 2-4418

diary 2-1155
Diary, Root property 2-3374
DiaryFile, Root property 2-3374
diff 2-1157
differences

between adjacent array elements 2-1157
between sets 2-3491

differential equation solvers
defining an ODE problem 2-2811
ODE boundary value problems 2-451 2-462

adjusting parameters 2-471

extracting properties 2-467
extracting properties of 2-1285 to 2-1286

2-4027 to 2-4028
forming initial guess 2-468

ODE initial value problems 2-2798
adjusting parameters of 2-2818
extracting properties of 2-2817

parabolic-elliptic PDE problems 2-2976
diffuse 2-1159
DiffuseStrength

Surface property 2-3824
surfaceplot property 2-3847

DiffuseStrengthpatch property 2-2929
digamma function 2-3118
dimension statement (lack of in

MATLAB) 2-4520
dimensions

size of 2-3527
Diophantine equations 2-1677
dir 2-1160
dir (ftp) function 2-1164
direct term of a partial fraction expansion 2-3341
directive

%#eml 2-2606
%#ok 2-2607

directories
copying 2-933

directory
changing on FTP server 2-534
listing for FTP server 2-1164
making on FTP server 2-2590

directory, changing 2-529
disconnect 2-806
discontinuities, eliminating (in arrays of phase

angles) 2-4321
discontinuities, plotting functions with 2-1348
discontinuous problems 2-1542
disp 2-1166

memmapfile object 2-1168
serial port I/O 2-1171

Index-15



Index

timer object 2-1172
disp, MException method 2-1169
display 2-1174
display format 2-1554
displaying output in Command Window 2-2631
DisplayName

areaseries property 2-225
barseries property 2-357
contourgroup property 2-899
errorbarseries property 2-1267
hggroup property 2-1868
hgtransform property 2-1898
image property 2-1967
Line property 2-2319
lineseries property 2-2332
Patch property 2-2929
quivergroup property 2-3191
rectangle property 2-3270
scattergroup property 2-3434
stairseries property 2-3631
stemseries property 2-3665
surface property 2-3825
surfaceplot property 2-3848
text property 2-3930

distribution
Gaussian 2-1252

dither 2-1176
division

array, left (arithmetic operator) 2-46
array, right (arithmetic operator) 2-45
by zero 2-2037
matrix, left (arithmetic operator) 2-45
matrix, right (arithmetic operator) 2-45
of polynomials 2-1102

divisor
greatest common 2-1677

dll libraries
MATLAB functions

calllib 2-481
libfunctions 2-2281

libfunctionsview 2-2282
libisloaded 2-2283
libpointer 2-2285
libstruct 2-2287
loadlibrary 2-2388
unloadlibrary 2-4304

dlmread 2-1180
dlmwrite 2-1184
dmperm 2-1188
Dockable, Figure property 2-1419
docsearch 2-1194
documentation

displaying online 2-1850
dolly camera 2-485
dos 2-1196

UNC pathname error 2-1197
dot 2-1198
dot product 2-966 2-1198
dot-parentheses (special characters 2-67
double 2-1199
double click, detecting 2-1444
double integral

numerical evaluation 2-1045
DoubleBuffer, Figure property 2-1419
downloading files from FTP server 2-2575
dragrect 2-1200
drawing shapes

circles and rectangles 2-3259
DrawMode, Axes property 2-309
drawnow 2-1202
dsearchn 2-1205
Dulmage-Mendelsohn decomposition 2-1188
dynamic fields 2-67
dynamicprops class 2-1206
dynamicprops.addprop 2-129

E
echo 2-1207
Echo, Root property 2-3374

Index-16



Index

echodemo 2-1209
echoing

functions 2-1207
edge finding, Sobel technique 2-924
EdgeAlpha

patch property 2-2930
surface property 2-3825
surfaceplot property 2-3848

EdgeColor
annotation ellipse property 2-182
annotation rectangle property 2-188
annotation textbox property 2-201
areaseries property 2-226
barseries property 2-358
patch property 2-2931
Surface property 2-3826
surfaceplot property 2-3849
Text property 2-3931

EdgeColor, rectangle property 2-3271
EdgeLighting

patch property 2-2931
Surface property 2-3827
surfaceplot property 2-3850

editable text 2-4109
editing

files 2-1214
eig 2-1217
eigensystem

transforming 2-535
eigenvalue

accuracy of 2-1217
complex 2-535
matrix logarithm and 2-2406
modern approach to computation of 2-3046
of companion matrix 2-858
problem 2-1218 2-3051
problem, generalized 2-1218 2-3051
problem, polynomial 2-3051
repeated 2-1219
Wilkinson test matrix and 2-4468

eigenvalues
effect of roundoff error 2-337
improving accuracy 2-337

eigenvector
left 2-1218
matrix, generalized 2-3208
right 2-1218

eigs 2-1221
elevation (spherical coordinates) 2-3578
elevation of viewpoint 2-4381
ellipj 2-1231
ellipke 2-1233
ellipsoid 2-1235
elliptic functions, Jacobian

(defined) 2-1231
elliptic integral

complete (defined) 2-1233
modulus of 2-1231 2-1233

else 2-1237
elseif 2-1238
%#eml 2-2606
Enable

Uicontrol property 2-4122
Uimenu property 2-4169
Uipushtool property 2-4207
Uitable property 2-4256
Uitogglehtool property 2-4276

end 2-1243
end caps for isosurfaces 2-2171
end of line, indicating 2-68
eomday 2-1245
eq 2-1249
eq, MException method 2-1251
equal arrays

detecting 2-2136 2-2140
equal sign (special characters) 2-66
equations, linear

accuracy of solution 2-869
EraseMode

areaseries property 2-226

Index-17



Index

barseries property 2-358
contour property 2-900
errorbar property 2-1268
hggroup property 2-1869
hgtransform property 2-1898
Image property 2-1968
Line property 2-2320
lineseries property 2-2333
quivergroup property 2-3192
rectangle property 2-3271
scatter property 2-3435
stairseries property 2-3632
stem property 2-3666
Surface property 2-3827
surfaceplot property 2-3850
Text property 2-3932

EraseModepatch property 2-2932
error 2-1254

roundoff. See roundoff error
error function

complementary 2-1252
(defined) 2-1252
scaled complementary 2-1252

error message
displaying 2-1254
Index into matrix is negative or zero 2-2402
retrieving last generated 2-2243 2-2251

error messages
Out of memory 2-2878

error tolerance
BVP problems 2-472
DDE problems 2-1082
ODE problems 2-2819

errorbars, confidence interval 2-1259
errordlg 2-1281
ErrorMessage, Root property 2-3374
errors

MException class 2-1251
addCause 2-111
constructor 2-2567

disp 2-1169
eq 2-1251
getReport 2-1741
isequal 2-2139
last 2-2240
ne 2-2689
rethrow 2-3348
throw 2-3980
throwAsCaller 2-3984

ErrorType, Root property 2-3375
etime 2-1284
etree 2-1285
etreeplot 2-1286
eval 2-1287
evalc 2-1290
evalin 2-1291
event location (DDE) 2-1088
event location (ODE) 2-2826
event.EventData 2-1293
event.listener 2-1294
event.PropertyEvent 2-1296
event.proplistener 2-1297
events 2-1302
examples

calculating isosurface normals 2-2178
contouring mathematical expressions 2-1321
isosurface end caps 2-2171
isosurfaces 2-2182
mesh plot of mathematical function 2-1330
mesh/contour plot 2-1334
plotting filled contours 2-1325
plotting function of two variables 2-1338
plotting parametric curves 2-1341
polar plot of function 2-1344
reducing number of patch faces 2-3281
reducing volume data 2-3284
subsampling volume data 2-3792
surface plot of mathematical function 2-1348
surface/contour plot 2-1355

Excel spreadsheets

Index-18



Index

loading 2-4495
exclamation point (special characters) 2-68
Execute 2-1304
executing statements repeatedly 2-1552 2-4455
executing statements repeatedly in

parallel 2-2894
execution

improving speed of by setting aside
storage 2-4520

pausing function 2-2955
resuming from breakpoint 2-1043
time for files 2-3105

exifread 2-1306
exist 2-1307
exit 2-1311
expint 2-1313
expm 2-1314
expm1 2-1316
exponential 2-1312

complex (defined) 2-1312
integral 2-1313
matrix 2-1314

exponentiation
array (arithmetic operator) 2-46
matrix (arithmetic operator) 2-46

export2wsdlg 2-1317
extension, filename

.m 2-1615

.mat 2-3404
Extent

Text property 2-3934
Uicontrol property 2-4123
Uitable property 2-4257

ezcontour 2-1320
ezcontourf 2-1324
ezmesh 2-1328
ezmeshc 2-1332
ezplot 2-1336
ezplot3 2-1340
ezpolar 2-1343

ezsurf 2-1346
ezsurfc 2-1353

F
F-norm 2-2769
FaceAlpha

annotation textbox property 2-202
FaceAlphapatch property 2-2933
FaceAlphasurface property 2-3828
FaceAlphasurfaceplot property 2-3851
FaceColor

annotation ellipse property 2-182
annotation rectangle property 2-188
areaseries property 2-228
barseries property 2-360
Surface property 2-3829
surfaceplot property 2-3852

FaceColor, rectangle property 2-3272
FaceColorpatch property 2-2934
FaceLighting

Surface property 2-3829
surfaceplot property 2-3853

FaceLightingpatch property 2-2934
faces, reducing number in patches 2-3280
Faces,patch property 2-2935
FaceVertexAlphaData, patch property 2-2936
FaceVertexCData,patch property 2-2937
factor 2-1360
factorial 2-1361
factorization

LU 2-2430
QZ 2-3052 2-3208

factorization, Cholesky 2-758
(as algorithm for solving linear

equations) 2-2600
preordering for 2-850

factors, prime 2-1360
false 2-1362
fclose

Index-19



Index

serial port I/O 2-1364
feather 2-1366
feval 2-1372
Feval 2-1374
fft 2-1379
FFT. See Fourier transform
fft2 2-1384
fftn 2-1385
fftshift 2-1387
fftw 2-1390
FFTW 2-1382
fgetl

serial port I/O 2-1396
fgets

serial port I/O 2-1400
field names of a structure, obtaining 2-1403
fieldnames 2-1403
fields, of structures

dynamic 2-67
figure 2-1405
Figure

creating 2-1405
defining default properties 2-1407
properties 2-1408
redrawing 2-3287

figure windows
moving in front of MATLAB® desktop 2-3512

figure windows, displaying 2-1503
figurepalette 2-1463
figures

annotating 2-3029
saving 2-3415

Figures
updating from file 2-1202

file
extension, getting 2-1479
modification date 2-1160

file formats
getting list of supported formats 2-1985
reading 2-993 2-1996

writing 2-2010
file name

building from parts 2-1611
file size

querying 2-1983
fileattrib 2-1465
filebrowser 2-1472
filemarker 2-1477
filename

parts 2-1479
temporary 2-3912

filename extension
.m 2-1615
.mat 2-3404

fileparts 2-1479
files

ASCII delimited
reading 2-1180
writing 2-1184

checking existence of 2-1307
checking for problems 2-2604
contents, listing 2-4069
copying 2-933
copying with copyfile 2-933
cyclomatic complexity of 2-2604
debugging with profile 2-3105
deleting 2-1123
deleting on FTP server 2-1127
editing 2-1214
Excel spreadsheets

loading 2-4495
fig 2-3415
figure, saving 2-3415
line numbers, listing 2-1068
lint tool 2-2604
listing 2-1160

in folder 2-4447
listing contents of 2-4069
locating 2-4452
McCabe complexity of 2-2604

Index-20



Index

mdl 2-3415
model, saving 2-3415
opening

in Web browser 2-4440
opening in Windows applications 2-4469
optimizing 2-3105
path, getting 2-1479
pathname for 2-4452
problems, checking for 2-2604
reading

data from 2-3954
formatted 2-1596

reading data from 2-993
reading image data from 2-1996
size, determining 2-1162
sound

reading 2-279 2-4432
writing 2-281 to 2-282 2-4438

startup 2-2469
.wav

reading 2-4432
writing 2-4438

WK1
loading 2-4474
writing to 2-4477

writing image data to 2-2010
filesep 2-1482
fill 2-1483
Fill

contour property 2-901
fill3 2-1486
filter 2-1489

digital 2-1489
finite impulse response (FIR) 2-1489
infinite impulse response (IIR) 2-1489
two-dimensional 2-922

filter (timeseries) 2-1492
filter2 2-1495
find 2-1497
findall function 2-1502

findfigs 2-1503
finding 2-1497

sign of array elements 2-3520
zero of a function 2-1638
See also detecting

findobj 2-1504
findobj handle method 2-1508
findprop handle method 2-1509
findstr 2-1511
finish 2-1512
finish.m 2-3177
FIR filter 2-1489
FitBoxToText, annotation textbox

property 2-202
FitHeightToText

annotation textbox property 2-202
fitsinfo 2-1514
fitsread 2-1523
fix 2-1526
fixed-width font

axes 2-310
text 2-3935
uicontrols 2-4124
uitables 2-4258

FixedColors, Figure property 2-1420
FixedWidthFontName, Root property 2-3374
flints 2-2656
flip

array dimension 2-1527
flip array

along dimension 2-1527
flip matrix

on horizontal axis 2-1529
on vertical axis 2-1528

flipdim 2-1527
fliplr 2-1528
flipud 2-1529
floating-point

integer, maximum 2-424
floating-point arithmetic, IEEE

Index-21



Index

smallest postive number 2-3252
floor 2-1531
flow control

break 2-434
case 2-515
end 2-1243
error 2-1256
for 2-1552
keyboard 2-2236
otherwise 2-2877
parfor 2-2894
return 2-3352
switch 2-3880
while 2-4455

fminbnd 2-1533
fminsearch 2-1538
folder

listing MATLAB files in 2-4447
root 2-2470
temporary

system 2-3911
folders

adding to search path 2-126
checking existence of 2-1307
copying 2-933
creating 2-2587
listing 2-2414
listing contents of 2-1160
removing 2-3364
removing from search path 2-3369

font
fixed-width, axes 2-310
fixed-width, text 2-3935
fixed-width, uicontrols 2-4124
fixed-width, uitables 2-4258

FontAngle
annotation textbox property 2-204
Axes property 2-310
Text property 2-192 2-3934
Uicontrol property 2-4124

Uitable property 2-4258
FontName

annotation textbox property 2-204
Axes property 2-310
Text property 2-3934
textarrow property 2-192
Uicontrol property 2-4124
Uitable property 2-4258

fonts
bold 2-192 2-205 2-3935
italic 2-192 2-204 2-3934
specifying size 2-3935
TeX characters

bold 2-3949
italics 2-3949
specifying family 2-3949
specifying size 2-3949

units 2-192 2-205 2-3935
FontSize

annotation textbox property 2-205
Axes property 2-311
Text property 2-3935
textarrow property 2-192
Uicontrol property 2-4125
Uitable property 2-4259

FontUnits
Axes property 2-311
Text property 2-3935
Uicontrol property 2-4125
Uitable property 2-4259

FontWeight
annotation textbox property 2-205
Axes property 2-311
Text property 2-3935
textarrow property 2-192
Uicontrol property 2-4125
Uitable property 2-4259

fopen
serial port I/O 2-1550

for 2-1552

Index-22



Index

ForegroundColor
Uicontrol property 2-4126
Uimenu property 2-4169
Uitable property 2-4260

format 2-1554
Format 2-3375
FormatSpacing, Root property 2-3376
formatted data

reading from file 2-1596
Fourier transform

algorithm, optimal performance of 2-1382
2-1936 2-1938 2-2765

as method of interpolation 2-2095
discrete, n-dimensional 2-1385
discrete, one-dimensional 2-1379
discrete, two-dimensional 2-1384
fast 2-1379
inverse, n-dimensional 2-1940
inverse, one-dimensional 2-1936
inverse, two-dimensional 2-1938
shifting the zero-frequency component

of 2-1388
fplot 2-1562 2-1579
fprintf

serial port I/O 2-1575
fraction, continued 2-3232
fragmented memory 2-2878
frame2im 2-1579
frames 2-4109
fread

serial port I/O 2-1588
freqspace 2-1594
frequency response

desired response matrix
frequency spacing 2-1594

frequency vector 2-2409
fromName meta.class method 2-2531
fromName meta.package method 2-2542
fscanf

serial port I/O 2-1601

FTP
connecting to server 2-1608

ftp function 2-1608
full 2-1610
fullfile 2-1611
func2str 2-1613
function 2-1615

declaration 2-1615
echoing commands 2-1207
naming conventions 2-1615

function handle 2-1618
function handles

overview of 2-1618
function syntax 2-3898
functions 2-1621

call history 2-3110
call stack for 2-1051
checking existence of 2-1307
clearing from workspace 2-790
debugging 2-2236
finding using keywords 2-2410
help for 2-1846 2-1854
in memory 2-2044
locating 2-4452
locking (preventing clearing) 2-2617
pathname for 2-4452
pausing execution of 2-2955
programming 2-1615
that work down the first non-singleton

dimension 2-3513
unlocking (allowing clearing) 2-2668

funm 2-1625
fwrite

serial port I/O 2-1634
fzero 2-1638

G
gallery 2-1644
gamma function

Index-23



Index

(defined) 2-1671
incomplete 2-1671
logarithm of 2-1671
logarithmic derivative 2-3118

Gauss-Kronrod quadrature 2-3165
Gaussian distribution function 2-1252
Gaussian elimination

(as algorithm for solving linear
equations) 2-2110 2-2601

Gauss Jordan elimination with partial
pivoting 2-3399

LU factorization 2-2430
gca 2-1674
gcbf function 2-1675
gcbo function 2-1676
gcd 2-1677
gcf 2-1679
gco 2-1680
ge 2-1681
generalized eigenvalue problem 2-1218 2-3051
generating a sequence of matrix names (M1

through M12) 2-1288
genpath 2-1683
genvarname 2-1685
geodesic dome 2-3893
get 2-1689 2-1696

memmapfile object 2-1699
serial port I/O 2-1705
timer object 2-1707

get (timeseries) 2-1709
get (tscollection) 2-1710
get hgsetget class method 2-1698
get, RandStream method 2-1704
getabstime (timeseries) 2-1711
getabstime (tscollection) 2-1713
getAllPackages meta.package method 2-2543
getappdata function 2-1715
getCompilerConfigurations 2-2561
getdatasamplesize 2-1720
getDefaultStream, RandStream method 2-1721

getdisp hgsetget class method 2-1722
getenv 2-1723
getframe 2-1729

image resolution and 2-1730
getinterpmethod 2-1735
getpixelposition 2-1736
getpref function 2-1738
getqualitydesc 2-1740
getReport, MException method 2-1741
getsampleusingtime (timeseries) 2-1744
getsampleusingtime (tscollection) 2-1745
gettimeseriesnames 2-1748
gettsafteratevent 2-1749
gettsafterevent 2-1750
gettsatevent 2-1751
gettsbeforeatevent 2-1752
gettsbeforeevent 2-1753
gettsbetweenevents 2-1754
GIF files

writing 2-2012
ginput function 2-1760
global 2-1763
global variable

defining 2-1763
global variables, clearing from workspace 2-790
gmres 2-1765
golden section search 2-1536
Goup

defining default properties 2-1892
gplot 2-1771
grabcode function 2-1773
gradient 2-1775
gradient, numerical 2-1775
graph

adjacency 2-1189
graph theory 2-4305
graphics objects

Axes 2-288
Figure 2-1405
getting properties 2-1689

Index-24



Index

Image 2-1951
Light 2-2294
Line 2-2307
Patch 2-2901
resetting properties 2-3336
Root 2-3371
setting properties 2-3467
Surface 2-3811
Text 2-3918
uicontextmenu 2-4097
Uicontrol 2-4108
Uimenu 2-4161

graphics objects, deleting 2-1123
graphs

editing 2-3029
graymon 2-1778
greatest common divisor 2-1677
Greek letters and mathematical symbols 2-196

2-207 2-3947
grid 2-1779
grid arrays

for volumetric plots 2-2525
multi-dimensional 2-2682

griddatan 2-1786
GridLineStyle, Axes property 2-312
group

hggroup function 2-1861
gsvd 2-1788
gt 2-1794
gtext 2-1796
guidata function 2-1797
GUIDE

object methods
inspect 2-2060

guihandles function 2-1802
GUIs, printing 2-3088
gunzip 2-1803
gzip 2-1805

H
hadamard 2-1806
Hadamard matrix 2-1806

subspaces of 2-3787
handle class 2-1807
handle graphics

hgtransform 2-1881
handle graphicshggroup 2-1861
handle relational operators 2-3320
handle.addlistener 2-118
handle.delete 2-1128
handle.findobj 2-1508
handle.findprop 2-1509
handle.isvalid 2-2209
handle.notify 2-2774
HandleVisibility

areaseries property 2-228
Axes property 2-312
barseries property 2-360
contour property 2-901
errorbar property 2-1269
Figure property 2-1421
hggroup property 2-1871
hgtransform property 2-1900
Image property 2-1969
Light property 2-2299
Line property 2-2321
lineseries property 2-2334
patch property 2-2938
quivergroup property 2-3193
rectangle property 2-3272
Root property 2-3376
stairseries property 2-3633
stem property 2-3667
Surface property 2-3830
surfaceplot property 2-3853
Text property 2-3936
Uicontextmenu property 2-4104
Uicontrol property 2-4126
Uimenu property 2-4170

Index-25



Index

Uipushtool property 2-4207
Uitable property 2-4260
Uitoggletool property 2-4277
Uitoolbar property 2-4288

hankel 2-1811
Hankel matrix 2-1811
HDF

appending to when saving
(WriteMode) 2-2016

compression 2-2016
setting JPEG quality when writing 2-2016

HDF files
writing images 2-2012

HDF4
summary of capabilities 2-1812

HDF5
high-level access 2-1814
summary of capabilities 2-1814

HDF5 class
low-level access 2-1814

hdf5info 2-1817
hdf5read 2-1819
hdf5write 2-1821
hdfinfo 2-1825
hdfread 2-1833
hdftool 2-1845
Head1Length

annotation doublearrow property 2-177
Head1Style

annotation doublearrow property 2-178
Head1Width

annotation doublearrow property 2-179
Head2Length

annotation doublearrow property 2-177
Head2Style

annotation doublearrow property 2-178
Head2Width

annotation doublearrow property 2-179
HeadLength

annotation arrow property 2-173

textarrow property 2-193
HeadStyle

annotation arrow property 2-173
textarrow property 2-193

HeadWidth
annotation arrow property 2-174
textarrow property 2-194

Height
annotation ellipse property 2-183

help 2-1846
keyword search in functions 2-2410
online 2-1846

Help browser 2-1850
accessing from doc 2-1191

Help Window 2-1854
helpbrowser 2-1850
helpdesk 2-1851
helpdlg 2-1852
helpwin 2-1854
Hermite transformations, elementary 2-1677
hess 2-1855
Hessenberg form of a matrix 2-1855
hex2dec 2-1858
hex2num 2-1859
hgsetget class 2-1880
hgsetget.get 2-1698
hgsetget.getdisp 2-1722
hgsetget.set 2-3476
hidden 2-1905
Hierarchical Data Format (HDF) files

writing images 2-2012
hilb 2-1906
Hilbert matrix 2-1906

inverse 2-2113
hist 2-1907
histc 2-1911
HitTest

areaseries property 2-230
Axes property 2-313
barseries property 2-362

Index-26



Index

contour property 2-903
errorbar property 2-1271
Figure property 2-1422
hggroup property 2-1872
hgtransform property 2-1901
Image property 2-1971
Light property 2-2301
Line property 2-2322
lineseries property 2-2336
Patch property 2-2939
quivergroup property 2-3195
rectangle property 2-3274
Root property 2-3376
scatter property 2-3438
stairseries property 2-3635
stem property 2-3669
Surface property 2-3831
surfaceplot property 2-3855
Text property 2-3937
Uicontrol property 2-4127
Uipushtool property 2-4208
Uitable property 2-4261
Uitoggletool property 2-4277
Uitoolbarl property 2-4289

HitTestArea
areaseries property 2-230
barseries property 2-362
contour property 2-903
errorbar property 2-1271
quivergroup property 2-3195
scatter property 2-3438
stairseries property 2-3635
stem property 2-3669

hold 2-1914
home 2-1916
HorizontalAlignment

Text property 2-3938
textbox property 2-194 2-205
Uicontrol property 2-4127

horzcat 2-1917

horzcat (function equivalent for [,]) 2-68
horzcat (tscollection) 2-1919
hostid 2-1920
Householder reflections (as algorithm for solving

linear equations) 2-2602
hsv2rgb 2-1921
HTML

in Command Window 2-2465
HTML browser

in MATLAB 2-1850
HTML files

opening 2-4440
hyperbolic

cosecant 2-970
cosecant, inverse 2-94
cosine 2-945
cosine, inverse 2-84
cotangent 2-950
cotangent, inverse 2-89
secant 2-3455
secant, inverse 2-247
sine 2-3525
sine, inverse 2-253
tangent 2-3907
tangent, inverse 2-264

hyperlink
displaying in Command Window 2-1166

hyperlinks
in Command Window 2-2465

hyperplanes, angle between 2-3787
hypot 2-1922

I
i 2-1925
icon images

reading 2-1998
idealfilter (timeseries) 2-1926
identity matrix

sparse 2-3575

Index-27



Index

idivide 2-1930
IEEE floating-point arithmetic

smallest positive number 2-3252
if 2-1932
ifft 2-1936
ifft2 2-1938
ifftn 2-1940
ifftshift 2-1942
IIR filter 2-1489
ilu 2-1943
im2java 2-1948
imag 2-1950
image 2-1951
Image

creating 2-1951
properties 2-1959

image types
querying 2-1983

images
file formats 2-1996 2-2010
reading data from files 2-1996
returning information about 2-1982
writing to files 2-2010

Images
converting MATLAB image to Java

Image 2-1948
imagesc 2-1976
imaginary 2-1950

part of complex number 2-1950
unit (sqrt(\xd0 1)) 2-1925 2-2214
See also complex

imapprox 2-1980
imfinfo

returning file information 2-1982
imformats 2-1985
import 2-1988
importing

Java class and package names 2-1988
imread 2-1996
imwrite 2-2010

incomplete beta function
(defined) 2-394

incomplete gamma function
(defined) 2-1671

ind2sub 2-2033
Index into matrix is negative or zero (error

message) 2-2402
indexed images

converting from RGB 2-3355
indexing

logical 2-2401
indices, array

of sorted elements 2-3549
Inf 2-2037
infinity 2-2037

norm 2-2769
info 2-2040
information

returning file information 2-1982
inline 2-2041
inmem 2-2044
inpolygon 2-2046
input 2-2048

checking number of arguments 2-2673
name of array passed as 2-2053
number of arguments 2-2675
prompting users for 2-2048

inputdlg 2-2049
inputname 2-2053
inputParser 2-2054
inspect 2-2060
installation, root folder 2-2470
instance properties 2-129
instrcallback 2-2068
instrfind 2-2069
instrfindall 2-2071

example of 2-2072
int2str 2-2074
integer

floating-point, maximum 2-424

Index-28



Index

IntegerHandle
Figure property 2-1422

integration
polynomial 2-3057
quadrature 2-3152 2-3161

interp1 2-2079
interp1q 2-2087
interp2 2-2089
interp3 2-2093
interpft 2-2095
interpn 2-2096
interpolated shading and printing 2-3089
interpolation

cubic method 2-2079 2-2089 2-2093 2-2096
cubic spline method 2-2079 2-2089 2-2093

2-2096
FFT method 2-2095
linear method 2-2079 2-2089 2-2093 2-2096
multidimensional 2-2096
nearest neighbor method 2-2079 2-2089

2-2093 2-2096
one-dimensional 2-2079
three-dimensional 2-2093
two-dimensional 2-2089

Interpreter
Text property 2-3939
textarrow property 2-194
textbox property 2-205

interpstreamspeed 2-2099
Interruptible

areaseries property 2-230
Axes property 2-313
barseries property 2-362
contour property 2-903
errorbar property 2-1272
Figure property 2-1423
hggroup property 2-1872
hgtransform property 2-1901
Image property 2-1971
Light property 2-2301

Line property 2-2322
lineseries property 2-2336
patch property 2-2940
quivergroup property 2-3195
rectangle property 2-3274
Root property 2-3376
scatter property 2-3439
stairseries property 2-3635
stem property 2-3670
Surface property 2-3831 2-3855
Text property 2-3940
Uicontextmenu property 2-4105
Uicontrol property 2-4128
Uimenu property 2-4170
Uipushtool property 2-4208
Uitable property 2-4261
Uitoggletool property 2-4278
Uitoolbar property 2-4289

intersect 2-2103
intmax 2-2104
intmin 2-2105
intwarning 2-2106
inv 2-2110
inverse

cosecant 2-91
cosine 2-81
cotangent 2-86
Fourier transform 2-1936 2-1938 2-1940
Hilbert matrix 2-2113
hyperbolic cosecant 2-94
hyperbolic cosine 2-84
hyperbolic cotangent 2-89
hyperbolic secant 2-247
hyperbolic sine 2-253
hyperbolic tangent 2-264
of a matrix 2-2110
secant 2-244
tangent 2-259
tangent, four-quadrant 2-261

inversion, matrix

Index-29



Index

accuracy of 2-869
InvertHardCopy, Figure property 2-1424
invhilb 2-2113
involutary matrix 2-2900
ipermute 2-2117
iqr (timeseries) 2-2118
is* 2-2120
isa 2-2123
isappdata function 2-2125
iscell 2-2126
iscellstr 2-2127
ischar 2-2128
isdir 2-2130
isempty 2-2133
isempty (timeseries) 2-2134
isempty (tscollection) 2-2135
isequal 2-2136
isequal, MException method 2-2139
isequalwithequalnans 2-2140
isfield 2-2144
isfinite 2-2146
isfloat 2-2147
isglobal 2-2148
ishandle 2-2150
ishghandle 2-2151
isinf 2-2153
isinteger 2-2154
isjava 2-2156
iskeyword 2-2159
isletter 2-2161
islogical 2-2162
ismac 2-2163
ismember 2-2164
isnan 2-2167
isnumeric 2-2168
isocap 2-2171
isonormals 2-2178
isosurface 2-2181

calculate data from volume 2-2181
end caps 2-2171

vertex normals 2-2178
ispc 2-2186
ispref function 2-2188
isprime 2-2189
isreal 2-2191
isscalar 2-2194
issorted 2-2195
isspace 2-2198 2-2201
issparse 2-2199
isstr 2-2200
isstruct 2-2205
isstudent 2-2206
isunix 2-2208
isvalid 2-2210

timer object 2-2211
isvalid handle method 2-2209
isvarname 2-2212
isvector 2-2213
italics font

TeX characters 2-3949

J
j 2-2214
Jacobi rotations 2-3598
Jacobian elliptic functions

(defined) 2-1231
Jacobian matrix (BVP) 2-474
Jacobian matrix (ODE) 2-2827

generating sparse numerically 2-2828
2-2830

specifying 2-2828 2-2830
vectorizing ODE function 2-2828 to 2-2830

Java
class names 2-793 2-1988
object methods

inspect 2-2060
objects 2-2156

Java Image class
creating instance of 2-1948

Index-30



Index

Java import list
adding to 2-1988
clearing 2-793

Java version used by MATLAB 2-4372
java_method 2-2219 2-2226
java_object 2-2229
javaaddath 2-2215
javachk 2-2220
javaclasspath 2-2221
javaMethod 2-2226
javaMethodEDT 2-2228
javaObject 2-2229
javaObjectEDT 2-2231
javarmpath 2-2232
joining arrays. See concatenation
Joint Photographic Experts Group (JPEG)

writing 2-2012
JPEG

setting Bitdepth 2-2016
specifying mode 2-2017

JPEG 2000
setting tile size 2-2018

JPEG 2000 comment
setting when writing a JPEG 2000

image 2-2017
specifying 2-2017

JPEG comment
setting when writing a JPEG image 2-2016

JPEG files
parameters that can be set when

writing 2-2016
writing 2-2012

JPEG quality
setting when writing a JPEG image 2-2017

to 2-2018 2-2022
setting when writing an HDF image 2-2016

JPEG2000 files
parameters that can be set when

writing 2-2017
jvm

version used by MATLAB 2-4372

K
K>> prompt

keyboard function 2-2236
keep

some variables when clearing 2-796
keyboard 2-2236
keyboard mode 2-2236

terminating 2-3352
KeyPressFcn

Uicontrol property 2-4129
Uitable property 2-4262

KeyPressFcn, Figure property 2-1424
KeyReleaseFcn, Figure property 2-1426
keyword search in functions 2-2410
keywords

iskeyword function 2-2159
kron 2-2238
Kronecker tensor product 2-2238
Krylov subspaces 2-3977

L
Label, Uimenu property 2-4172
labeling

axes 2-4488
matrix columns 2-1166
plots (with numeric values) 2-2783

LabelSpacing
contour property 2-904

Laplacian 2-1103
Laplacian matrix 2-4305
largest array elements 2-2491
last, MException method 2-2240
lasterr 2-2243
lasterror 2-2246
lastwarn 2-2251
LaTeX, see TeX 2-196 2-207 2-3947

Index-31



Index

Layer, Axes property 2-314
Layout Editor

starting 2-1801
lcm 2-2253
LData

errorbar property 2-1272
LDataSource

errorbar property 2-1272
ldivide (function equivalent for .\) 2-49
le 2-2261
least common multiple 2-2253
least squares

polynomial curve fitting 2-3053
problem, overdetermined 2-3004

legend 2-2263
properties 2-2269
setting text properties 2-2269

legendre 2-2272
Legendre functions

(defined) 2-2272
Schmidt semi-normalized 2-2272

length
serial port I/O 2-2278

length (timeseries) 2-2279
length (tscollection) 2-2280
LevelList

contour property 2-904
LevelListMode

contour property 2-904
LevelStep

contour property 2-905
LevelStepMode

contour property 2-905
libfunctions 2-2281
libfunctionsview 2-2282
libisloaded 2-2283
libpointer 2-2285
libstruct 2-2287
license 2-2290
light 2-2294

Light
creating 2-2294
defining default properties 2-1957 2-2295
properties 2-2296

Light object
positioning in spherical coordinates 2-2304

lightangle 2-2304
lighting 2-2305
limits of axes, setting and querying 2-4490
line 2-2307

editing 2-3029
Line

creating 2-2307
defining default properties 2-2312
properties 2-2313 2-2328

line numbers in files 2-1068
linear audio signal 2-2306 2-2656
linear dependence (of data) 2-3787
linear equation systems

accuracy of solution 2-869
linear equation systems, methods for solving

Cholesky factorization 2-2600
Gaussian elimination 2-2601
Householder reflections 2-2602
matrix inversion (inaccuracy of) 2-2110

linear interpolation 2-2079 2-2089 2-2093 2-2096
linear regression 2-3053
linearly spaced vectors, creating 2-2370
LineColor

contour property 2-905
lines

computing 2-D stream 2-3697
computing 3-D stream 2-3699
drawing stream lines 2-3701

LineSpec 2-2345
LineStyle

annotation arrow property 2-174
annotation doublearrow property 2-179
annotation ellipse property 2-183
annotation line property 2-185

Index-32



Index

annotation rectangle property 2-189
annotation textbox property 2-206
areaseries property 2-231
barseries property 2-363
contour property 2-906
errorbar property 2-1273
Line property 2-2323
lineseries property 2-2337
patch property 2-2940
quivergroup property 2-3196
rectangle property 2-3274
stairseries property 2-3636
stem property 2-3670
surface object 2-3832
surfaceplot object 2-3855
text object 2-3941
textarrow property 2-195

LineStyleOrder
Axes property 2-314

LineWidth
annotation arrow property 2-175
annotation doublearrow property 2-180
annotation ellipse property 2-183
annotation line property 2-186
annotation rectangle property 2-189
annotation textbox property 2-206
areaseries property 2-231
Axes property 2-315
barseries property 2-363
contour property 2-906
errorbar property 2-1273
Line property 2-2323
lineseries property 2-2337
Patch property 2-2940
quivergroup property 2-3196
rectangle property 2-3274
scatter property 2-3439
stairseries property 2-3636
stem property 2-3671
Surface property 2-3832

surfaceplot property 2-3856
text object 2-3942
textarrow property 2-195

linkaxes 2-2351
linkdata 2-2355
linkprop 2-2363
links

in Command Window 2-2465
linsolve 2-2367
linspace 2-2370
lint tool for checking problems 2-2604
list boxes 2-4110

defining items 2-4135
list, RandStream method 2-2371
ListboxTop, Uicontrol property 2-4130
listdlg 2-2374
listfonts 2-2377
load 2-2379 2-2384

serial port I/O 2-2386
loadlibrary 2-2388
Lobatto IIIa ODE solver 2-460 2-466
local variables 2-1615 2-1763
locking functions 2-2617
log 2-2397

saving session to file 2-1155
log10 [log010] 2-2398
log1p 2-2399
log2 2-2400
logarithm

base ten 2-2398
base two 2-2400
complex 2-2397 to 2-2398
natural 2-2397
of beta function (natural) 2-397
of gamma function (natural) 2-1672
of real numbers 2-3250
plotting 2-2403

logarithmic derivative
gamma function 2-3118

logarithmically spaced vectors, creating 2-2409

Index-33



Index

logical 2-2401
logical array

converting numeric array to 2-2401
detecting 2-2162

logical indexing 2-2401
logical operations

AND, bit-wise 2-419
OR, bit-wise 2-426
XOR 2-4516
XOR, bit-wise 2-430

logical operators 2-56 2-63
logical OR

bit-wise 2-426
logical tests 2-2123

all 2-151
any 2-212
See also detecting

logical XOR 2-4516
bit-wise 2-430

loglog 2-2403
logm 2-2406
logspace 2-2409
lookfor 2-2410
lossy compression

writing JPEG 2000 files with 2-2017
writing JPEG files with 2-2017

Lotus WK1 files
loading 2-4474
writing 2-4477

lower 2-2412
lower triangular matrix 2-4030
lowercase to uppercase 2-4325
ls 2-2413
lscov 2-2415
lsqnonneg 2-2420
lsqr 2-2423
lt 2-2428
lu 2-2430
LU factorization 2-2430

storage requirements of (sparse) 2-2789

luinc 2-2438

M
.m files

checking existence of 2-1307
M-file execution

resuming after suspending 2-4221
suspending from GUI 2-4292

M-files
clearing from workspace 2-790
deleting 2-1123

machine epsilon 2-4457
magic 2-2445
magic squares 2-2445
Map containers

constructor 2-2450 2-3530
methods 2-2277 2-3323 2-4355

Map methods
constructor 2-2157 2-2237

Margin
annotation textbox property 2-206
text object 2-3944

Marker
Line property 2-2323
lineseries property 2-2337
marker property 2-1274
Patch property 2-2941
quivergroup property 2-3197
scatter property 2-3440
stairseries property 2-3637
stem property 2-3671
Surface property 2-3832
surfaceplot property 2-3856

MarkerEdgeColor
errorbar property 2-1274
Line property 2-2324
lineseries property 2-2338
Patch property 2-2941
quivergroup property 2-3197

Index-34



Index

scatter property 2-3440
stairseries property 2-3637
stem property 2-3672
Surface property 2-3833
surfaceplot property 2-3857

MarkerFaceColor
errorbar property 2-1275
Line property 2-2324
lineseries property 2-2338
Patch property 2-2942
quivergroup property 2-3198
scatter property 2-3441
stairseries property 2-3638
stem property 2-3672
Surface property 2-3834
surfaceplot property 2-3857

MarkerSize
errorbar property 2-1275
Line property 2-2325
lineseries property 2-2339
Patch property 2-2942
quivergroup property 2-3198
stairseries property 2-3638
stem property 2-3672
Surface property 2-3834
surfaceplot property 2-3858

mass matrix (ODE) 2-2831
initial slope 2-2832 to 2-2833
singular 2-2832
sparsity pattern 2-2832
specifying 2-2832
state dependence 2-2832

MAT-file 2-3404
converting sparse matrix after loading

from 2-3562
MAT-files

listing for folder 2-4447
mat2cell 2-2458
mat2str 2-2461
material 2-2463

MATLAB
installation folder 2-2470
quitting 2-3177
startup 2-2469
version number, comparing 2-4370
version number, displaying 2-4364

matlab : function 2-2465
matlab (UNIX command) 2-2473
matlab (Windows command) 2-2485
MATLAB files

listing names of in a folder 2-4447
matlab function for UNIX 2-2473
matlab function for Windows 2-2485
MATLAB startup file 2-3647
MATLAB® desktop

moving figure windows in front of 2-3512
matlab.mat 2-3404
matlabcolon function 2-2465
matlabrc 2-2469
matlabroot 2-2470
$matlabroot 2-2470
matrices

preallocation 2-4520
matrix 2-44

addressing selected rows and columns
of 2-70

arrowhead 2-850
columns

rearrange 2-1528
companion 2-858
condition number of 2-869 2-3238
condition number, improving 2-337
converting to vector 2-71
defective (defined) 2-1219
detecting sparse 2-2199
determinant of 2-1145
diagonal of 2-1151
Dulmage-Mendelsohn decomposition 2-1188
evaluating functions of 2-1625
exponential 2-1314

Index-35



Index

Hadamard 2-1806 2-3787
Hankel 2-1811
Hermitian Toeplitz 2-4020
Hessenberg form of 2-1855
Hilbert 2-1906
inverse 2-2110
inverse Hilbert 2-2113
inversion, accuracy of 2-869
involutary 2-2900
left division (arithmetic operator) 2-45
lower triangular 2-4030
magic squares 2-2445 2-3795
maximum size of 2-867
modal 2-1217
multiplication (defined) 2-45
Pascal 2-2900 2-3060
permutation 2-2430
poorly conditioned 2-1906
power (arithmetic operator) 2-46
pseudoinverse 2-3004
reading files into 2-1180
rearrange

columns 2-1528
rows 2-1529

reduced row echelon form of 2-3399
replicating 2-3328
right division (arithmetic operator) 2-45
rotating 90\xfb 2-3388
rows

rearrange 2-1529
Schur form of 2-3401 2-3448
singularity, test for 2-1145
sorting rows of 2-3552
sparse. See sparse matrix
specialized 2-1644
square root of 2-3610
subspaces of 2-3787
test 2-1644
Toeplitz 2-4020
trace of 2-1151 2-4022

transpose (arithmetic operator) 2-46
transposing 2-67
unimodular 2-1677
unitary 2-3872
upper triangular 2-4051
Vandermonde 2-3055
Wilkinson 2-3568 2-4468
writing formatted data to 2-1596
writing to ASCII delimited file 2-1184
writing to spreadsheet 2-4477
See also array

Matrix
hgtransform property 2-1902

matrix functions
evaluating 2-1625

matrix names, (M1 through M12) generating a
sequence of 2-1288

matrix power. See matrix, exponential
max 2-2491
max (timeseries) 2-2492
Max, Uicontrol property 2-4130
MaxHeadSize

quivergroup property 2-3198
maximum matching 2-1188
MDL-files

checking existence of 2-1307
mean 2-2497
mean (timeseries) 2-2498
median 2-2500
median (timeseries) 2-2501
median value of array elements 2-2500
memmapfile 2-2503
memory 2-2509

clearing 2-790
minimizing use of 2-2878
variables in 2-4461

menu (of user input choices) 2-2518
menu function 2-2518
MenuBar, Figure property 2-1428
Mersenne twister 2-3225 2-3229

Index-36



Index

mesh plot
tetrahedron 2-3913

mesh size (BVP) 2-476
meshc 2-2520
meshgrid 2-2525
MeshStyle, Surface property 2-3834
MeshStyle, surfaceplot property 2-3858
meshz 2-2520
message

error See error message 2-4421
warning See warning message 2-4421

meta.class 2-2527
meta.DynamicProperty 2-2532
meta.event 2-2536
meta.method 2-2538
meta.package class 2-2541
meta.property 2-2544
methods

locating 2-4452
mex 2-2553
mex build script

switches 2-2554
-arch 2-2555
-argcheck 2-2555
-c 2-2555
-compatibleArrayDims 2-2555
-cxx 2-2555
-Dname 2-2555
-Dname=value 2-2556
-f optionsfile 2-2556
-fortran 2-2556
-g 2-2556
-h[elp] 2-2556
-inline 2-2556
-Ipathname 2-2556
-largeArrayDims 2-2557
-Lfolder 2-2557
-lname 2-2557
-n 2-2557
name=value 2-2558

-O 2-2557
-outdir dirname 2-2557
-output resultname 2-2558
@rsp_file 2-2554
-setup 2-2558
-Uname 2-2558
-v 2-2558

mex.CompilerConfiguration 2-2561
mex.CompilerConfigurationDetails 2-2561
MEX-files

clearing from workspace 2-790
debugging on UNIX 2-1047
listing for folder 2-4447

mex.getCompilerConfigurations 2-2561
MException

constructor 2-1251 2-2567
methods

addCause 2-111
disp 2-1169
eq 2-1251
getReport 2-1741
isequal 2-2139
last 2-2240
ne 2-2689
rethrow 2-3348
throw 2-3980
throwAsCaller 2-3984

mexext 2-2573
mfilename 2-2574
mget function 2-2575
Microsoft Excel files

loading 2-4495
min 2-2576
min (timeseries) 2-2577
Min, Uicontrol property 2-4131
MinColormap, Figure property 2-1429
MinorGridLineStyle, Axes property 2-316
minres 2-2581
minus (function equivalent for -) 2-49
mislocked 2-2586

Index-37



Index

mkdir 2-2587
mkdir (ftp) 2-2590
mkpp 2-2591
mldivide (function equivalent for \) 2-49
mlint 2-2604
mlintrpt 2-2614

suppressing messages 2-2616
mlock 2-2617
mmfileinfo 2-2618
mod 2-2626
modal matrix 2-1217
mode 2-2628
mode objects

pan, using 2-2883
rotate3d, using 2-3392
zoom, using 2-4525

models
saving 2-3415

modification date
of a file 2-1160

modified Bessel functions
relationship to Airy functions 2-143

modulo arithmetic 2-2626
MonitorPositions

Root property 2-3376
Moore-Penrose pseudoinverse 2-3004
more 2-2631 2-2656
move 2-2633
movefile 2-2635
movegui function 2-2638
movie 2-2641
movie2avi 2-2645
movies

exporting in AVI format 2-282
mpower (function equivalent for ^) 2-50
mput function 2-2648
mrdivide (function equivalent for /) 2-49
msgbox 2-2649
mtimes 2-2652
mtimes (function equivalent for *) 2-49

mu-law encoded audio signals 2-2306 2-2656
multibandread 2-2657
multibandwrite 2-2662
multidimensional arrays

concatenating 2-518
interpolation of 2-2096
number of dimensions of 2-2684
rearranging dimensions of 2-2117 2-2995
removing singleton dimensions of 2-3613
reshaping 2-3339
size of 2-3527
sorting elements of 2-3548

multiple
least common 2-2253

multiplication
array (arithmetic operator) 2-45
matrix (defined) 2-45
of polynomials 2-920

multistep ODE solver 2-2809
munlock 2-2668

N
Name, Figure property 2-1430
namelengthmax 2-2670
naming conventions

functions 2-1615
NaN 2-2671
NaN (Not-a-Number) 2-2671

returned by rem 2-3322
nargchk 2-2673
nargoutchk 2-2677
native2unicode 2-2679
ndgrid 2-2682
ndims 2-2684
ne 2-2685
ne, MException method 2-2689
nearest neighbor interpolation 2-2079 2-2089

2-2093 2-2096
NET

Index-38



Index

summary of functions 2-2692
.NET

summary of functions 2-2692
netcdf

summary of capabilities 2-2710 2-2743
netcdf.abort

revert recent netCDF file definitions 2-2713
netcdf.close

close netCDF file 2-2715
netcdf.copyAtt

copy attribute to new location 2-2716
netcdf.create

create netCDF file 2-2718
netcdf.defDim

create dimension in netCDF file 2-2720
netcdf.defVar

define variable in netCDF dataset 2-2721
netcdf.delAtt

delete netCDF attribute 2-2722
netcdf.endDef

takes a netCDF file out of definemode 2-2724
netcdf.getAtt

return data from netCDF attribute 2-2726
netcdf.getConstant

get numeric value of netCDF constant 2-2728
netcdf.getConstantNames

get list of netCDF constants 2-2729
netcdf.getVar

return data from netCDF variable 2-2730
netcdf.inq

return information about netCDF file 2-2733
netcdf.inqAtt

return information about a netCDF
attribute 2-2735

netcdf.inqAttID
return identifier of netCDF attribute 2-2737

netcdf.inqAttName
return name of netCDF attribute 2-2738

netcdf.inqDim

return information about netCDF
dimension 2-2740

netcdf.inqDimID
return dimension ID for netCDF file 2-2741

netcdf.inqLibVers
return version of netCDF library 2-2742

netcdf.inqVarID
return netCDF variable identifier 2-2745

netcdf.open
open an existing netCDF file 2-2746

netcdf.putAtt
write a netCDF attribute 2-2747

netcdf.putVar
write data to netCDF variable 2-2749

netcdf.reDef
put netCDF file into define mode 2-2751

netcdf.renameAtt
netCDF function to change the name of an

attribute 2-2752
netcdf.renameDim

netCDF function to change the name of a
dimension 2-2754

netcdf.renameVar
change the name of a netCDF

variable 2-2756
netcdf.setDefaultFormat

change the default netCDF file format 2-2758
netcdf.setFill

set netCDF fill behavior 2-2759
netcdf.sync

synchronize netCDF dataset to disk 2-2760
newplot 2-2761
NextPlot

Axes property 2-316
Figure property 2-1430

nextpow2 2-2765
nnz 2-2766
no derivative method 2-1542
nodesktop startup option 2-2477
nonzero entries

Index-39



Index

specifying maximum number of in sparse
matrix 2-3559

nonzero entries (in sparse matrix)
allocated storage for 2-2789
number of 2-2766
replacing with ones 2-3590
vector of 2-2768

nonzeros 2-2768
norm 2-2769

1-norm 2-2769 2-3238
2-norm (estimate of) 2-2771
F-norm 2-2769
infinity 2-2769
matrix 2-2769
pseudoinverse and 2-3004 2-3006
vector 2-2769

normal vectors, computing for volumes 2-2178
NormalMode

Patch property 2-2943
Surface property 2-3835
surfaceplot property 2-3858

normest 2-2771
not 2-2772
not (function equivalent for ~) 2-60
notebook 2-2773
notify 2-2774
now 2-2775
nthroot 2-2776
null 2-2777
null space 2-2777
num2cell 2-2779
num2hex 2-2782
num2str 2-2783
number

of array dimensions 2-2684
numbers

imaginary 2-1950
NaN 2-2671
plus infinity 2-2037
prime 2-3071

real 2-3249
smallest positive 2-3252

NumberTitle, Figure property 2-1430
numel 2-2787
numeric format 2-1554
numerical differentiation formula ODE

solvers 2-2809
numerical evaluation

double integral 2-1045
triple integral 2-4033

nzmax 2-2789

O
object

determining class of 2-2123
object classes, list of predefined 2-2123
objects

Java 2-2156
ODE file template 2-2812
ODE solver properties

error tolerance 2-2819
event location 2-2826
Jacobian matrix 2-2827
mass matrix 2-2831
ode15s 2-2834
solver output 2-2821
step size 2-2824

ODE solvers
backward differentiation formulas 2-2834
numerical differentiation formulas 2-2834
obtaining solutions at specific times 2-2797
variable order solver 2-2834

ode15i function 2-2790
odefile 2-2811
odeget 2-2817
odephas2 output function 2-2823
odephas3 output function 2-2823
odeplot output function 2-2823
odeprint output function 2-2823

Index-40



Index

odeset 2-2818
odextend 2-2836
off-screen figures, displaying 2-1503
OffCallback

Uitoggletool property 2-4279
%#ok 2-2607
OnCallback

Uitoggletool property 2-4279
one-step ODE solver 2-2808
ones 2-2841
online documentation, displaying 2-1850
online help 2-1846
openfig 2-2846
OpenGL 2-1437

autoselection criteria 2-1441
opening

files in Windows applications 2-4469
openvar 2-2853
operating system

MATLAB is running on 2-867
operating system command 2-3901
operating system command, issuing 2-68
operators

arithmetic 2-44
logical 2-56 2-63
overloading arithmetic 2-50
overloading relational 2-54
relational 2-54 2-2401
symbols 2-1846

optimget 2-2857
optimization parameters structure 2-2857 to

2-2858
optimizing file execution 2-3105
optimset 2-2858
or 2-2862
or (function equivalent for |) 2-60
ordeig 2-2864
orderfields 2-2867
ordering

reverse Cuthill-McKee 2-3883 2-3893

ordqz 2-2870
ordschur 2-2872
orient 2-2874
orth 2-2876
orthographic projection, setting and

querying 2-499
otherwise 2-2877
Out of memory (error message) 2-2878
OuterPosition

Axes property 2-316
Figure property 2-1431

output
checking number of arguments 2-2677
controlling display format 2-1554
in Command Window 2-2631
number of arguments 2-2675

output points (ODE)
increasing number of 2-2821

output properties (DDE) 2-1084
output properties (ODE) 2-2821

increasing number of output points 2-2821
overflow 2-2037
overloading

arithmetic operators 2-50
relational operators 2-54
special characters 2-69

P
P-files

checking existence of 2-1307
pack 2-2878
padecoef 2-2880
pagesetupdlg 2-2881
paging

of screen 2-1848
paging in the Command Window 2-2631
pan mode objects 2-2883
PaperOrientation, Figure property 2-1432
PaperPosition, Figure property 2-1432

Index-41



Index

PaperPositionMode, Figure property 2-1432
PaperSize, Figure property 2-1433
PaperType, Figure property 2-1433
PaperUnits, Figure property 2-1434
parametric curve, plotting 2-1340
Parent

areaseries property 2-232
Axes property 2-318
barseries property 2-364
contour property 2-906
errorbar property 2-1275
Figure property 2-1435
hggroup property 2-1873
hgtransform property 2-1902
Image property 2-1971
Light property 2-2301
Line property 2-2325
lineseries property 2-2339
Patch property 2-2943
quivergroup property 2-3198
rectangle property 2-3275
Root property 2-3377
scatter property 2-3441
stairseries property 2-3638
stem property 2-3672
Surface property 2-3835
surfaceplot property 2-3859
Text property 2-3945
Uicontextmenu property 2-4106
Uicontrol property 2-4132
Uimenu property 2-4172
Uipushtool property 2-4209
Uitable property 2-4263
Uitoggletool property 2-4279
Uitoolbar property 2-4290

parentheses (special characters) 2-66
parfor 2-2893
parse method

of inputParser object 2-2895
parseSoapResponse 2-2898

partial fraction expansion 2-3341
pascal 2-2900
Pascal matrix 2-2900 2-3060
patch 2-2901
Patch

converting a surface to 2-3809
creating 2-2901
properties 2-2921
reducing number of faces 2-3280
reducing size of face 2-3516

path 2-2948
building from parts 2-1611

path2rc 2-2951
pathnames

of functions or files 2-4452
pathsep 2-2952
pathtool 2-2953
pause 2-2955
pauses, removing 2-1040
pausing function execution 2-2955
pbaspect 2-2957
PBM

parameters that can be set when
writing 2-2018

PBM files
writing 2-2013

pcg 2-2963
pchip 2-2967
pcode 2-2970
pcolor 2-2972
PCX files

writing 2-2013
PDE. See Partial Differential Equations
pdepe 2-2976
pdeval 2-2989
percent sign (special characters) 2-68
percent-brace (special characters) 2-68
perfect matching 2-1188
performance 2-374

Index-42



Index

period (.), to distinguish matrix and array
operations 2-44

period (special characters) 2-67
perl 2-2992
perl function 2-2992
Perl scripts in MATLAB 2-2992
perms 2-2994
permutation

matrix 2-2430
of array dimensions 2-2995
random 2-3223

permutations of n elements 2-2994
permute 2-2995
persistent 2-2996
persistent variable 2-2996
perspective projection, setting and

querying 2-499
PGM

parameters that can be set when
writing 2-2018

PGM files
writing 2-2013

phase angle, complex 2-168
phase, complex

correcting angles 2-4318
pie 2-3000
pie3 2-3002
pinv 2-3004
planerot 2-3007
platform MATLAB is running on 2-867
playshow function 2-3012
plot

editing 2-3029
plot (timeseries) 2-3019
plot box aspect ratio of axes 2-2957
plot editing mode

overview 2-3030
Plot Editor

interface 2-3030 2-3113
plot, volumetric

generating grid arrays for 2-2525
slice plot 2-3536

PlotBoxAspectRatio, Axes property 2-318
PlotBoxAspectRatioMode, Axes property 2-318
plotedit 2-3029
plotting

3-D plot 2-3025
contours (a 2-1320
contours (ez function) 2-1320
ez-function mesh plot 2-1328
feather plots 2-1366
filled contours 2-1324
function plots 2-1562
functions with discontinuities 2-1348
histogram plots 2-1907
in polar coordinates 2-1343
isosurfaces 2-2181
loglog plot 2-2403
mathematical function 2-1336
mesh contour plot 2-1332
mesh plot 2-2520
parametric curve 2-1340
plot with two y-axes 2-3036
ribbon plot 2-3360
rose plot 2-3384
scatter plot 2-3032
scatter plot, 3-D 2-3426
semilogarithmic plot 2-3458
stem plot, 3-D 2-3658
surface plot 2-3803
surfaces 2-1346
velocity vectors 2-873
volumetric slice plot 2-3536
. See visualizing

plus (function equivalent for +) 2-49
PNG

writing options for 2-2019
alpha 2-2019
background color 2-2019
chromaticities 2-2020

Index-43



Index

gamma 2-2020
interlace type 2-2020
resolution 2-2021
significant bits 2-2020
transparency 2-2021

PNG files
writing 2-2013

PNM files
writing 2-2013

Pointer, Figure property 2-1435
PointerLocation, Root property 2-3377
PointerShapeCData, Figure property 2-1435
PointerShapeHotSpot, Figure property 2-1436
PointerWindow, Root property 2-3378
pol2cart 2-3041
polar 2-3043
polar coordinates 2-3041

computing the angle 2-168
converting from Cartesian 2-512
converting to cylindrical or Cartesian 2-3041
plotting in 2-1343

poles of transfer function 2-3341
poly 2-3045
polyarea 2-3048
polyder 2-3050
polyeig 2-3051
polyfit 2-3053
polygamma function 2-3118
polygon

area of 2-3048
creating with patch 2-2901
detecting points inside 2-2046

polyint 2-3057
polynomial

analytic integration 2-3057
characteristic 2-3045 to 2-3046 2-3382
coefficients (transfer function) 2-3341
curve fitting with 2-3053
derivative of 2-3050
division 2-1102

eigenvalue problem 2-3051
evaluation 2-3058
evaluation (matrix sense) 2-3060
make piecewise 2-2591
multiplication 2-920

polyval 2-3058
polyvalm 2-3060
poorly conditioned

matrix 2-1906
poorly conditioned eigenvalues 2-337
pop-up menus 2-4110

defining choices 2-4135
Portable Anymap files

writing 2-2013
Portable Bitmap (PBM) files

writing 2-2013
Portable Graymap files

writing 2-2013
Portable Network Graphics files

writing 2-2013
Portable pixmap format

writing 2-2013
Position

annotation ellipse property 2-183
annotation line property 2-186
annotation rectangle property 2-190
arrow property 2-175
Axes property 2-319
doubletarrow property 2-180
Figure property 2-1436
Light property 2-2301
Text property 2-3945
textarrow property 2-195
textbox property 2-206
Uicontextmenu property 2-4106
Uicontrol property 2-4132
Uimenu property 2-4173
Uitable property 2-4263

position of camera
dollying 2-485

Index-44



Index

position of camera, setting and querying 2-497
Position, rectangle property 2-3275
PostScript

default printer 2-3079
levels 1 and 2 2-3079
printing interpolated shading 2-3089

pow2 2-3062
power 2-3063

matrix. See matrix exponential
of real numbers 2-3253
of two, next 2-2765

power (function equivalent for .^) 2-50
PPM

parameters that can be set when
writing 2-2018

PPM files
writing 2-2013

ppval 2-3064
preallocation

matrix 2-4520
precision 2-1554
prefdir 2-3066
preferences 2-3070

opening the dialog box 2-3070
present working directory 2-3136
prime factors 2-1360

dependence of Fourier transform on 2-1382
2-1384 to 2-1385

prime numbers 2-3071
primes 2-3071
printdlg 2-3093
printdlg function 2-3093
printer

default for linux and unix 2-3079
printer drivers

GhostScript drivers 2-3074
interploated shading 2-3089
MATLAB printer drivers 2-3074

printing
GUIs 2-3088

interpolated shading 2-3089
on MS-Windows 2-3087
with a variable file name 2-3090
with nodisplay 2-3082
with noFigureWindows 2-3082
with non-normal EraseMode 2-2321 2-2933

2-3272 2-3828 2-3933
printing figures

preview 2-3094
printing tips 2-3087
printing, suppressing 2-67
printpreview 2-3094
prod 2-3103
product

cumulative 2-979
Kronecker tensor 2-2238
of array elements 2-3103
of vectors (cross) 2-966
scalar (dot) 2-966

profile 2-3105
profsave 2-3112
projection type, setting and querying 2-499
ProjectionType, Axes property 2-319
prompting users for input 2-2048
prompting users to choose an item 2-2518
propedit 2-3113 to 2-3114
proppanel 2-3117
pseudoinverse 2-3004
psi 2-3118
push buttons 2-4111
pwd 2-3136

Q
qmr 2-3137
QR decomposition

deleting column from 2-3145
qrdelete 2-3145
qrinsert 2-3147
qrupdate 2-3149

Index-45



Index

quad 2-3152
quadgk 2-3161
quadl 2-3167
quadrature 2-3152 2-3161
quadv 2-3170
quantization

performed by rgb2ind 2-3356
questdlg 2-3173
questdlg function 2-3173
quit 2-3177
quitting MATLAB 2-3177
quiver 2-3180
quiver3 2-3183
qz 2-3208
QZ factorization 2-3052 2-3208

R
radio buttons 2-4111
rand, RandStream method 2-3212
randi, RandStream method 2-3217
randn, RandStream method 2-3222
random

permutation 2-3223
sparse matrix 2-3596 to 2-3597
symmetric sparse matrix 2-3598

random number generators 2-2371 2-3212
2-3217 2-3222 2-3225 2-3229

randperm 2-3223
randStream

constructor 2-3229
RandStream 2-3225 2-3229

constructor 2-3225
methods

create 2-956
get 2-1704
getDefaultStream 2-1721
list 2-2371
rand 2-3212
randi 2-3217

randn 2-3222
setDefaultStream 2-3490

range space 2-2876
rank 2-3231
rank of a matrix 2-3231
RAS files

parameters that can be set when
writing 2-2022

writing 2-2014
RAS image format

specifying color order 2-2022
writing alpha data 2-2022

Raster image files
writing 2-2014

rational fraction approximation 2-3232
rbbox 2-3236 2-3287
rcond 2-3238
rdivide (function equivalent for ./) 2-49
readasync 2-3243
reading

data from files 2-3954
formatted data from file 2-1596

readme files, displaying 2-2130 2-4451
real 2-3249
real numbers 2-3249
reallog 2-3250
realmax 2-3251
realmin 2-3252
realpow 2-3253
realsqrt 2-3254
rearrange array

flip along dimension 2-1527
reverse along dimension 2-1527

rearrange matrix
flip left-right 2-1528
flip up-down 2-1529
reverse column order 2-1528
reverse row order 2-1529

RearrangeableColumn
Uitable property 2-4264

Index-46



Index

rearranging arrays
converting to vector 2-71
removing first n singleton dimensions 2-3513
removing singleton dimensions 2-3613
reshaping 2-3339
shifting dimensions 2-3513
swapping dimensions 2-2117 2-2995

rearranging matrices
converting to vector 2-71
rotating 90\xfb 2-3388
transposing 2-67

record 2-3255
rectangle

properties 2-3264
rectangle function 2-3259

rectint 2-3277
RecursionLimit

Root property 2-3378
recycle 2-3278
reduced row echelon form 2-3399
reducepatch 2-3280
reducevolume 2-3284
reference page

accessing from doc 2-1191
refresh 2-3287
regexprep 2-3307
regexptranslate 2-3311
regression

linear 2-3053
regularly spaced vectors, creating 2-70 2-2370
rehash 2-3316
relational operators 2-54 2-2401
relational operators for handle objects 2-3320
relative accuracy

BVP 2-472
DDE 2-1083
norm of DDE solution 2-1083
norm of ODE solution 2-2820
ODE 2-2820

rem 2-3322

removets 2-3325
rename function 2-3327
renaming

using copyfile 2-933
renderer

OpenGL 2-1437
painters 2-1437
zbuffer 2-1437

Renderer, Figure property 2-1437
RendererMode, Figure property 2-1441
repeatedly executing statements 2-1552 2-4455
repeatedly executing statements in

parallel 2-2894
replicating a matrix 2-3328
repmat 2-3328
resample (timeseries) 2-3330
resample (tscollection) 2-3333
reset 2-3336
reshape 2-3339
residue 2-3341
residues of transfer function 2-3341
Resize, Figure property 2-1442
ResizeFcn, Figure property 2-1442
restoredefaultpath 2-3345
rethrow 2-3346
rethrow, MException method 2-3348
return 2-3352
reverse

array along dimension 2-1527
array dimension 2-1527
matrix column order 2-1528
matrix row order 2-1529

reverse Cuthill-McKee ordering 2-3883 2-3893
RGB images

converting to indexed 2-3355
RGB, converting to HSV 2-3354
rgb2hsv 2-3354
rgb2ind 2-3355
rgbplot 2-3358
ribbon 2-3360

Index-47



Index

right-click and context menus 2-4097
rmappdata function 2-3363
rmdir 2-3364
rmdir (ftp) function 2-3367
rmfield 2-3368
rmpath 2-3369
rmpref function 2-3370
RMS. See root-mean-square
rolling camera 2-501
root folder 2-2470
Root graphics object 2-3371
root object 2-3371
root, see rootobject 2-3371
root-mean-square

of vector 2-2769
roots 2-3382
roots of a polynomial 2-3045 to 2-3046 2-3382
rose 2-3384
Rosenbrock

banana function 2-1540
ODE solver 2-2809

rosser 2-3387
rot90 2-3388
rotate 2-3389
rotate3d 2-3392
rotate3d mode objects 2-3392
rotating camera 2-493
rotating camera target 2-495
Rotation, Text property 2-3946
rotations

Jacobi 2-3598
round 2-3398

to nearest integer 2-3398
towards infinity 2-722
towards minus infinity 2-1531
towards zero 2-1526

roundoff error
characteristic polynomial and 2-3046
effect on eigenvalues 2-337
evaluating matrix functions 2-1628

in inverse Hilbert matrix 2-2113
partial fraction expansion and 2-3342
polynomial roots and 2-3382
sparse matrix conversion and 2-3563

RowName
Uitable property 2-4264

RowStriping
Uitable property 2-4265

rref 2-3399
rrefmovie 2-3399
rsf2csf 2-3401
rubberband box 2-3236
run 2-3403
Runge-Kutta ODE solvers 2-2808
running average 2-1490

S
save 2-3404 2-3411

serial port I/O 2-3413
saveas 2-3415
savepath 2-3421
saving

ASCII data 2-3404
session to a file 2-1155
workspace variables 2-3404

scalar product (of vectors) 2-966
scaled complementary error function

(defined) 2-1252
scatter 2-3423
scatter3 2-3426
scattered data, aligning

multi-dimensional 2-2682
scattergroup

properties 2-3429
Schmidt semi-normalized Legendre

functions 2-2272
schur 2-3448
Schur decomposition 2-3448
Schur form of matrix 2-3401 2-3448

Index-48



Index

screen, paging 2-1848
ScreenDepth, Root property 2-3378
ScreenPixelsPerInch, Root property 2-3379
ScreenSize, Root property 2-3379
script 2-3451

declaration 2-1615
scrolling screen 2-1848
search path

adding folders to 2-126
MATLAB 2-2948
modifying 2-2953
removing folders from 2-3369
toolbox folder 2-4021
user folder 2-4331
viewing 2-2953

search, string 2-1511
sec 2-3452
secant 2-3452

hyperbolic 2-3455
inverse 2-244
inverse hyperbolic 2-247

secd 2-3454
sech 2-3455
Selected

areaseries property 2-232
Axes property 2-320
barseries property 2-364
contour property 2-906
errorbar property 2-1275
Figure property 2-1444
hggroup property 2-1873
hgtransform property 2-1902
Image property 2-1972
Light property 2-2302
Line property 2-2325
lineseries property 2-2339
Patch property 2-2943
quivergroup property 2-3199
rectangle property 2-3275
Root property 2-3379

scatter property 2-3441
stairseries property 2-3638
stem property 2-3673
Surface property 2-3835
surfaceplot property 2-3859
Text property 2-3946
Uicontrol property 2-4133
Uitable property 2-4265

selecting areas 2-3236
SelectionHighlight

areaseries property 2-232
Axes property 2-320
barseries property 2-364
contour property 2-907
errorbar property 2-1276
Figure property 2-1444
hggroup property 2-1873
hgtransform property 2-1902
Image property 2-1972
Light property 2-2302
Line property 2-2325
lineseries property 2-2339
Patch property 2-2943
quivergroup property 2-3199
rectangle property 2-3275
scatter property 2-3441
stairseries property 2-3639
stem property 2-3673
Surface property 2-3835
surfaceplot property 2-3859
Text property 2-3946
Uicontrol property 2-4133
Uitable property 2-4265

SelectionType, Figure property 2-1444
selectmoveresize 2-3457
semicolon (special characters) 2-67
sendmail 2-3461
Separator

Uipushtool property 2-4210
Uitoggletool property 2-4279

Index-49



Index

Separator, Uimenu property 2-4173
sequence of matrix names (M1 through M12)

generating 2-1288
serial 2-3463
serialbreak 2-3466
server (FTP)

connecting to 2-1608
server variable 2-1374
session

saving 2-1155
set 2-3467 2-3475

serial port I/O 2-3480
timer object 2-3482

set (timeseries) 2-3485
set (tscollection) 2-3486
set hgsetget class method 2-3476
set operations

difference 2-3491
exclusive or 2-3509
intersection 2-2103
membership 2-2164
union 2-4296
unique 2-4298

setabstime (timeseries) 2-3487
setabstime (tscollection) 2-3488
setappdata 2-3489
setDefaultStream, RandStream method 2-3490
setdiff 2-3491
setdisp hgsetget class method 2-3493
setenv 2-3494
setinterpmethod 2-3498
setpixelposition 2-3500
setpref function 2-3503
setstr 2-3504
settimeseriesnames 2-3508
setxor 2-3509
shading 2-3510
shading colors in surface plots 2-3510
shared libraries

MATLAB functions

calllib 2-481
libfunctions 2-2281
libfunctionsview 2-2282
libisloaded 2-2283
libpointer 2-2285
libstruct 2-2287
loadlibrary 2-2388
unloadlibrary 2-4304

shell script 2-3901 2-4301
shiftdim 2-3513
shifting array

circular 2-774
ShowArrowHead

quivergroup property 2-3199
ShowBaseLine

barseries property 2-364
ShowHiddenHandles, Root property 2-3380
showplottool 2-3514
ShowText

contour property 2-907
shrinkfaces 2-3516
shutdown 2-3177
sign 2-3520
signum function 2-3520
simplex search 2-1542
Simpson’s rule, adaptive recursive 2-3154
Simulink

version number, comparing 2-4370
version number, displaying 2-4364

sine
hyperbolic 2-3525
inverse hyperbolic 2-253

single 2-3524
single quote (special characters) 2-67
singular value

decomposition 2-3231 2-3872
largest 2-2769
rank and 2-3231

sinh 2-3525
size

Index-50



Index

array dimesions 2-3527
serial port I/O 2-3532

size (timeseries) 2-3533
size (tscollection) 2-3535
size of array dimensions 2-3527
size of fonts, see also FontSize property 2-3949
size vector 2-3339
SizeData

scatter property 2-3442
SizeDataSource

scatter property 2-3442
slice 2-3536
slice planes, contouring 2-915
sliders 2-4111
SliderStep, Uicontrol property 2-4133
smallest array elements 2-2576
smooth3 2-3542
smoothing 3-D data 2-3542
soccer ball (example) 2-3893
solution statistics (BVP) 2-477
sort 2-3548
sorting

array elements 2-3548
complex conjugate pairs 2-954
matrix rows 2-3552

sortrows 2-3552
sound 2-3555 2-3557

converting vector into 2-3555 2-3557
files

reading 2-279 2-4432
writing 2-281 2-4438

playing 2-4430
recording 2-4436
resampling 2-4430
sampling 2-4436

source control on UNIX platforms
checking out files

function 2-755
source control systems

checking in files 2-752

undo checkout 2-4294
spalloc 2-3558
sparse 2-3559
sparse matrix

allocating space for 2-3558
applying function only to nonzero elements

of 2-3576
density of 2-2766
detecting 2-2199
diagonal 2-3564
finding indices of nonzero elements of 2-1497
identity 2-3575
number of nonzero elements in 2-2766
permuting columns of 2-850
random 2-3596 to 2-3597
random symmetric 2-3598
replacing nonzero elements of with

ones 2-3590
results of mixed operations on 2-3560
specifying maximum number of nonzero

elements 2-3559
vector of nonzero elements 2-2768
visualizing sparsity pattern of 2-3607

sparse storage
criterion for using 2-1610

spaugment 2-3561
spconvert 2-3562
spdiags 2-3564
special characters

descriptions 2-1846
overloading 2-69

specular 2-3574
SpecularColorReflectance

Patch property 2-2944
Surface property 2-3835
surfaceplot property 2-3859

SpecularExponent
Patch property 2-2944
Surface property 2-3836
surfaceplot property 2-3860

Index-51



Index

SpecularStrength
Patch property 2-2944
Surface property 2-3836
surfaceplot property 2-3860

speye 2-3575
spfun 2-3576
sph2cart 2-3578
sphere 2-3579
sphereical coordinates

defining a Light position in 2-2304
spherical coordinates 2-3578
spinmap 2-3582
spline 2-3583
spline interpolation (cubic)

one-dimensional 2-2080 2-2090 2-2093
2-2096

Spline Toolbox 2-2085
spones 2-3590
spparms 2-3591
sprand 2-3596
sprandn 2-3597
sprandsym 2-3598
sprank 2-3599
spreadsheets

loading WK1 files 2-4474
loading XLS files 2-4495
reading into a matrix 2-1180
writing from matrix 2-4477
writing matrices into 2-1184

sqrt 2-3609
sqrtm 2-3610
square root

of a matrix 2-3610
of array elements 2-3609
of real numbers 2-3254

squeeze 2-3613
stack, displaying 2-1051
standard deviation 2-3648
start

timer object 2-3644

startat
timer object 2-3645

startup 2-3647
folder and path 2-4331

startup file 2-3647
startup files 2-2469
State

Uitoggletool property 2-4280
static text 2-4111
std 2-3648
std (timeseries) 2-3650
stem 2-3652
stem3 2-3658
step size (DDE)

initial step size 2-1087
upper bound 2-1087

step size (ODE) 2-1086 2-2824
initial step size 2-2825
upper bound 2-2825

stop
timer object 2-3679

stopasync 2-3680
stopwatch timer 2-3987
storage

allocated for nonzero entries (sparse) 2-2789
sparse 2-3559

storage allocation 2-4520
str2cell 2-745
str2double 2-3681
str2func 2-3682
str2mat 2-3686
str2num 2-3687
strcat 2-3691
stream lines

computing 2-D 2-3697
computing 3-D 2-3699
drawing 2-3701

stream2 2-3697
stream3 2-3699
stretch-to-fill 2-289

Index-52



Index

strfind 2-3730
string

comparing one to another 2-3693 2-3736
converting from vector to 2-751
converting matrix into 2-2461 2-2783
converting to lowercase 2-2412
converting to numeric array 2-3687
converting to uppercase 2-4325
dictionary sort of 2-3552
finding first token in 2-3751
searching and replacing 2-3748
searching for 2-1511

String
Text property 2-3946
textarrow property 2-195
textbox property 2-207
Uicontrol property 2-4134

string matrix to cell array conversion 2-745
strings 2-3732
strjust 2-3734
strmatch 2-3735
strread 2-3739
strrep 2-3748
strtok 2-3751
strtrim 2-3755
struct 2-3756
struct2cell 2-3761
structfun 2-3762
structure array

getting contents of field of 2-1724
remove field from 2-3368
setting contents of a field of 2-3496

structure arrays
field names of 2-1403

structures
dynamic fields 2-67

strvcat 2-3765
Style

Light property 2-2302
Uicontrol property 2-4137

sub2ind 2-3767
subfunction 2-1615
subplot 2-3770
subplots

assymetrical 2-3775
suppressing ticks in 2-3778

subscripts
in axis title 2-4017
in text strings 2-3950

subspace 2-3787
subsref (function equivalent for

A(i,j,k...)) 2-68
subtraction (arithmetic operator) 2-44
subvolume 2-3792
sum 2-3795

cumulative 2-981
of array elements 2-3795

sum (timeseries) 2-3798
superscripts

in axis title 2-4017
in text strings 2-3950

support 2-3802
surf2patch 2-3809
surface 2-3811
Surface

and contour plotter 2-1353
converting to a patch 2-3809
creating 2-3811
defining default properties 2-3262 2-3815
plotting mathematical functions 2-1346
properties 2-3816 2-3839

surface normals, computing for volumes 2-2178
surfl 2-3866
surfnorm 2-3870
svd 2-3872
svds 2-3875
swapbytes 2-3878
switch 2-3880
symamd 2-3882
symbfact 2-3886

Index-53



Index

symbols
operators 2-1846

symbols in text 2-196 2-207 2-3947
symmlq 2-3888
symrcm 2-3893
synchronize 2-3896
syntax, command 2-3898
syntax, function 2-3898
syntaxes

function, defining 2-1615
system 2-3901

UNC pathname error 2-3902
system folder

temporary 2-3911

T
table lookup. See interpolation
Tag

areaseries property 2-232
Axes property 2-320
barseries property 2-365
contour property 2-907
errorbar property 2-1276
Figure property 2-1445
hggroup property 2-1873
hgtransform property 2-1903
Image property 2-1972
Light property 2-2302
Line property 2-2326
lineseries property 2-2340
Patch property 2-2944
quivergroup property 2-3199
rectangle property 2-3275
Root property 2-3380
scatter property 2-3443
stairseries property 2-3639
stem property 2-3673
Surface property 2-3836
surfaceplot property 2-3860

Text property 2-3951
Uicontextmenu property 2-4107
Uicontrol property 2-4137
Uimenu property 2-4173
Uipushtool property 2-4210
Uitable property 2-4265
Uitoggletool property 2-4280
Uitoolbar property 2-4290

Tagged Image File Format (TIFF)
writing 2-2014

tan 2-3904
tand 2-3906
tangent 2-3904

four-quadrant, inverse 2-261
hyperbolic 2-3907
inverse 2-259
inverse hyperbolic 2-264

tanh 2-3907
tar 2-3909
target, of camera 2-502
tempdir 2-3911
tempname 2-3912
temporary

files 2-3912
system folder 2-3911

tensor, Kronecker product 2-2238
terminating MATLAB 2-3177
test matrices 2-1644
test, logical. See logical tests and detecting
tetrahedron

mesh plot 2-3913
tetramesh 2-3913
TeX commands in text 2-196 2-207 2-3947
text 2-3918

editing 2-3029
subscripts 2-3950
superscripts 2-3950

Text
creating 2-3918
defining default properties 2-3921

Index-54



Index

fixed-width font 2-3935
properties 2-3923

TextBackgroundColor
textarrow property 2-198

TextColor
textarrow property 2-198

TextEdgeColor
textarrow property 2-198

TextLineWidth
textarrow property 2-198

TextList
contour property 2-908

TextListMode
contour property 2-908

TextMargin
textarrow property 2-198

textread 2-3954
TextRotation, textarrow property 2-199
textscan 2-3960
TextStep

contour property 2-909
TextStepMode

contour property 2-909
textwrap 2-3974
tfqmr 2-3977
throw, MException method 2-3980
throwAsCaller, MException method 2-3984
TickDir, Axes property 2-321
TickDirMode, Axes property 2-321
TickLength, Axes property 2-321
TIFF

compression 2-2023
encoding 2-2018
ImageDescription field 2-2023
maxvalue 2-2018
parameters that can be set when

writing 2-2022
resolution 2-2023
writemode 2-2023
writing 2-2014

TIFF image format
specifying color space 2-2022

tiling (copies of a matrix) 2-3328
time

CPU 2-955
elapsed (stopwatch timer) 2-3987
required to execute commands 2-1284

time and date functions 2-1245
timer

properties 2-4002
timer object 2-4002

timerfind
timer object 2-4009

timerfindall
timer object 2-4011

times (function equivalent for .*) 2-49
timeseries 2-4013
timestamp 2-1160
title 2-4016

with superscript 2-4017
Title, Axes property 2-322
todatenum 2-4019
toeplitz 2-4020
Toeplitz matrix 2-4020
toggle buttons 2-4111
token 2-3751

See also string
Toolbar

Figure property 2-1446
Toolbox

Spline 2-2085
toolbox folder, path 2-4021
toolboxdir 2-4021
TooltipString

Uicontrol property 2-4137
Uipushtool property 2-4210
Uitable property 2-4266
Uitoggletool property 2-4280

trace 2-4022
trace of a matrix 2-1151 2-4022

Index-55



Index

trailing blanks
removing 2-1094

transform
hgtransform function 2-1881

transform, Fourier
discrete, n-dimensional 2-1385
discrete, one-dimensional 2-1379
discrete, two-dimensional 2-1384
inverse, n-dimensional 2-1940
inverse, one-dimensional 2-1936
inverse, two-dimensional 2-1938
shifting the zero-frequency component

of 2-1388
transformation

See also conversion 2-535
transformations

elementary Hermite 2-1677
transmitting file to FTP server 2-2648
transpose

array (arithmetic operator) 2-46
matrix (arithmetic operator) 2-46

transpose (function equivalent for .\q) 2-50
transpose (timeseries) 2-4023
trapz 2-4025
treelayout 2-4027
treeplot 2-4028
triangulation

2-D plot 2-4035
tril 2-4030
trimesh 2-4031
triple integral

numerical evaluation 2-4033
triplequad 2-4033
triplot 2-4035
trisurf 2-4049
triu 2-4051
true 2-4052
truth tables (for logical operations) 2-56
try 2-4053
tscollection 2-4057

tsdata.event 2-4060
tsearchn 2-4062
tsprops 2-4063
tstool 2-4068
type 2-4069
Type

areaseries property 2-233
Axes property 2-322
barseries property 2-365
contour property 2-909
errorbar property 2-1276
Figure property 2-1446
hggroup property 2-1874
hgtransform property 2-1903
Image property 2-1973
Light property 2-2302
Line property 2-2326
lineseries property 2-2340
Patch property 2-2945
quivergroup property 2-3200
rectangle property 2-3276
Root property 2-3380
scatter property 2-3443
stairseries property 2-3640
stem property 2-3674
Surface property 2-3836
surfaceplot property 2-3861
Text property 2-3951
Uicontextmenu property 2-4107
Uicontrol property 2-4138
Uimenu property 2-4173
Uipushtool property 2-4211
Uitable property 2-4266
Uitoggletool property 2-4281
Uitoolbar property 2-4291

typecast 2-4070

U
UData

Index-56



Index

errorbar property 2-1277
quivergroup property 2-3201

UDataSource
errorbar property 2-1277
quivergroup property 2-3201

Uibuttongroup
defining default properties 2-4079

uibuttongroup function 2-4074
Uibuttongroup Properties 2-4079
uicontextmenu 2-4097
UiContextMenu

Uicontrol property 2-4138
Uipushtool property 2-4211
Uitoggletool property 2-4281
Uitoolbar property 2-4291

UIContextMenu
areaseries property 2-233
Axes property 2-323
barseries property 2-365
contour property 2-910
errorbar property 2-1277
Figure property 2-1447
hggroup property 2-1874
hgtransform property 2-1903
Image property 2-1973
Light property 2-2303
Line property 2-2326
lineseries property 2-2340
Patch property 2-2945
quivergroup property 2-3200
rectangle property 2-3276
scatter property 2-3443
stairseries property 2-3640
stem property 2-3674
Surface property 2-3837
surfaceplot property 2-3861
Text property 2-3951
Uitable property 2-4266

Uicontextmenu Properties 2-4100
uicontrol 2-4108

Uicontrol
defining default properties 2-4114
fixed-width font 2-4124
types of 2-4108

Uicontrol Properties 2-4114
uicontrols

printing 2-3088
uigetdir 2-4141
uigetfile 2-4145
uigetpref function 2-4156
uiimport 2-4160
uimenu 2-4161
Uimenu

creating 2-4161
defining default properties 2-4163
Properties 2-4163

Uimenu Properties 2-4163
uint16 2-4175
uint32 2-4175
uint64 2-4175
uint8 2-2075 2-4175
uiopen 2-4177
Uipanel

defining default properties 2-4182
uipanel function 2-4179
Uipanel Properties 2-4182
uipushtool 2-4199
Uipushtool

defining default properties 2-4202
Uipushtool Properties 2-4202
uiputfile 2-4212
uiresume 2-4221
uisave 2-4223
uisetcolor function 2-4226
uisetfont 2-4227
uisetpref function 2-4229
uistack 2-4230
Uitable

defining default properties 2-4239
fixed-width font 2-4258

Index-57



Index

uitable function 2-4231
Uitable Properties 2-4239
uitoggletool 2-4268
Uitoggletool

defining default properties 2-4271
Uitoggletool Properties 2-4271
uitoolbar 2-4282
Uitoolbar

defining default properties 2-4284
Uitoolbar Properties 2-4284
uiwait 2-4292
uminus (function equivalent for unary \xd0

) 2-49
UNC pathname error and dos 2-1197
UNC pathname error and system 2-3902
unconstrained minimization 2-1538
undefined numerical results 2-2671
undocheckout 2-4294
unicode2native 2-4295
unimodular matrix 2-1677
union 2-4296
unique 2-4298
Units

annotation ellipse property 2-183
annotation rectangle property 2-190
arrow property 2-175
Axes property 2-323
doublearrow property 2-180
Figure property 2-1447
line property 2-186
Root property 2-3380
Text property 2-3951
textarrow property 2-199
textbox property 2-209
Uicontrol property 2-4138
Uitable property 2-4266

unix 2-4301
unloadlibrary 2-4304
unlocking functions 2-2668
unmkpp 2-4309

untar 2-4316
unwrap 2-4318
unzip 2-4323
up vector, of camera 2-504
updating figure during file execution 2-1202
uplus (function equivalent for unary +) 2-49
upper 2-4325
upper triangular matrix 2-4051
uppercase to lowercase 2-2412
url

opening in Web browser 2-4440
usejava 2-4329
user input

from a button menu 2-2518
UserData

areaseries property 2-233
Axes property 2-324
barseries property 2-366
contour property 2-910
errorbar property 2-1278
Figure property 2-1448
hggroup property 2-1874
hgtransform property 2-1904
Image property 2-1973
Light property 2-2303
Line property 2-2326
lineseries property 2-2341
Patch property 2-2945
quivergroup property 2-3200
rectangle property 2-3276
Root property 2-3381
scatter property 2-3444
stairseries property 2-3640
stem property 2-3674
Surface property 2-3837
surfaceplot property 2-3861
Text property 2-3952
Uicontextmenu property 2-4107
Uicontrol property 2-4139
Uimenu property 2-4173

Index-58



Index

Uipushtool property 2-4211
Uitable property 2-4267
Uitoggletool property 2-4281
Uitoolbar property 2-4291

userpath 2-4331

V
validateattributes 2-4340
validatestring 2-4349
Value, Uicontrol property 2-4139
vander 2-4356
Vandermonde matrix 2-3055
var 2-4357
var (timeseries) 2-4358
varargin 2-4360
varargout 2-4362
variable numbers of arguments 2-4362
variable-order solver (ODE) 2-2834
variables

checking existence of 2-1307
clearing from workspace 2-790
global 2-1763
in workspace 2-4479
keeping some when clearing 2-796
linking to graphs with linkdata 2-2355
listing 2-4461
local 2-1615 2-1763
name of passed 2-2053
opening 2-2853
persistent 2-2996
saving 2-3404
sizes of 2-4461

VData
quivergroup property 2-3202

VDataSource
quivergroup property 2-3202

vector
dot product 2-1198
frequency 2-2409

product (cross) 2-966
vector field, plotting 2-873
vectorize 2-4363
vectorizing ODE function (BVP) 2-474
vectors, creating

logarithmically spaced 2-2409
regularly spaced 2-70 2-2370

velocity vectors, plotting 2-873
ver 2-4364
verctrl function (Windows) 2-4366
verLessThan 2-4370
version 2-4372
version numbers

comparing 2-4370
displaying 2-4364

vertcat 2-4374
vertcat (function equivalent for [ 2-68
vertcat (timeseries) 2-4376
vertcat (tscollection) 2-4377
VertexNormals

Patch property 2-2945
Surface property 2-3837
surfaceplot property 2-3861

VerticalAlignment, Text property 2-3952
VerticalAlignment, textbox property 2-199

2-209
Vertices, Patch property 2-2946
video

saving in AVI format 2-282
view 2-4381

azimuth of viewpoint 2-4381
coordinate system defining 2-4382
elevation of viewpoint 2-4381

view angle, of camera 2-506
View, Axes property (obsolete) 2-324
viewing

a group of object 2-491
a specific object in a scene 2-491

viewmtx 2-4384
Visible

Index-59



Index

areaseries property 2-234
Axes property 2-324
barseries property 2-366
contour property 2-910
errorbar property 2-1278
Figure property 2-1448
hggroup property 2-1875
hgtransform property 2-1904
Image property 2-1973
Light property 2-2303
Line property 2-2326
lineseries property 2-2341
Patch property 2-2946
quivergroup property 2-3201
rectangle property 2-3276
Root property 2-3381
scatter property 2-3444
stairseries property 2-3640
stem property 2-3674
Surface property 2-3837
surfaceplot property 2-3862
Text property 2-3953
Uicontextmenu property 2-4107
Uicontrol property 2-4140
Uimenu property 2-4174
Uipushtool property 2-4211
Uitable property 2-4267
Uitoggletool property 2-4281
Uitoolbar property 2-4291

visualizing
cell array structure 2-743
sparse matrices 2-3607

volumes
calculating isosurface data 2-2181
computing 2-D stream lines 2-3697
computing 3-D stream lines 2-3699
computing isosurface normals 2-2178
contouring slice planes 2-915
drawing stream lines 2-3701
end caps 2-2171

reducing face size in isosurfaces 2-3516
reducing number of elements in 2-3284

voronoi 2-4397
Voronoi diagrams

multidimensional vizualization 2-4404
two-dimensional vizualization 2-4397

voronoin 2-4404

W
wait

timer object 2-4408
waitbar 2-4409
waitfor 2-4413
waitforbuttonpress 2-4417
warndlg 2-4418
warning 2-4421
warning message (enabling, suppressing, and

displaying) 2-4421
waterfall 2-4425
.wav files

reading 2-4432
writing 2-4438

waverecord 2-4436
wavfinfo 2-4429
wavplay 2-4430
wavread 2-4429 2-4432
wavrecord 2-4436
wavwrite 2-4438
WData

quivergroup property 2-3203
WDataSource

quivergroup property 2-3203
web 2-4440
Web browser

displaying help in 2-1850
pointing to file or url 2-4440

weekday 2-4445
well conditioned 2-3238
what 2-4447

Index-60



Index

whatsnew 2-4451
which 2-4452
while 2-4455
white space characters, ASCII 2-2198 2-3751
whitebg 2-4459
who, whos

who 2-4461
wilkinson 2-4468
Wilkinson matrix 2-3568 2-4468
WindowButtonDownFcn, Figure property 2-1448
WindowButtonMotionFcn, Figure

property 2-1449
WindowButtonUpFcn, Figure property 2-1450
WindowKeyPressFcn , Figure property 2-1450
WindowKeyReleaseFcn , Figure property 2-1452
Windows Paintbrush files

writing 2-2013
WindowScrollWheelFcn, Figure property 2-1452
WindowStyle, Figure property 2-1455
winopen 2-4469
winqueryreg 2-4471
WK1 files

loading 2-4474
writing from matrix 2-4477

wk1finfo 2-4473
wk1read 2-4474
wk1write 2-4477
workspace 2-4479

changing context while debugging 2-1044
2-1069

clearing items from 2-790
consolidating memory 2-2878
predefining variables 2-3647
saving 2-3404
variables in 2-4461
viewing contents of 2-4479

workspace variables
reading from disk 2-2379

WVisual, Figure property 2-1457
WVisualMode, Figure property 2-1459

X
X

annotation arrow property 2-176 2-180
annotation line property 2-187
textarrow property 2-200

X Windows Dump files
writing 2-2014

x-axis limits, setting and querying 2-4490
XAxisLocation, Axes property 2-324
XColor, Axes property 2-325
XData

areaseries property 2-234
barseries property 2-366
contour property 2-910
errorbar property 2-1278
Image property 2-1974
Line property 2-2327
lineseries property 2-2341
Patch property 2-2946
quivergroup property 2-3204
scatter property 2-3444
stairseries property 2-3640
stem property 2-3675
Surface property 2-3837
surfaceplot property 2-3862

XDataMode
areaseries property 2-234
barseries property 2-366
contour property 2-911
errorbar property 2-1278
lineseries property 2-2341
quivergroup property 2-3204
stairseries property 2-3641
stem property 2-3675
surfaceplot property 2-3862

XDataSource
areaseries property 2-235
barseries property 2-367
contour property 2-911
errorbar property 2-1279

Index-61



Index

lineseries property 2-2342
quivergroup property 2-3204
scatter property 2-3444
stairseries property 2-3641
stem property 2-3675
surfaceplot property 2-3862

XDir, Axes property 2-325
XDisplay, Figure property 2-1460
XGrid, Axes property 2-326
xlabel 2-4488
XLabel, Axes property 2-326
xlim 2-4490
XLim, Axes property 2-327
XLimMode, Axes property 2-327
XLS files

loading 2-4495
xlsfinfo 2-4493
xlsread 2-4495
xlswrite 2-4505
XMinorGrid, Axes property 2-328
xmlread 2-4510
xmlwrite 2-4515
xor 2-4516
XOR, printing 2-227 2-359 2-901 2-1269 2-1899

2-1969 2-2321 2-2334 2-2933 2-3193 2-3272
2-3436 2-3633 2-3667 2-3828 2-3851 2-3933

XScale, Axes property 2-328
xslt 2-4517
XTick, Axes property 2-328
XTickLabel, Axes property 2-329
XTickLabelMode, Axes property 2-330
XTickMode, Axes property 2-329
XVisual, Figure property 2-1460
XVisualMode, Figure property 2-1462
XWD files

writing 2-2014
xyz coordinates . See Cartesian coordinates

Y
Y

annotation arrow property 2-176 2-181 2-187
textarrow property 2-200

y-axis limits, setting and querying 2-4490
YAxisLocation, Axes property 2-324
YColor, Axes property 2-325
YData

areaseries property 2-235
barseries property 2-367
contour property 2-912
errorbar property 2-1279
Image property 2-1974
Line property 2-2327
lineseries property 2-2342
Patch property 2-2946
quivergroup property 2-3205
scatter property 2-3445
stairseries property 2-3642
stem property 2-3676
Surface property 2-3838
surfaceplot property 2-3863

YDataMode
contour property 2-912
quivergroup property 2-3205
surfaceplot property 2-3863

YDataSource
areaseries property 2-236
barseries property 2-368
contour property 2-912
errorbar property 2-1280
lineseries property 2-2343
quivergroup property 2-3206
scatter property 2-3445
stairseries property 2-3642
stem property 2-3676
surfaceplot property 2-3863

YDir, Axes property 2-325
YGrid, Axes property 2-326
ylabel 2-4488

Index-62



Index

YLabel, Axes property 2-326
ylim 2-4490
YLim, Axes property 2-327
YLimMode, Axes property 2-327
YMinorGrid, Axes property 2-328
YScale, Axes property 2-328
YTick, Axes property 2-328
YTickLabel, Axes property 2-329
YTickLabelMode, Axes property 2-330
YTickMode, Axes property 2-329

Z
z-axis limits, setting and querying 2-4490
ZColor, Axes property 2-325
ZData

contour property 2-913
Line property 2-2327
lineseries property 2-2343
Patch property 2-2946
quivergroup property 2-3206
scatter property 2-3446
stemseries property 2-3677
Surface property 2-3838
surfaceplot property 2-3864

ZDataSource
contour property 2-913
lineseries property 2-2343 2-3677
scatter property 2-3446
surfaceplot property 2-3864

ZDir, Axes property 2-325
zero of a function, finding 2-1638
zeros 2-4519
ZGrid, Axes property 2-326
Ziggurat 2-3225 2-3229
zip 2-4521
zlabel 2-4488
zlim 2-4490
ZLim, Axes property 2-327
ZLimMode, Axes property 2-327
ZMinorGrid, Axes property 2-328
zoom 2-4524
zoom mode objects 2-4525
ZScale, Axes property 2-328
ZTick, Axes property 2-328
ZTickLabel, Axes property 2-329
ZTickLabelMode, Axes property 2-330
ZTickMode, Axes property 2-329

Index-63


	toc
	Function Reference
	Desktop Tools and Development Environment
	Startup and Shutdown
	Command Window and History
	Help for Using MATLAB
	Workspace
	Managing Files
	Search Path
	File Operations

	Programming Tools
	Editing Files
	Debugging Programs
	MATLAB Program Performance
	Source Control
	Publishing

	System
	Operating System Interface
	MATLAB Version and License


	Data Import and Export
	File Name Construction
	File Opening, Loading, and Saving
	Memory Mapping
	Low-Level File I/O
	Text Files
	XML Documents
	Spreadsheets
	Microsoft Excel
	Lotus 1-2-3

	Scientific Data
	Common Data Format
	Network Common Data Form
	Flexible Image Transport System
	Hierarchical Data Format
	Band-Interleaved Data

	Audio and Video
	Reading and Writing Files
	Recording and Playback
	Utilities

	Images
	Internet Exchange
	URL, Zip, Tar, E-Mail
	FTP


	Mathematics
	Arrays and Matrices
	Basic Information
	Operators
	Elementary Matrices and Arrays
	Array Operations
	Array Manipulation
	Specialized Matrices

	Linear Algebra
	Matrix Analysis
	Linear Equations
	Eigenvalues and Singular Values
	Matrix Logarithms and Exponentials
	Factorization

	Elementary Math
	Trigonometric
	Exponential
	Complex
	Rounding and Remainder
	Discrete Math

	Polynomials
	Interpolation and Computational Geometry
	Interpolation
	Delaunay Triangulation and Tessellation
	Convex Hull
	Voronoi Diagrams
	Domain Generation

	Cartesian Coordinate System Conversion
	Nonlinear Numerical Methods
	Ordinary Differential Equations
	Delay Differential Equations
	Boundary Value Problems
	Partial Differential Equations
	Optimization
	Numerical Integration (Quadrature)

	Specialized Math
	Sparse Matrices
	Elementary Sparse Matrices
	Full to Sparse Conversion
	Sparse Matrix Manipulation
	Reordering Algorithms
	Linear Algebra
	Linear Equations (Iterative Methods)
	Tree Operations

	Math Constants

	Data Analysis
	Basic Operations
	Descriptive Statistics
	Filtering and Convolution
	Interpolation and Regression
	Fourier Transforms
	Derivatives and Integrals
	Time Series Objects
	Utilities
	Data Manipulation
	Event Data
	Descriptive Statistics

	Time Series Collections
	Utilities
	Data Manipulation


	Programming and Data Types
	Data Types
	Numeric Types
	Characters and Strings
	Structures
	Cell Arrays
	Map Container Objects
	Function Handles
	Java Classes and Objects
	Data Type Identification

	Data Type Conversion
	Numeric
	String to Numeric
	Numeric to String
	Other Conversions

	Operators and Special Characters
	Arithmetic Operators
	Relational Operators
	Logical Operators
	Special Characters

	Strings
	Description of Strings in MATLAB
	String Creation
	String Identification
	String Manipulation
	String Parsing
	String Evaluation
	String Comparison

	Bit-Wise Operations
	Logical Operations
	Relational Operations
	Set Operations
	Date and Time Operations
	Programming in MATLAB
	Functions and Scripts
	Evaluation
	Timer
	Variables and Functions in Memory
	Control Flow
	Error Handling
	MEX Programming


	Object-Oriented Programming
	Classes and Objects
	Handle Classes
	Events and Listeners
	Meta-Classes

	Graphics
	Basic Plots and Graphs
	Plotting Tools
	Annotating Plots
	Specialized Plotting
	Area, Bar, and Pie Plots
	Contour Plots
	Direction and Velocity Plots
	Discrete Data Plots
	Function Plots
	Histograms
	Polygons and Surfaces
	Scatter/Bubble Plots
	Animation

	Bit-Mapped Images
	Printing
	Handle Graphics
	Graphics Object Identification
	Object Creation
	Annotation Objects
	Plot Objects
	Figure Windows
	Axes Operations
	Object Property Operations


	3-D Visualization
	Surface and Mesh Plots
	Surface and Mesh Creation
	Domain Generation
	Color Operations

	View Control
	Camera Viewpoint
	Aspect Ratio and Axis Limits
	Object Manipulation
	Region of Interest

	Lighting
	Transparency
	Volume Visualization

	GUI Development
	Predefined Dialog Boxes
	User Interface Deployment
	User Interface Development
	User Interface Objects
	Objects from Callbacks
	GUI Utilities
	Program Execution

	External Interfaces
	Shared Libraries
	Java
	.NET
	Component Object Model and ActiveX
	Web Services
	Serial Port Devices


	Alphabetical List
	Contents
	Contents
	Integrand with a singularity at an integration end point
	Oscillatory integrand on a semi-infinite interval
	Contour integration around a pole
	Consider the 2-by-1-by-3 array Y = rand(2,1,3). This array has a
	Consider the 1-by-1-by-5 array mat=repmat(1,[1,1,5]). This array
	Supported Values
	Supported Values
	Supported Values
	Supported Values
	Supported Values
	Supported Values
	Supported Values
	Supported Values
	Supported Values
	Supported Values
	Supported Values
	Supported Values
	Supported Values

	Index

	tables
	BVP Error Tolerance Properties 
	Vectorization Properties
	BVP Analytical Partial Derivative Properties
	Singular BVP Property
	BVP Mesh Size Property
	BVP Solution Statistic Property
	Data Size Before and After Transposing 
	Standard MATLAB Date Format Definitions
	Free-Form Date Format Specifiers
	DDE Error Control Properties
	DDE Solver Output Properties 
	DDE Step Size Properties
	DDE Events Property
	DDE Discontinuity Properties 
	Data Arrays or Extensions
	Fields of the Attribute Structure
	Fields of the Raster8 and Raster24 Structures
	Fields of the SDS Structure
	Fields of the Vdata Structure
	Fields of the Vgroup Structure
	Fields of the Grid Structure
	Fields of the Point Structure
	Fields of the Swath Structure
	 
	Values for helpOption 
	Values for envDispOption 
	Values for archOption
	Values for dispOption
	Values for modeOption
	Values for helpOption
	MEX Script Switches
	ODE Events Property
	Jacobian Properties for All Implicit Solvers Except ode15i
	Jacobian Properties for ode15i
	Mass Matrix and DAE Properties (Solvers Other Than ode15i) 
	ode15s and ode15i-Specific Properties
	Options for the publish Function
	Return Values for Regular Expressions
	Formats for strread
	Parameters and Values for strread
	Option Structure Fields and Descriptions
	Data Size Before and After Transposing 
	Time Series Object Properties
	 
	Class Values
	Attribute Values
	Data Types for wavplay
	Native Formats
	Double Formats




